@inproceedings{ilinykh-etal-2019-tell,
title = "Tell Me More: A Dataset of Visual Scene Description Sequences",
author = "Ilinykh, Nikolai and
Zarrie{\ss}, Sina and
Schlangen, David",
editor = "van Deemter, Kees and
Lin, Chenghua and
Takamura, Hiroya",
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
month = oct # "{--}" # nov,
year = "2019",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-8621",
doi = "10.18653/v1/W19-8621",
pages = "152--157",
abstract = "We present a dataset consisting of what we call image description sequences, which are multi-sentence descriptions of the contents of an image. These descriptions were collected in a pseudo-interactive setting, where the describer was told to describe the given image to a listener who needs to identify the image within a set of images, and who successively asks for more information. As we show, this setup produced nicely structured data that, we think, will be useful for learning models capable of planning and realising such description discourses.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ilinykh-etal-2019-tell">
<titleInfo>
<title>Tell Me More: A Dataset of Visual Scene Description Sequences</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolai</namePart>
<namePart type="family">Ilinykh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sina</namePart>
<namePart type="family">Zarrieß</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-oct–nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a dataset consisting of what we call image description sequences, which are multi-sentence descriptions of the contents of an image. These descriptions were collected in a pseudo-interactive setting, where the describer was told to describe the given image to a listener who needs to identify the image within a set of images, and who successively asks for more information. As we show, this setup produced nicely structured data that, we think, will be useful for learning models capable of planning and realising such description discourses.</abstract>
<identifier type="citekey">ilinykh-etal-2019-tell</identifier>
<identifier type="doi">10.18653/v1/W19-8621</identifier>
<location>
<url>https://aclanthology.org/W19-8621</url>
</location>
<part>
<date>2019-oct–nov</date>
<extent unit="page">
<start>152</start>
<end>157</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tell Me More: A Dataset of Visual Scene Description Sequences
%A Ilinykh, Nikolai
%A Zarrieß, Sina
%A Schlangen, David
%Y van Deemter, Kees
%Y Lin, Chenghua
%Y Takamura, Hiroya
%S Proceedings of the 12th International Conference on Natural Language Generation
%D 2019
%8 oct–nov
%I Association for Computational Linguistics
%C Tokyo, Japan
%F ilinykh-etal-2019-tell
%X We present a dataset consisting of what we call image description sequences, which are multi-sentence descriptions of the contents of an image. These descriptions were collected in a pseudo-interactive setting, where the describer was told to describe the given image to a listener who needs to identify the image within a set of images, and who successively asks for more information. As we show, this setup produced nicely structured data that, we think, will be useful for learning models capable of planning and realising such description discourses.
%R 10.18653/v1/W19-8621
%U https://aclanthology.org/W19-8621
%U https://doi.org/10.18653/v1/W19-8621
%P 152-157
Markdown (Informal)
[Tell Me More: A Dataset of Visual Scene Description Sequences](https://aclanthology.org/W19-8621) (Ilinykh et al., INLG 2019)
ACL