@inproceedings{maehlum-etal-2019-annotating,
title = "Annotating evaluative sentences for sentiment analysis: a dataset for {N}orwegian",
author = "M{\ae}hlum, Petter and
Barnes, Jeremy and
{\O}vrelid, Lilja and
Velldal, Erik",
editor = "Hartmann, Mareike and
Plank, Barbara",
booktitle = "Proceedings of the 22nd Nordic Conference on Computational Linguistics",
month = sep # "–" # oct,
year = "2019",
address = "Turku, Finland",
publisher = {Link{\"o}ping University Electronic Press},
url = "https://aclanthology.org/W19-6113/",
pages = "121--130",
abstract = "This paper documents the creation of a large-scale dataset of evaluative sentences {--} i.e. both subjective and objective sentences that are found to be sentiment-bearing {--} based on mixed-domain professional reviews from various news-sources. We present both the annotation scheme and first results for classification experiments. The effort represents a step toward creating a Norwegian dataset for fine-grained sentiment analysis."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maehlum-etal-2019-annotating">
<titleInfo>
<title>Annotating evaluative sentences for sentiment analysis: a dataset for Norwegian</title>
</titleInfo>
<name type="personal">
<namePart type="given">Petter</namePart>
<namePart type="family">Mæhlum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lilja</namePart>
<namePart type="family">Øvrelid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Velldal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-sep–oct</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Nordic Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mareike</namePart>
<namePart type="family">Hartmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press</publisher>
<place>
<placeTerm type="text">Turku, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper documents the creation of a large-scale dataset of evaluative sentences – i.e. both subjective and objective sentences that are found to be sentiment-bearing – based on mixed-domain professional reviews from various news-sources. We present both the annotation scheme and first results for classification experiments. The effort represents a step toward creating a Norwegian dataset for fine-grained sentiment analysis.</abstract>
<identifier type="citekey">maehlum-etal-2019-annotating</identifier>
<location>
<url>https://aclanthology.org/W19-6113/</url>
</location>
<part>
<date>2019-sep–oct</date>
<extent unit="page">
<start>121</start>
<end>130</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Annotating evaluative sentences for sentiment analysis: a dataset for Norwegian
%A Mæhlum, Petter
%A Barnes, Jeremy
%A Øvrelid, Lilja
%A Velldal, Erik
%Y Hartmann, Mareike
%Y Plank, Barbara
%S Proceedings of the 22nd Nordic Conference on Computational Linguistics
%D 2019
%8 sep–oct
%I Linköping University Electronic Press
%C Turku, Finland
%F maehlum-etal-2019-annotating
%X This paper documents the creation of a large-scale dataset of evaluative sentences – i.e. both subjective and objective sentences that are found to be sentiment-bearing – based on mixed-domain professional reviews from various news-sources. We present both the annotation scheme and first results for classification experiments. The effort represents a step toward creating a Norwegian dataset for fine-grained sentiment analysis.
%U https://aclanthology.org/W19-6113/
%P 121-130
Markdown (Informal)
[Annotating evaluative sentences for sentiment analysis: a dataset for Norwegian](https://aclanthology.org/W19-6113/) (Mæhlum et al., NoDaLiDa 2019)
ACL