@inproceedings{chen-etal-2019-qtuna,
title = "{QTUNA}: A Corpus for Understanding How Speakers Use Quantification",
author = "Chen, Guanyi and
van Deemter, Kees and
Pagliaro, Silvia and
Smalbil, Louk and
Lin, Chenghua",
editor = "van Deemter, Kees and
Lin, Chenghua and
Takamura, Hiroya",
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
month = oct # "–" # nov,
year = "2019",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-8616/",
doi = "10.18653/v1/W19-8616",
pages = "124--129",
abstract = "A prominent strand of work in formal semantics investigates the ways in which human languages quantify over the elements of a set, as when we say {\textquotedblleft}\textit{All A are B}{\textquotedblright}, {\textquotedblleft}\textit{All except two A are B}{\textquotedblright}, {\textquotedblleft}\textit{Only a few of the A are B}{\textquotedblright} and so on. Our aim is to build Natural Language Generation algorithms that mimic humans' use of quantified expressions. To inform these algorithms, we conducted on a series of elicitation experiments in which human speakers were asked to perform a linguistic task that invites the use of quantified expressions. We discuss how these experiments were conducted and what corpora they gave rise to. We conduct an informal analysis of the corpora, and offer an initial assessment of the challenges that these corpora pose for Natural Language Generation. The dataset is available at: \url{https://github.com/a-quei/qtuna}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2019-qtuna">
<titleInfo>
<title>QTUNA: A Corpus for Understanding How Speakers Use Quantification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guanyi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Silvia</namePart>
<namePart type="family">Pagliaro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Louk</namePart>
<namePart type="family">Smalbil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-oct–nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A prominent strand of work in formal semantics investigates the ways in which human languages quantify over the elements of a set, as when we say “All A are B”, “All except two A are B”, “Only a few of the A are B” and so on. Our aim is to build Natural Language Generation algorithms that mimic humans’ use of quantified expressions. To inform these algorithms, we conducted on a series of elicitation experiments in which human speakers were asked to perform a linguistic task that invites the use of quantified expressions. We discuss how these experiments were conducted and what corpora they gave rise to. We conduct an informal analysis of the corpora, and offer an initial assessment of the challenges that these corpora pose for Natural Language Generation. The dataset is available at: https://github.com/a-quei/qtuna.</abstract>
<identifier type="citekey">chen-etal-2019-qtuna</identifier>
<identifier type="doi">10.18653/v1/W19-8616</identifier>
<location>
<url>https://aclanthology.org/W19-8616/</url>
</location>
<part>
<date>2019-oct–nov</date>
<extent unit="page">
<start>124</start>
<end>129</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T QTUNA: A Corpus for Understanding How Speakers Use Quantification
%A Chen, Guanyi
%A van Deemter, Kees
%A Pagliaro, Silvia
%A Smalbil, Louk
%A Lin, Chenghua
%Y van Deemter, Kees
%Y Lin, Chenghua
%Y Takamura, Hiroya
%S Proceedings of the 12th International Conference on Natural Language Generation
%D 2019
%8 oct–nov
%I Association for Computational Linguistics
%C Tokyo, Japan
%F chen-etal-2019-qtuna
%X A prominent strand of work in formal semantics investigates the ways in which human languages quantify over the elements of a set, as when we say “All A are B”, “All except two A are B”, “Only a few of the A are B” and so on. Our aim is to build Natural Language Generation algorithms that mimic humans’ use of quantified expressions. To inform these algorithms, we conducted on a series of elicitation experiments in which human speakers were asked to perform a linguistic task that invites the use of quantified expressions. We discuss how these experiments were conducted and what corpora they gave rise to. We conduct an informal analysis of the corpora, and offer an initial assessment of the challenges that these corpora pose for Natural Language Generation. The dataset is available at: https://github.com/a-quei/qtuna.
%R 10.18653/v1/W19-8616
%U https://aclanthology.org/W19-8616/
%U https://doi.org/10.18653/v1/W19-8616
%P 124-129
Markdown (Informal)
[QTUNA: A Corpus for Understanding How Speakers Use Quantification](https://aclanthology.org/W19-8616/) (Chen et al., INLG 2019)
ACL