@inproceedings{yu-etal-2019-head,
title = "Head-First Linearization with Tree-Structured Representation",
author = "Yu, Xiang and
Falenska, Agnieszka and
Vu, Ngoc Thang and
Kuhn, Jonas",
editor = "van Deemter, Kees and
Lin, Chenghua and
Takamura, Hiroya",
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
month = oct # "{--}" # nov,
year = "2019",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-8636",
doi = "10.18653/v1/W19-8636",
pages = "279--289",
abstract = "We present a dependency tree linearization model with two novel components: (1) a tree-structured encoder based on bidirectional Tree-LSTM that propagates information first bottom-up then top-down, which allows each token to access information from the entire tree; and (2) a linguistically motivated head-first decoder that emphasizes the central role of the head and linearizes the subtree by incrementally attaching the dependents on both sides of the head. With the new encoder and decoder, we reach state-of-the-art performance on the Surface Realization Shared Task 2018 dataset, outperforming not only the shared tasks participants, but also previous state-of-the-art systems (Bohnet et al., 2011; Puduppully et al., 2016). Furthermore, we analyze the power of the tree-structured encoder with a probing task and show that it is able to recognize the topological relation between any pair of tokens in a tree.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2019-head">
<titleInfo>
<title>Head-First Linearization with Tree-Structured Representation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agnieszka</namePart>
<namePart type="family">Falenska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ngoc</namePart>
<namePart type="given">Thang</namePart>
<namePart type="family">Vu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonas</namePart>
<namePart type="family">Kuhn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-oct–nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a dependency tree linearization model with two novel components: (1) a tree-structured encoder based on bidirectional Tree-LSTM that propagates information first bottom-up then top-down, which allows each token to access information from the entire tree; and (2) a linguistically motivated head-first decoder that emphasizes the central role of the head and linearizes the subtree by incrementally attaching the dependents on both sides of the head. With the new encoder and decoder, we reach state-of-the-art performance on the Surface Realization Shared Task 2018 dataset, outperforming not only the shared tasks participants, but also previous state-of-the-art systems (Bohnet et al., 2011; Puduppully et al., 2016). Furthermore, we analyze the power of the tree-structured encoder with a probing task and show that it is able to recognize the topological relation between any pair of tokens in a tree.</abstract>
<identifier type="citekey">yu-etal-2019-head</identifier>
<identifier type="doi">10.18653/v1/W19-8636</identifier>
<location>
<url>https://aclanthology.org/W19-8636</url>
</location>
<part>
<date>2019-oct–nov</date>
<extent unit="page">
<start>279</start>
<end>289</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Head-First Linearization with Tree-Structured Representation
%A Yu, Xiang
%A Falenska, Agnieszka
%A Vu, Ngoc Thang
%A Kuhn, Jonas
%Y van Deemter, Kees
%Y Lin, Chenghua
%Y Takamura, Hiroya
%S Proceedings of the 12th International Conference on Natural Language Generation
%D 2019
%8 oct–nov
%I Association for Computational Linguistics
%C Tokyo, Japan
%F yu-etal-2019-head
%X We present a dependency tree linearization model with two novel components: (1) a tree-structured encoder based on bidirectional Tree-LSTM that propagates information first bottom-up then top-down, which allows each token to access information from the entire tree; and (2) a linguistically motivated head-first decoder that emphasizes the central role of the head and linearizes the subtree by incrementally attaching the dependents on both sides of the head. With the new encoder and decoder, we reach state-of-the-art performance on the Surface Realization Shared Task 2018 dataset, outperforming not only the shared tasks participants, but also previous state-of-the-art systems (Bohnet et al., 2011; Puduppully et al., 2016). Furthermore, we analyze the power of the tree-structured encoder with a probing task and show that it is able to recognize the topological relation between any pair of tokens in a tree.
%R 10.18653/v1/W19-8636
%U https://aclanthology.org/W19-8636
%U https://doi.org/10.18653/v1/W19-8636
%P 279-289
Markdown (Informal)
[Head-First Linearization with Tree-Structured Representation](https://aclanthology.org/W19-8636) (Yu et al., INLG 2019)
ACL