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Abstract

Current neural machine translation (NMT)
approaches achieve state-of-the-art accu-
racy in high-resource contexts. However,
NMT requires a great deal of parallel data
to deliver acceptable results; thus, it is
currently unsuited for translating in low-
resource contexts (especially when com-
pared to phrase-based approaches). We
propose a method that better leverages the
limited data available in such low-resource
settings by adapting the model for each
sentence at inference time. A general
NMT model is trained on the limited train-
ing data; then, for each test sentence, its
parameters are fine-tuned over a subset of
similar sentences extracted from the train-
ing set. We experiment with various simi-
larity metrics to extract these similar sen-
tences. It is observed that the sentence-
adapted models achieve slightly increased
BLEU scores compared to standard neural
approaches on a Xhosa-English dataset.

1 Introduction

Neural machine translation (NMT) (Bahdanau et
al., 2014) has become the primary paradigm in ma-
chine translation literature. NMT aims to learn
an end-to-end neural model to optimize translation
performance by generalizing machine translation
as a sequence-to-sequence machine learning prob-
lem.

The first NMT systems (Sutskever et al., 2014;
Kalchbrenner and Blunsom, 2013) were built
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with recurrent neural networks based on encoder-
decoder architectures. Bahdanau et al. (2014) and
Luong et al. (2015) proposed the use of attention
mechanisms to translate better by considering the
context in which particular target words occur with
respect to the source contexts. Recently, trans-
formers (Vaswani et al., 2017) have been shown
to achieve state-of-the-art performance across var-
ious high-resource language pairs.

The strength of this approach lies in processing
large amounts of parallel data and quickly learning
from aligned translations without pre-defined lin-
guistic rules. NMT directly models the probability
of a target-language sentence given aligned source-
and target-language sentences and does not need
to train separate language models and alignment
models like statistical machine translation (SMT)
(Koehn et al., 2003; Chiang, 2005). The unavail-
ability of large parallel corpora for most language
pairs, however, is a ubiquitous problem. These are
only available for a handful of resource-rich lan-
guages, and in limited domains such as news re-
ports or parliamentary/congressional proceedings.

Neural approaches to MT in general are data-
hungry and therefore tend to perform inadequately
in low-resource contexts (Koehn and Knowles,
2017). Thus, improving NMT for low-resource
languages has been a topic of recent interest.
While unsupervised NMT (Artetxe et al., 2018)
has been suggested to reduce NMT’s need for
aligned translations, it does not perform effec-
tively for low-resource languages (Guzmán et al.,
2019). Present practices in the domain leverage
the strength of preliminary word-level translation
models, which do not work well. However, trans-
fer learning from high-resource parallel datasets
(Zoph et al., 2016), as well as data augmentation
through pivot corpora (Choi et al., 2018), trans-
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lating monolingual data (Zhang and Zong, 2016),
and/or copying data from source to target side
(Currey et al., 2017) have proven effective in such
cases.

Our method attempts to better leverage lim-
ited data by adapting parameters for each sentence
at inference time. This is carried out by fine-
tuning (Sennrich et al., 2015; Luong and Manning,
2015b) the parameters of an NMT model over a
subset of training sentences which are similar to
a given test sentence. By contrast, existing NMT
systems tend to employ parameters which are un-
changed for any given test sentence after train-
ing or continued training (Luong and Manning,
2015a).

There exists evidence that customising an NMT
model for each test sentence gives it a better
chance of producing correct translations (Wue-
bker et al., 2018). In our model, for every test
sentence, a unique subset of similar training sen-
tences is retrieved. This training-sentence subset
is used to fine-tune the base model at inference
time. We experiment with string-based similarity
and representation-based similarity to retrieve sim-
ilar sentences; precision, recall, and Levenshtein
distance are used for the former, and cosine sim-
ilarity on word embeddings is used for the latter.
A combination of these is used to create the final
subset of similar sentences.

2 Related Work

In statistical machine translation, Liu et al. (2012)
proposed a local training method to learn sentence-
wise weights for different test sentences. Due to
the relatively lower number of weights in SMT,
fine-tuning them does not fully exploit similar sen-
tences. Koehn and Senellart (2010; Ma et al.
(2011; Bertoldi and Federico (2013; Wang et al.
(2013) carefully designed features to generate sim-
ilar sentences and use them in the translation mem-
ory. These methods worked when the similarity
of the test sentence and the sentences in the simi-
lar subset was reasonably high. Moore and Lewis
(2010) proposed selecting non-domain-specific
language model (LM) training data by compar-
ing its cross-entropy with as domain-specific LM,
while Duh et al. (2013) used neural LMs for adap-
tation data selection.

Domain adaptation (Ben-David et al., 2010;
Chu and Wang, 2018) can be applied in order to
learn from a source-language distribution a well

performing model on a different (but related) target
data distribution. Continued training (Luong and
Manning, 2015a) is a commonly applied technique
in domain adaptation where a general NMT sys-
tem is trained on a large amounts of out-of-domain
parallel data; then, the general model is adapted
for a particular domain. Sentence-level adapta-
tion is analogous to the problem of domain adap-
tation if each sentence is considered its own do-
main, and we therefore consider the sentence adap-
tation task a subset of the domain adaptation task.
Our approach is similar to the more fine-grained
document-level adaptation of Kothur et al. (2018),
though we adapt on multiple complete sentences
rather than populating a dictionary of novel-word
translations or adapting on the previous sentence.
Farajian et al. (2017) work on translations in multi-
ple domains by generating instance-based adapta-
tion hyperparameters in an unsupervised fashion.

Li et al. (2016) present a dynamic NMT ap-
proach where the general NMT model is adapted
per-sentence; however, they adapt on only a single
similar sentence and employ their system in a high-
resource context. We propose additional similar-
ity metrics and adapt on multiple similar sentences
obtained from each metric. The pipeline employed
here is similar to that of Zhang et al. (2018), where
”translation pieces” are extracted to improve trans-
lations for particular sentences. However, their ap-
proach uses only lexical measures of similarity—
edit distance and similar n-grams—and relies on
these similar lexical features as opposed to entire
sentences from the training corpus. Our system
employs lexical, character-based, and embedding-
based similarities to retrieve sentences, making it
better suited for the task.

3 Model Architecture

We discuss the various components of our pro-
posed approach in detail. An overview of the ar-
chitecture can be found in Figure 1.

3.1 Transformer

Recently, transformers (Vaswani et al., 2017) have
proven highly effective in machine translation; as
they process each word, self-attention allows them
to peek at other positions in the input sequence it-
self to create a better encoding. We employ trans-
formers as the foundation for our model.

The transformer encoder is composed of 2 sub-
layers: self-attention and a feedforward network.
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Figure 1: Architecture overview.

First, the input is used to create query, key, and
value vectors. Vaswani et al. (2017) extend the dot
product attention described in Luong et al. (2015)
to consider these vectors. Self-attention is fur-
ther refined into multi-head attention, allowing the
model to focus on different parts of the input se-
quence at once.

Self-attention in the decoder is applied as it is
in the encoder. However, the attention on future
time steps is masked out to prevent from attending
to future positions. The output embeddings in the
decoder are offset by one position. Both of these
modifications combined ensure that model predic-
tions for any position can depend only on known
outputs of previous positions. Such blocks can be
stacked to form multi-layer encoders and decoders.

3.2 Similarity Metrics

Our method consists of adapting a base NMT
model over a small set of relevant sentences for
refinement of its parameters.

We employ four types of similarity metrics
(eight total metrics) to retrieve sentences from the
training set that are similar to a given test sentence.
The first of these is character-based Levenshtein
distance:

distance = subs + dels + inserts (1)

The sentences which return the minimum dis-
tance from the test sentence are considered to be
the most similar and are added to the fine-tuning
subset. We expect that this metric may capture
similar subwords.

Our second and third metric types employ lexi-
cal similarities between sentences. We take inspi-
ration from BLEU (Papineni et al., 2002), which

is a modified n-gram precision between a refer-
ence and generated translation. To capture lexi-
cal similarity, we count unigram, bigram, or tri-
gram matches, then normalize over the number of
n-grams in the test sentence (for recall) and the
number of n-grams in the candidate sentence from
the training set (for precision):

precision =
countmatch(train, test)

count(ngrams ∈ train)
(2)

recall =
countmatch(train, test)

count(ngrams ∈ test)
(3)

In Equations 2 and 3, countmatch refers to the
number of matching n-grams between the sentence
to be inferred (test) and a candidate sentence from
the training set (train). Note that we employ three
different n-gram orders (unigram, bigram, trigram)
for both of these metric types, yielding six total
precision- and recall-based similarity metrics.

Our fourth metric type attempts to capture se-
mantic similarity between sentences. For this, we
calculate the cosine similarity across two sentences
as follows:

cos(θ) =
s1 · s2

||s1|| · ||s2||
(4)

Here, vectors s1 and s2 are the mean word em-
beddings (Mikolov et al., 2013) for sentence 1 and
sentence 2, respectively:

s =

∑
w∈W w

|s| (5)

where w is a word embedding, W is the list of
all word embeddings in a given sentence s, and |s|
is the length of the sentence in tokens. The sum
and division are element-wise operations which
yield a vector of the same length as any given w
in W . Although simple, it has been demonstrated
that this is a strong method to generate sentence
embeddings (Arora et al., 2017).

Each metric (precision and recall of different n-
gram orders account for six out of the eight distinct
metrics) contributes 11 sentences1 each to the final
adaptation subset. We present a list of similar sen-
tences retrieved by each metric for a sample test
sentence in Table 6.

Since each of the metrics is calculated against all
training sentences, this approach is more suited for
a low-resource setting rather than a high-resource
one.
1This is an arbitrarily chosen number.
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Sentence Eng Words Xhosa Words

Train 20544 614441 388778
Test 1956 58323 36700
Dev 1956 59140 37353

Table 1: English-Xhosa Bible dataset at a glance.

αA BLEU

0.0001 22.51
0.0004 22.83
0.00045 22.82
0.0005 22.82
0.0006 22.59
0.00075 22.26

0.001 19.12

Table 2: Learning rate during adaptation (αA) vs. BLEU
scores in the Xhosa→English translation task. Note: αT =
0.0005.

3.3 Inference-Time Adaptation
Our pipeline is split into two stages. First, network
parameters are calculated by training over the en-
tire training corpus; this is denoted as θ. This cor-
responds to the training stage of Figure 1. Sec-
ond, the parameters θ are modified slightly to in-
crease the log-likelihood over the subset of sen-
tences which are similar to the test sentence (that
are extracted using the similarity metrics in Sec-
tion 3.2). The modified parameters are denoted as
θ̂. This is formalized as follows:

θ̂ = argmax
θ

(
log

∏

S(k)∼S
p(T (k)|S(k); θ)

)
(6)

where S denotes the source-language corpus of
similar sentences, T denotes the target-language
corpus of similar sentences, S(k) and T (k) denote
the kth sentence in the aligned corpus, and θ̂ refers
to the network parameters of the adapted model.
These computations2 occur in the inference stage
of Figure 1.

4 Experiments

4.1 Data
We translate Xhosa—a true low-resource
language—to English, employing translated
2Note that we pre-compute similar sentences before running
inference; this saves time when translating sentences at test
time. We do not peek at or manually modify the similar sen-
tences for any test sentence.

Bibles as our dataset (Christodouloupoulos and
Steedman, 2015).3 Dataset statistics are available
in Table 1. We work with word-level data for our
experiments.

Xhosa is a Niger-Congo language spoken by
approximately 8 million native speakers and 11
million L2 speakers (Lewis, 2015). Relative to
English, it is a synthetic language with a rich
morpheme inventory (Oosthuysen, 2016). Due to
Xhosa’s synthetic morphology, its English trans-
lations often demonstrate one-to-many relations;
i.e., one Xhosa word will often translate as mul-
tiple English words, which explains the disparity
between the number of Xhosa tokens and English
tokens in our dataset.

4.2 Training Details

All neural models herein are trained with Sockeye
(Hieber et al., 2017).

For each of the similarity metrics, we retrieve
the most similar sentences and concatenate them
into a single dataset, generating a total adaptation
subset of 88 sentences for each test sentence (11
per metric). As the adaptation dataset is small
compared to the training corpus, special care is
needed to optimize strategic overfitting during in-
ference; we therefore restrict adaptation to just one
epoch.

4.2.1 Adaptation Learning Rate Experiments

The learning rate for adaptation αA essentially
dictates how much fine-tuning the NMT system re-
ceives during adaptation. Each language has a dif-
ferent ideal adaptation rate, so we perform a sweep
and report our findings in Table 2.

It is clear that trying to learn very aggressively
from the adaptation subset results in a decrease in
performance. Trying to adjust the weights of the
network too much with respect to the loss func-
tion might result in disregarding some local min-
ima from consideration, resulting in an adverse ef-
fect. It is also found that setting αA too low also
results in a slight score decrease, so finding the op-
timal αA is crucial. It is observed that, in this case,
an αA of 0.0004 best suits our objective. Note that
this is similar to the training learning rate αT of
0.0005, and that the other best-performing αA val-
ues are similar to αT as well.

3Religious texts are often the first to be translated into a given
language. Translated Bibles are therefore available for many
low-resource language varieties.
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Base Model Unadapted αA = .0004 αA = .0005

LSTM (Luong et al., 2015) 20.73 - -
Transformer (αT = .0001) (Vaswani et al., 2017) 20.52 - 17.74
Transformer (αT = .0005) (Vaswani et al., 2017) 22.76 22.83 22.82

Table 3: Evaluation of Xhosa→English translation systems.

src Wathi uThixo , Makubekho isibhakabhaka phakathi kwawo amanzi , sibe
ngumahlulo wokwahlula amanzi kumanzi .

ref And God said , Let there be a firmament in the midst of the waters , and let it
divide the waters from the waters .

no adaptation And God said , Let there be clouds in the midst of them , let the water of the
morning to the water .

w/ adaptation And God said , Let there be clouds in the midst of the waters to divide the water
from the waters .

src Wathi uYehova uThixo kumfazi , Yintoni na le nto uyenzileyo ? Wathi umfazi ,
Inyoka indilukuhlile , ndadla ke .

ref And the LORD God said unto the woman , What is this that thou hast done ? And
the woman said , The serpent beguiled me , and I did eat .

no adaptation And the LORD God said unto the woman , What hast thou done this thing ? And
she said , I have eaten the wife , and did eat .

w/ adaptation And the LORD God said unto the woman , What hast thou done ? And the woman
said , I have eaten , and did eat .

Table 4: Sample translations comparing unadapted and adapted output. Notably poor translations are highlighted in red bold,
whereas notably good translations are highlighted in blue italics.

Metric Unadapted Adapted

Unigram Match % 53.9 54.1
Bigram Match % 28.4 28.5
Trigram Match % 16.7 16.7
4-gram Match % 10.5 10.6
Brevity Penalty 1.000 1.000

Table 5: Investigation of the constituent features of our
BLEU scores for Xhosa→English translations.

4.3 Baselines

We focus on comparing the performance of neu-
ral models, as this work extends NMT for low-
resource contexts.

The first neural model against which we evalu-
ate our approach is the standard encoder-decoder
architecture with recurrent units. The encoder
units are bidirectional LSTMs (Schuster and Pali-
wal, 1997) while the decoder unit incorporates an
LSTM (Hochreiter and Schmidhuber, 1997) with
dot product attention (Luong et al., 2015). The
model was trained with a word batch size of 1024,
with source and target embedding layer size 256

and hidden layer size 512. The initial learning rate
was set to 0.0001 with a decay factor of 0.9. We
impose a dropout rate (Srivastava et al., 2014) of
0.1 and use the Adam optimizer (Kingma and Ba,
2015).

The second baseline is a Transformer architec-
ture. Both the encoder and decoder have two sub-
layers employing multi-head attention. The num-
ber of heads in this mechanism is 4. Other pa-
rameters are kept constant from the LSTM model.
As the transformer model outperforms the LSTM
(see Table 3), we use it as the base of our adapted
model.

5 Results and Evaluation

Table 3 contains all BLEU scores for our un-
adapted and adapted models. While it may seem
beneficial in theory to have αT be less than αA, we
find empirically that having similar αT and αA val-
ues results in better BLEU scores. The base trans-
former trained with a learning rate αT of 0.0001
performs more poorly compared to that with an αT
of .0005. We therefore focus primarily on models
where αT = 0.0005. Both of these trends could be
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because we are “adapting” on a subset of the data
on which we train.

The percentage of n-gram matches (unigram to
4-gram) is higher for the adapted model than the
other neural approaches; see Table 5. This sug-
gests that we match more lexical content to the ref-
erence translations; this causes increased fluency
and semantic similarity. Indeed, our model nar-
rows the lexical matching gap between the base-
line transformer and the phrase-based system. This
leads to a slight increase in BLEU scores for the
generated translations.

Sample translations may be found in Table 4;
these were chosen randomly from the output trans-
lations. Note that the example translations from
the adapted model tend to be more fluent than the
translations from the unadapted model due to not
including as many non-sequitur tokens.

The adequacy of the adapted translations also
seems to be slightly better (or at least no worse):
the only non-matching lexical translation in the
first sample (clouds, as opposed to the refer-
ence firmament) is semantically close to the ref-
erence. Compare to the unadapted model’s sen-
tence, whose second clause is semantically unac-
ceptable and bears little resemblance to the refer-
ence translation’s intended semantic value. Sim-
ilarly, in the second sentence, the adapted model
has a similar non-sequitur translation for the high-
lighted clause, although the adapted model’s trans-
lation omits more non-sequitur words to produce
a more fluent translation without losing as much
adequacy as the unadapted model’s translation.

5.1 Qualitative Sentence Similarity Metric
Evaluation

To investigate what types of sentences are re-
trieved by our similarity metrics from Section 3.2,
we run a script which retrieves the most simi-
lar training sentences (per-metric) for a randomly
chosen test sentence in English. The most simi-
lar sentences per-metric, as well as their similar-
ity/distance scores, are shown in Table 6. Note that
this sentence similarity process is run for only the
source language, Xhosa, and that this set of similar
sentences in English is retrieved solely to demon-
strate what types of sentences these similarity met-
rics choose in general.

Notably, precision and recall sometimes result
in different similar sentences for the same n-gram
orders. Unigram precision and unigram recall re-

trieve largely distinct sentences with very differ-
ent scores, though there is often overlap: unigram
recall, bigram precision, and bigram recall return
the same sentence as most similar. Trigram pre-
cision and recall return similar sentences that are
distinct from the previous n-gram orders; the pre-
cision and recall sentences are the same in this
case, but not always. Thus, using different n-gram
orders—and precision as well as recall within each
n-gram order—can feasibly return different simi-
lar sentences. We thus keep all of these similarity
metrics in our similar-sentence subset.

Cosine similarity retrieves a sentence which has
a similar general tone to the test sentence, as well
as a similar topic (the story of creation), but other-
wise the n-grams are quite different. This seems
to be beneficial, for it demonstrates that we re-
trieve sentences which do not necessarily have the
same words as the sentence on which we perform
inference, but which have commonalities with re-
spect to some supralinguistic or semantic fea-
ture(s). This trend also holds for other sentences
in the test set for which we retrieved similar sen-
tences, so it does generally seem to return related
sentences.

Levenshtein distance, in contrast, does not seem
to return a useful similar sentence in this exam-
ple. There are few n-gram or morphemic matches
in common between the test and similar sentences,
and the meaning of the retrieved sentence bears lit-
tle resemblance to that of the test sentence. In gen-
eral, the Levenshtein distance seems useful in re-
trieving similar sentences with different inflections
of the same words primarily when there exists an-
other sentence with similar unigrams in the same
order as the test sentence (i.e., it works primarily
when two sentences exist that are already very lex-
ically similar). In the future, it would perhaps it
would be more beneficial to run Levenshtein dis-
tance on subwords after performing a BPE opera-
tion, rather than on characters. As this metric only
comprises a small fraction of the similar-sentence
subset on which we adapt, it should be inconse-
quential if some sentences are not particularly rel-
evant from this metric. If they are relevant, how-
ever, it will be quite beneficial, so we keep these
sentences in our similar-sentence adaptation set re-
gardless.

We observe that sometimes, a sentence with
zero or negligible score is also returned by one
of the metrics. As an extension, thresholding the
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test sentence Behold , this is the joy of his way , and out of the earth shall others
grow .

levenshtein distance And the evening and the morning were the third day . 54
unigram precision And God said , Let the earth bring forth grass , the herb yielding

seed , and the fruit tree yielding fruit after his kind , whose seed
is in itself , upon the earth : and it was so .

0.8421

unigram recall And the earth was without form , and void ; and darkness was
upon the face of the deep . And the Spirit of God moved upon the
face of the waters .

0.455

bigram precision And the earth was without form , and void ; and darkness was
upon the face of the deep . And the Spirit of God moved upon the
face of the waters .

0.222

bigram recall And the earth was without form , and void ; and darkness was
upon the face of the deep . And the Spirit of God moved upon the
face of the waters .

0.125

trigram precision And he shewed me a pure river of water of life , clear as crystal ,
proceeding out of the throne of God and of the Lamb .

0.059

trigram recall And he shewed me a pure river of water of life , clear as crystal ,
proceeding out of the throne of God and of the Lamb .

0.038

cosine similarity And God said , Let there be light : and there was light . 0.397

Table 6: This table features the most similar sentence retrieved from the training set per similarity metric for an arbitrary test
sentence. Note that Levenshtein distance is a distance metric and not a similarity metric, so we retrieve the minimum-distance
sentence as opposed to the highest-similarity sentence.

score for each metric when retrieving similar sen-
tences might boost performance since it will only
return higher quality matches.

6 Conclusion

We propose an architecture-independent approach
to give neural models a better chance of leverag-
ing limited parallel data in low-resource contexts.
The model produced by adapting the low-resource
NMT model per-sentence generates translations
with slightly higher adequacy and seemingly im-
proved fluency; BLEU scores are similar, though
in this case slightly higher after adaptation. We
note in particular that tuning both the training-
time and adaptation-time learning rates is crucial;
extensions could therefore test different values in
a grid search for linguistically diverse language
pairs.

Future work could also refine the similar-
sentence adaptation subset and threshold sentences
according to some interpolated metric based on all
similarity metrics. The flexibility of our approach
means that it is easy to integrate other similar al-
gorithms as new similarity metrics. In particular,
bilateral multi-perspective matching (Wang et al.,
2017) at the sentence level could be of interest.

Another possible extension is to look at subword-
level matching criteria for the retrieval component
of our approach. One could also study the relative
performance of this approach for synthetic vs. an-
alytic languages with different neural model base
architectures before adaptation.
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