@inproceedings{ronnqvist-etal-2019-multilingual,
title = "Is Multilingual {BERT} Fluent in Language Generation?",
author = {R{\"o}nnqvist, Samuel and
Kanerva, Jenna and
Salakoski, Tapio and
Ginter, Filip},
editor = {Nivre, Joakim and
Derczynski, Leon and
Ginter, Filip and
Lindi, Bj{\o}rn and
Oepen, Stephan and
S{\o}gaard, Anders and
Tidemann, J{\"o}rg},
booktitle = "Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing",
month = sep,
year = "2019",
address = "Turku, Finland",
publisher = {Link{\"o}ping University Electronic Press},
url = "https://aclanthology.org/W19-6204/",
pages = "29--36",
abstract = "The multilingual BERT model is trained on 104 languages and meant to serve as a universal language model and tool for encoding sentences. We explore how well the model performs on several languages across several tasks: a diagnostic classification probing the embeddings for a particular syntactic property, a cloze task testing the language modelling ability to fill in gaps in a sentence, and a natural language generation task testing for the ability to produce coherent text fitting a given context. We find that the currently available multilingual BERT model is clearly inferior to the monolingual counterparts, and cannot in many cases serve as a substitute for a well-trained monolingual model. We find that the English and German models perform well at generation, whereas the multilingual model is lacking, in particular, for Nordic languages. The code of the experiments in the paper is available at: \url{https://github.com/TurkuNLP/bert-eval}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ronnqvist-etal-2019-multilingual">
<titleInfo>
<title>Is Multilingual BERT Fluent in Language Generation?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Rönnqvist</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jenna</namePart>
<namePart type="family">Kanerva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tapio</namePart>
<namePart type="family">Salakoski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Ginter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joakim</namePart>
<namePart type="family">Nivre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Ginter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bjørn</namePart>
<namePart type="family">Lindi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Oepen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tidemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press</publisher>
<place>
<placeTerm type="text">Turku, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The multilingual BERT model is trained on 104 languages and meant to serve as a universal language model and tool for encoding sentences. We explore how well the model performs on several languages across several tasks: a diagnostic classification probing the embeddings for a particular syntactic property, a cloze task testing the language modelling ability to fill in gaps in a sentence, and a natural language generation task testing for the ability to produce coherent text fitting a given context. We find that the currently available multilingual BERT model is clearly inferior to the monolingual counterparts, and cannot in many cases serve as a substitute for a well-trained monolingual model. We find that the English and German models perform well at generation, whereas the multilingual model is lacking, in particular, for Nordic languages. The code of the experiments in the paper is available at: https://github.com/TurkuNLP/bert-eval</abstract>
<identifier type="citekey">ronnqvist-etal-2019-multilingual</identifier>
<location>
<url>https://aclanthology.org/W19-6204/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>29</start>
<end>36</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Is Multilingual BERT Fluent in Language Generation?
%A Rönnqvist, Samuel
%A Kanerva, Jenna
%A Salakoski, Tapio
%A Ginter, Filip
%Y Nivre, Joakim
%Y Derczynski, Leon
%Y Ginter, Filip
%Y Lindi, Bjørn
%Y Oepen, Stephan
%Y Søgaard, Anders
%Y Tidemann, Jörg
%S Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing
%D 2019
%8 September
%I Linköping University Electronic Press
%C Turku, Finland
%F ronnqvist-etal-2019-multilingual
%X The multilingual BERT model is trained on 104 languages and meant to serve as a universal language model and tool for encoding sentences. We explore how well the model performs on several languages across several tasks: a diagnostic classification probing the embeddings for a particular syntactic property, a cloze task testing the language modelling ability to fill in gaps in a sentence, and a natural language generation task testing for the ability to produce coherent text fitting a given context. We find that the currently available multilingual BERT model is clearly inferior to the monolingual counterparts, and cannot in many cases serve as a substitute for a well-trained monolingual model. We find that the English and German models perform well at generation, whereas the multilingual model is lacking, in particular, for Nordic languages. The code of the experiments in the paper is available at: https://github.com/TurkuNLP/bert-eval
%U https://aclanthology.org/W19-6204/
%P 29-36
Markdown (Informal)
[Is Multilingual BERT Fluent in Language Generation?](https://aclanthology.org/W19-6204/) (Rönnqvist et al., NoDaLiDa 2019)
ACL
- Samuel Rönnqvist, Jenna Kanerva, Tapio Salakoski, and Filip Ginter. 2019. Is Multilingual BERT Fluent in Language Generation?. In Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing, pages 29–36, Turku, Finland. Linköping University Electronic Press.