@inproceedings{kolkey-etal-2019-nlg,
title = "An {NLG} System for Constituent Correspondence: Personality, Affect, and Alignment",
author = "Kolkey, William and
Dong, Jian and
Bybee, Greg",
editor = "van Deemter, Kees and
Lin, Chenghua and
Takamura, Hiroya",
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
month = oct # "–" # nov,
year = "2019",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-8631/",
doi = "10.18653/v1/W19-8631",
pages = "240--243",
abstract = "Roughly 30{\%} of congressional staffers in the United States report spending a {\textquotedblleft}great deal{\textquotedblright} of time writing responses to constituent letters. Letters often solicit an update on the status of legislation and a description of a congressman`s vote record or vote intention {---} structurable data that can be leveraged by a natural language generation (NLG) system to create a coherent letter response. This paper describes how PoliScribe, a pipeline-architectured NLG platform, constructs personalized responses to constituents inquiring about legislation. Emphasis will be placed on adapting NLG methodologies to the political domain, which entails special attention to affect, discursive variety, and rhetorical strategies that align a speaker with their interlocutor, even in cases of policy disagreement."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kolkey-etal-2019-nlg">
<titleInfo>
<title>An NLG System for Constituent Correspondence: Personality, Affect, and Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Kolkey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Bybee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-oct–nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Roughly 30% of congressional staffers in the United States report spending a “great deal” of time writing responses to constituent letters. Letters often solicit an update on the status of legislation and a description of a congressman‘s vote record or vote intention — structurable data that can be leveraged by a natural language generation (NLG) system to create a coherent letter response. This paper describes how PoliScribe, a pipeline-architectured NLG platform, constructs personalized responses to constituents inquiring about legislation. Emphasis will be placed on adapting NLG methodologies to the political domain, which entails special attention to affect, discursive variety, and rhetorical strategies that align a speaker with their interlocutor, even in cases of policy disagreement.</abstract>
<identifier type="citekey">kolkey-etal-2019-nlg</identifier>
<identifier type="doi">10.18653/v1/W19-8631</identifier>
<location>
<url>https://aclanthology.org/W19-8631/</url>
</location>
<part>
<date>2019-oct–nov</date>
<extent unit="page">
<start>240</start>
<end>243</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An NLG System for Constituent Correspondence: Personality, Affect, and Alignment
%A Kolkey, William
%A Dong, Jian
%A Bybee, Greg
%Y van Deemter, Kees
%Y Lin, Chenghua
%Y Takamura, Hiroya
%S Proceedings of the 12th International Conference on Natural Language Generation
%D 2019
%8 oct–nov
%I Association for Computational Linguistics
%C Tokyo, Japan
%F kolkey-etal-2019-nlg
%X Roughly 30% of congressional staffers in the United States report spending a “great deal” of time writing responses to constituent letters. Letters often solicit an update on the status of legislation and a description of a congressman‘s vote record or vote intention — structurable data that can be leveraged by a natural language generation (NLG) system to create a coherent letter response. This paper describes how PoliScribe, a pipeline-architectured NLG platform, constructs personalized responses to constituents inquiring about legislation. Emphasis will be placed on adapting NLG methodologies to the political domain, which entails special attention to affect, discursive variety, and rhetorical strategies that align a speaker with their interlocutor, even in cases of policy disagreement.
%R 10.18653/v1/W19-8631
%U https://aclanthology.org/W19-8631/
%U https://doi.org/10.18653/v1/W19-8631
%P 240-243
Markdown (Informal)
[An NLG System for Constituent Correspondence: Personality, Affect, and Alignment](https://aclanthology.org/W19-8631/) (Kolkey et al., INLG 2019)
ACL