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Abstract
This paper addresses Hip-Hop lyric genera-
tion with conditional Neural Language Mod-
els. We develop a simple yet effective mech-
anism to extract and apply conditional tem-
plates from text snippets, and show—on the
basis of a large-scale crowd-sourced manual
evaluation—that these templates significantly
improve the quality and realism of the gener-
ated snippets. Importantly, the proposed ap-
proach enables end-to-end training, targeting
formal properties of text such as rhythm and
rhyme, which are central characteristics of rap
texts. Additionally, we explore how generat-
ing text at different scales (e.g. character-level
or word-level) affects the quality of the out-
put. We find that a hybrid form—a hierarchical
model that aims to integrate Language Model-
ing at both word and character-level scales—
yields significant improvements in text qual-
ity, yet surprisingly, cannot exploit conditional
templates to their fullest extent. Our findings
highlight that text generation models based on
Recurrent Neural Networks (RNN) are sensi-
tive to the modeling scale and call for further
research on the observed differences in effec-
tiveness of the conditioning mechanism at dif-
ferent scales.

1 Introduction

Neural Networks approaches to text generation
have recently proliferated partly due to substan-
tial progress made in Language Modeling. Being
essentially a generative model, a Language Model
(LM) is fit by definition to drive natural language
generation systems. LMs based on Neural archi-
tectures, such as RNNs, ConvNets or self-attentive
models such as Transformers, provide better fits
to the underlying data distributions of the train-
ing material (currently holding the state-of-the-art
on common benchmarks) and are also assumed to
produce more realistic text than their count-based
counterparts (Karpathy, 2016).

The end-to-end nature of such models and the
ability to leverage out-of-domain data through pre-
training have led to a broadening of domains in
which text generation systems are being developed
and applied. In particular, interest has emerged
or increased in the generation of artistic text such
as poetry (Zhang and Lapata, 2014; Yan, 2016),
literature (Manjavacas et al., 2017), song lyrics
(Watanabe et al., 2018) or cooking recipes (Kid-
don et al., 2016), etc. In the present paper,
we focus on generating Hip-Hop lyrics, a genre
known for its relatively liberal formal properties
(e.g. rhythm and rhyme) and topic specificity.

While full algorithmic modeling of the high-
level creative process of song composition remains
a challenge, we seek to improve the quality of the
generated text by focusing on formal text proper-
ties. Typically, generating text with formal struc-
ture is done by applying constraints over the LM
output distribution. By contrast, in this paper, we
follow an end-to-end approach to generate text
snippets that directly match the required struc-
ture. Our proposal makes use of templates based
on sentence-level conditions (Ficler and Goldberg,
2017) that allow us to enforce rhyme and verse
structure as it naturally occurs in training data.
Our focus on Hip-Hop allows us to crowd-source
an extensive collection of authenticity judgments
through an online pseudo-Turing serious game.
The evaluation shows the efficiency of the ap-
proach by bringing human guessing performance
to chance-level.

Finally, while architectural improvements in
Neural LMs target both character and word-level
modeling, the application of LMs to artistic text
generation has mostly focused on the word level.
This situation is more likely the result of words
being a central component of the creative pro-
cess —e.g. topic, style and concepts are best mod-
eled at the word level (Ghazvininejad et al., 2016;
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Yan, 2016)—, than a lack of generation capabili-
ties of character-level LMs (Karpathy et al., 2015).
Moreover, despite a few exceptions (Jagfeld et al.,
2018), comparisons of LM-based generation sys-
tems at different scales are not common. To fill
this gap, we explore the effects of modeling scale
on text generation quality — including character-
level, syllable-level and a hierarchical LM (HLM)
— as well as the interplay between modeling scale
and the proposed conditional template approach.

More specifically, we make the following con-
tributions. (i) We introduce a simple approach
to template-based generation, suitable for genres
with a loose formal structure such as poetry or
Hip-Hop. Crucially, this approach does not re-
quire search or constrained decoding to gener-
ate formally correct output. (ii) We present a
comparison of unconstrained language generation
with LMs at different scales and provide empiri-
cal evidence that hierarchical modeling produces
more realistic output than both character-level and
word-level modeling. (iii) We find that the success
of the conditioning mechanism is dependent on the
LM scale and the type of condition. In particular,
we find that the gains from hierarchical modeling
do not compound with the benefits obtained from
the conditioning mechanism, which calls for fur-
ther research on the matter.

2 Related Work

Much research has been devoted to poetry gener-
ation systems, and the field has reached a consid-
erable degree of maturity (see (Gonçalo Oliveira,
2017)). A variety of approaches based on LMs
have been proposed, including both Markov Mod-
els (Barbieri et al., 2012) and RNNs (Zhang
and Lapata, 2014; Ghazvininejad et al., 2016;
Yan, 2016; Hopkins and Kiela, 2017; Lau et al.,
2018). In the literature on Hip-Hop lyric gener-
ation, besides an RNN-based LM (Potash et al.,
2015), researchers have explored retrieval-based
approaches where a Support Vector Machine is
trained to select the continuing sentence based on
formal properties of the text and global semantic
coherence (Malmi et al., 2016). Moreover, various
strategies have been proposed to generate text that
matches specific verse structures. For example,
Zhang and Lapata (2014) follow a generate-and-
select approach that discards non-rhyming lines,
and Ghazvininejad et al. (2016) use a finite-state-
acceptor to decode lines that meet the desired out-

Songs Artists Words Vocabulary

64,542 28,099 37,236,248 380,013

Table 1: Counts the total number of songs, artists
and words collected from the Original Hip-Hop (Rap)
Lyrics Archive (OHHLA).

Statistic µ σ

Words/Song 576.93 223.77
Songs/Artist 2.3 7.65
Words/Artist 1325.2 4223.2

Table 2: Statistics on the average number of (1) words
per song, (2) songs per artist, and (3) words per artist.

put structure. Hopkins and Kiela (2017) compose
a WFST with an RNN to enforce meter in the out-
put text. Finally, Lau et al. (2018) use a rhyme de-
tector jointly trained with a LM and discard non-
rhyming line-ending words based on the models’
confidence scores.

3 Dataset

The training data for this study was derived
from the Original Hip-Hop (Rap) Lyrics Archive
(OHHLA)1, an online archive documenting Hip-
Hop through since 1992 and offering a large col-
lecting of Hip-Hop lyrics. A total of 64,542
songs were collected. The database contains al-
most exclusively English songs, although code-
switching is common. The final corpus is the re-
sult of the following pre-processing steps. First,
each text was tokenized using the Ucto tokenizer
(Van Gompel et al., 2012). Second, all words
were segmented into syllables using an in-house
LSTM-based syllabifier trained on the CMU Pro-
nouncing Dictionary (Lenzo, 2007). The syllabi-
fier’s segmentation accuracy is well over 99% on
both a held-out development and test set, support-
ing confidence in its application to the lyric data.
Finally, we applied the G2P toolkit2 to extract
phonological representations of words and corre-
sponding stress patterns that will be exploited dur-
ing training. The syllabified corpus consists of
43,531,133 syllables comprising 89,337 syllable
types. A summary of overall corpus statistics is
shown in Table 1 and Table 2.

1http://www.ohhla.com
2https://github.com/cmusphinx/

g2p-seq2seq

http://www.ohhla.com
https://github.com/cmusphinx/g2p-seq2seq
https://github.com/cmusphinx/g2p-seq2seq
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4 LM-based Text Generation

We generate text by sampling from a LM imple-
mented on top of LSTM Networks (Hochreiter
and Schmidhuber, 1997) trained to predict the next
symbol y in the sequence given the history using
the following definition:

P (y1 . . . yn) =

n∏
t=1

P (yt|y...<t) (1)

Regardless of the details of specific architectures,
sampling is done in the following way. Let xk
be the activation for the kth vocabulary symbol at
the penultimate layer (i.e. before the output soft-
max layer). At any given step, we sample from the
multinomial distribution defined by:

P (yk) =
xk/T

Σl∈V xl/T
(2)

where V refers to the vocabulary and T is a tem-
perature parameter controlling the models confi-
dence. We leave other sampling approaches such
as Top-K Sampling (Fan et al., 2018) and Nucleus
Sampling (Holtzman et al., 2019) for future work.

4.1 Hierarchical Language Model
LMs are typically trained at the character or word-
level. Character-level modeling has the advan-
tages of (i) reducing the vocabulary size and (ii)
increasing the number of training examples avail-
able during model fitting, but it incurs the cost
of enlarging the number of steps to account for
a given dependency between any two given input
words. Arguably, a hybrid approach that models
language at the character level but also incorpo-
rates word-level information flow should provide a
way out of such a trade-off (Karpathy et al., 2015).

Therefore, in the present paper, we compare
text generation at three levels: character-level,
syllable-level and a hierarchical LM (HLM) that
integrates both levels. Note that we consider
syllable-level instead of word-level based on two-
fold reasoning: (i) similar to sub-word mod-
els — such as those induced through Byte-Pair-
Encoding (Sennrich et al., 2016) or SentencePiece
(Kudo and Richardson, 2018) —, syllable-level
segmented input helps limiting the exploding vo-
cabulary size of noisy corpora. (ii) Syllables play
a more central role than words in a particularly
rhythmic genre like Hip-Hop in which, moreover,
a tendency towards monosyllabic words reduces

the vocabulary differences for word-level model-
ing.

As mentioned above, the key idea behind HLM
is to allow different layers to specialize in mod-
eling the information flow at different scales. In
order to achieve that, the HLM uses the chain-rule
of probability to decompose the probability of a
sentence into the product of the probabilities of
words (exactly as in the word-level LM) but, fur-
thermore, it decomposes the probability of each
word into the product of the probabilities of its
characters:3

P (wt+1|w1...t) =

|wt+1|∏
i=1

P (cit+1|c1...i−1t+1 ;w1...t)

(3)
We implement the HLM with LSTM layers at dif-
ferent scales. A first bidirectional LSTMinp takes
the input sequence of character embeddings of
the current word wt and produces word-level fea-
tures concatenating the final activations of the for-
ward and backward pass. Secondly, LSTMword

takes word-level feature vector wt
4 and the re-

current state to generate sentence-level features
st = LSTMword(wt, st−1). Finally, LSTMout

computes the vector of scores x for the next char-
acter ci+1

t+1 of the target word wt+1 using the previ-
ously decoded character embedding cit+1, st and
the recurrent state hi

t+1:

xi+1
t+1 = W · LSTMout([c

i
t+1; st],h

i
t+1) (4)

where W is a matrix that maps the LSTM output
to the vocabulary space. HLM is a specific case
of the Hierarchical Multi-scale LSTM by Chung
et al. (2016) with the differences that HLM uses a
fixed segmentation at syllable boundaries instead
of implicitly learning a segmentation model, and
that HLM only considers bottom-up information
passing across layers. Interestingly, despite the
simplification HLM achieves similar results on the
Penn Treebank benchmark corpus (see Table 3).

4.2 Conditional Templates
Recent research has shown the effectiveness of a
conditioning mechanism for controlled text gen-
eration (Ficler and Goldberg, 2017), which uses
specific sentence-level information during training

3 Note that while we discuss the HLM in terms of words,
in practice, our implementation uses syllables following the
argumentation at the beginning of the current section.

4 We use bold to denote the feature vector (e.g., wt) cor-
responding to a particular input (e.g., word wt).
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Model Parameters BPC

HM-LSTM NA 1.23
GHRNN 10.5M 1.225

2-layer LSTM 7.6M 1.275
HLM 7.5M 1.233

Table 3: A comparison of the proposed architecture
with respect to a non-hierarchical deep character-level
LSTM (2-later LSTM) and related hierarchical archi-
tectures on the Penn Treebank benchmark. Results cor-
respond to bits-per-character (BPC). HM-LSTM corre-
sponds to the Hierarchical Multiscale LSTM by Chung
et al. (2016). GHRNN corresponds to the Gated Hier-
archical RNN by Choi et al. (2018).

(e.g. tense, mood, sentiment or formal/informal
style) to bias the generation towards text that re-
flects such conditions. Formally, such conditional
information is encoded using condition embed-
dings and is fed into the LMs through vector con-
catenation. More formally, let c be a given con-
dition with Nc assignments. For each c we al-
locate an embedding matrix Cc ∈ RNc×d. Dur-
ing training, each model input embedding is con-
catenated with a vector of condition embeddings
c = [c1; . . . ; cm] representing the conditional in-
formation corresponding to the input sentence.

We deploy such conditioning mechanism in the
form of conditional templates to the task of gen-
erating Hip-Hop lyrics. The idea behind condi-
tional templates is to leverage the training material
to bias the generation towards more realistic out-
put. Consider the task of generating a verse con-
sisting of m lines of Hip-Hop. In such a case, we
sample a verse from the training corpus consisting
of m lines and apply the corresponding conditions
to a conditionally trained LM. The next question is
what sentence-level information can be easily ex-
tracted and used to improve the quality and realism
of the output. In the case of Hip-Hop, we focus on
two formal characteristics that most typically rep-
resent Hip-Hop lyrics: rhythm and rhyme (Condit-
Schultz, 2017).

Rhythm in Hip-Hop is characterized by a strict
alignment between beat and stress with high cor-
respondence between syntactic units and measures
and a relatively stable ratio of number of sylla-
bles per beat (Adams, 2009). In order to approxi-
mate this stylistic feature5, we condition our LMs

5 The approximation lies in the fact that we ignore
stress patterns in the template source. Initially, we exper-

on a measure of verse length. In particular, we
count the number of syllables of each line in the
verse and bucket them according to the following
ranges: < 10, (10− 15), (15− 20) and > 20.

Rhyme Hip-Hop employs liberal rhyme patterns
in terms of placement — e.g., off-beat, synco-
pated rhyme, etc. — and often relies on imper-
fect matches (e.g. slant rhyme Adams, 2009). To
mimic such rhyming style, we condition LMs on
phonological endings, which we define, in align-
ment with a loose notion of rhyme, as the syl-
labic nucleus of the last stressed syllable followed
by the syllabic nuclei of any following syllables.
For example, the rhyme-based condition corre-
sponding to the line ‘unite around the corner’
is AO1-ERO — i.e. the ARPABET representa-
tions corresponding to the stressed syllabic nu-
clei of ‘cor-’ and ‘-ner’.6 Such a representation
is then shared with other rhyming words such as
‘daughter’ or ‘offer’. A successfully trained con-
ditional LM can thus generate rhymes when the
same phonological condition is passed to the net-
works for two consecutive lines. Similarly, tem-
plates from the corpus contain rhyming schemes
and patterns (such as AABB, ABAB, etc.) that the
conditional models can exploit for a more realistic
effect. Table 4 shows example generations from
conditional models at all three considered scales.

4.3 Model Training Details

We implement all models in PyTorch (Paszke
et al., 2017), with the following parametrizations.
Input and condition embedding layers have dimen-
sionality of 100. Non-hierarchical models have 2
hidden LSTM layers with 640 units per layer. By
definition the HLM has 2 LSTM layers in addi-
tion to the bidirectional LSTM layer that computes
character-level word embeddings. For replication
purposes, our implementation is available online.7

imented with conditioning on line-level stress patterns ex-
tracted through a cluster analysis but found the approach in-
conclusive. The difficulty stems from the fact that Hip-Hop
artists commonly shift the word stress in order to align it to
the underlying beat, and such misalignment cannot be recov-
ered based on only text.

6 We focus on generating rhyming in verse-final position,
which represents the most abundant type. We extract a total
of 430 such phonological endings in our corpus, from which
only 270 involve an actual rhyme in the training corpus. In-
terestingly, however, we observed that the conditional models
generalize so as to generate rhymes on phonological endings
that have not been seen during training.

7 Code can found in the following url https://www.
github.com/emanjavacas/hierarchical-lm.

https://www.github.com/emanjavacas/hierarchical-lm
https://www.github.com/emanjavacas/hierarchical-lm
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“I Like It Like That” (by Hot Chelle Rae) Character-level Model
I like it like that! Hey windows down AW1 10-15 Now baby get the fuck out, check it out
Chillin with the radio on AA1 <10 I be on top
I like it like that! Damn, the sun’s so hot AA1 10-15 I’ll make some money what the fuck is

goin’ on

“Nothing to worry about” (by Peter Bjorn) Syllable-level Model
C’mon everybody let’s all get down, let’s all
get down, let’s all get down

AW1 >20 We gon’ shut’em down, if you wanna get
down, don’t fuck around

I’ve got nothin’ to worry about AW1 10-15 On the real, it’s how it’s goin’ down
C’mon everybody let’s all get down, let’s all
get down, let’s all get down

AW1 >20 I’m trying to get this money right, you
got to eat right now

“Lil like bic” (by Rae Sremmurd) Hierarchical Model
Who said they got that stanky loud? I wanna
smell it

IH1 10-15 Don’t act like you ain’t ready for this

You say you run your fuckin’ town, I let you
tell it

IH1 10-15 I never created this shit

Who really run the underground? I wanna
meet you

UW1 10-15 You don’t understand, it’s all about you

I’m really tryna bite the style, you know we
see you

UW1 10-15 Try to maintain, you know the rules

Table 4: Generated samples following the conditional templating approach. Left: the original snippet from which
the template was extracted. Middle: Condition values extracted from the source text (phonological ending using
the 2-letter ARPABET phoneset and the bucketed length in number of syllables). Right: generated text.

Scale Conditional Parameters Result

Character 12.6M 1.65
Character X 12.9M 1.55
Syllable 29.8M 46.12
Syllable X 29.9M 33.43

HLM 14.M 1.38
HLM X 14.9M 1.27

Table 5: Model details. In agreement with the liter-
ature, the results correspond to perplexity for syllable-
level models and bits per character (BPC) for character-
level models.

We trained all models with a cross-entropy ob-
jective targeted at predicting the next symbol in the
sequence. Parameter optimization was done using
the Adam optimizer (Kingma and Ba, 2015) with
default hyperparameters. Models are regularized
using dropout (Srivastava et al., 2014) on the input
embeddings, variational dropout (Gal and Ghahra-
mani, 2016) on hidden recurrent layers, and de-
fault L2 penalty on model parameters. Finally, we
stop training based on an early-stopping criterion
computed after each epoch on held-out data. Ta-

ble 5 shows total number model parameters and
development perplexity per configuration.

5 Evaluation

Our first evaluation concerns the quality of the
Hip-Hop snippets generated by each of the six
architectures (three modeling scales, each with
a conditioned variant). We focus on the ef-
fectiveness of the conditional template approach
and hierarchical modeling. Evaluating artis-
tic text generation poses additional challenges,
mostly due to the absence of reference text against
which a model output can be compared. While
some authors rely on questionnaires addressing
poetic properties of interest (e.g., “poeticness”,
“grammaticality”, “meaningfulness”) for evalua-
tion (Das and Gambäck, 2014), we instead turn
to a Turing-like setup that allowed us to crowd-
source a large-scale pool of user authenticity judg-
ments. In order to encourage user participation,
we implemented a serious game where partici-
pants were shown Hip-Hop samples of lengths of 3
to 4 lines and were tasked to guess whether the dis-
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played text was generated or real in 15 seconds.8

Participants were motivated by being shown feed-
back immediately after each answer. Furthermore,
the game entered a “sudden-death” phase after the
first ten guesses, in which a wrong answer would
finish the game. Finally, a leader-board was kept
visible, showing the scores of the ten best perform-
ing participants. The resulting dataset underlying
the present evaluation comprises 3,620 guesses by
670 participants.

In order to leverage the collected evaluations,
we model guessing behavior using a Logistic Re-
gression model (implemented in brms, Bürkner
and others, 2017), taking into account user-
specific variability through the inclusion of vary-
ing intercepts (i.e. for each participant, we use a
unique intercept parameter). Our evaluation strat-
egy contrasts with similar approaches in the liter-
ature — (e.g. Netzer et al., 2009) — which typi-
cally only provide raw empirical, single point es-
timates. Regularized estimates obtained from us-
ing a varying intercepts model provide more ac-
curate estimates for individual user intercepts, en-
abling predictions about future behavior that are
less prone to both over- and underfitting (cf. McEl-
reath, 2015). Additionally, the interaction between
generation scale and conditioning are modeled as
fixed effects.

As shown in Figure 1, hierarchical model-
ing outperforms both character and syllable-level
models in the unconditioned setup, with the me-
dian guessing accuracy dropping to 54.6%. More-
over, conditional templates push guessing accu-
racy further down for all models, with HLM
and syllable-level achieving a median accuracy
of 51.9% and 49.4%, respectively. Interest-
ingly, the effect of the conditional templates dif-
fers across models. The smallest effect is ob-
served for the hierarchical model (decrease of 2.6
points), followed by the character-level model (de-
crease of 6.7 points), while the effect on syllable-
level model corresponds to a decrease of 13.4
points. The relatively high impact of conditioning
on syllable-level generation contrasts sharply with
the much smaller improvement on both character-
level and HLM.

On first sight, this result seems to suggest that
conditioning is more effective at higher modeling
levels, perhaps hinting at optimization incompat-

8 Generated text was sampled at random from one of the
six models.
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Figure 1: Results of crowd-sourced evaluation. Dis-
played results correspond to the full posterior predic-
tive distributions of a logistic regression model, with
(the interaction between) conditioning and generation
scale as fixed effects, and participants as varying in-
tercepts. For explanation purposes, median and 80%
credible intervals are highlighted.

ibilities between sentence-level conditioning and
character-level training objectives. Though, in or-
der to better understand this result, we pursue the
following two questions. First, why are condi-
tional templates much more effective at a higher-
level scale (i.e., syllable-level)? Second, what tex-
tual properties characterize text generated by dif-
ferent models, and can explain the better perfor-
mance of the hierarchical model in particular?

5.1 Modeling scale and conditioning
To better understand the divergent effectiveness of
conditioning at different scales, we investigate to
what extent different models succeed at generating
text that matches the conditions required by the
template. Note that the benefits of a conditioned
model might not be restricted to a model’s ability
to fulfill the target template conditions—for exam-
ple, rhyme and rhythm information results in a bet-
ter fit to the data as shown in Table 5. However,
successfully replicating formal structures seen in
the training data ensures a level of realism by def-
inition and thus can be interpreted as an, at least
partial, explanation for the observed differences in
performance.

In order to quantify the ability of models to
successfully generate the requested templates, we
generate a dataset of lines exploring the space of
possible templates. For each of the 2150 combi-
nations (430 rhyming conditions by 5 length buck-
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ets), we sample 1000 lines. We then syllabify each
of the lines using the same pre-processing pipeline
described in Section 3. Subsequently, rhyme gen-
eration accuracy (Acc) can be quantified by the
proportion of generated lines with the expected
phonological ending. Moreover, we also quantify
rhyme diversity (H) — i.e. the entropy of the distri-
bution of successfully generated rhyme words. Fi-
nally, in order to quantify the ability to meet target
verse length, we compute the average difference in
syllables between the generated verse length and
corpus-level average length per bucket (Diff).

The results in Table 6 show that syllable-level
is, in fact, most accurate and diverse at generat-
ing rhyme by a large extent. The HLM achieves
higher accuracy than the character-level but simi-
lar diversity. Overall, rhyme diversity is notably
lower in generated text than in real text (H =
1.669), a result that is in agreement with the ex-
pectations. In terms of rhythm, we observe a dif-
ferent picture: the character-level model generates
lines much closer to the observed data than both
HLM and syllable-level. From the last two, the
HLM improves over syllable-level but both tend
to produce shorter lines.

These results seem to suggest that character-
level RNNs excel at modeling surface-level infor-
mation responsible for estimating the current num-
ber of processed symbols, and can thus very accu-
rately replicate the verse lengths observed in the
training data. Moreover, it seems that the syllable-
level model can derive a more substantial im-
provement from the conditional templates because
rhyming patterns have an arguably more promi-
nent impact on the perceived realism — however,
we will leave an analysis of perceived realism for
future work. Finally, it appears that in terms of
conditioning, our hierarchical model does not suc-
ceed in exploiting the best of both worlds.

5.2 Modeling scale and text quality

We now turn to characterize the effect of modeling
text at different scales as well as, more specifically,
what textual properties single out hierarchically
generated text. In order to approach this question,
we utilize the unconditioned output from the main
experiment and conduct a feature analysis across
the following linguistic levels:

Prosody We quantify rhyme as the proportion
of rhyming lines in the snippet, assonance as the
proportion of the most frequent stressed syllable

Condition Char HLM Syll

Rhyme
Acc 28.37 36.29 61.75
H 0.861 0.836 1.077

Rhythm Diff 0.09 -1.59 -2.59

Table 6: Effects of conditioning on model scale. The
rhyme diversity (H) as observed in the training corpus
for a sample of comparable size equals 1.669.

nucleus over total number of syllables, and alliter-
ation as the proportion of consecutive words with
equal consonant onset.

Morphology We approximate the morphologi-
cal complexity of the text with the average word-
length in syllables.

Lexical level lexical diversity is measured us-
ing entropy based on overall word distributions.
Moreover, we also quantify the proportion of con-
secutive word repetitions, which represent a com-
mon artifact in LM-based text generation (Holtz-
man et al., 2019).

Syntax We approximate syntactic complexity
based on the average mean tree depth from the
corresponding dependency parse trees of the snip-
pet lines. Parse trees are extracted using the de-
pendency parser provided by AllenNLP9 based
on Dozat and Manning (2016) and trained on the
PTB3.0 corpus.

Based on such features, we fit a Random Forest
to classify the model underlying the correspond-
ing text snippet. We resort to the machine learning
library scikit-learn (Pedregosa et al., 2011)
for the implementation and extract feature impor-
tance scores following the feature permutation ap-
proach detailed in Parr et al. (2018). Further-
more, in order to extract feature-class associations
(i.e., which class each feature is mostly predic-
tive of) odds-ratios are computed based on a lin-
ear model taking character-level as reference class.
The resulting Random Forest achieves 91.7 out-
of-bag accuracy, which provides certainty that the
feature-set has sufficiently large coverage.

Figure 2 ranks features by importance scores.
As we can see, word-length is by far the strongest
predictor. The feature is most strongly associated
with HLM and slightly less with syllable-level
modeling. Following word-length, we encounter
syntax (mean tree-depth) and lexical diversity,
which again are mostly associated with HLM —
with odds-ratios in favour of HLM amounting to

9 https://www.allennlp.org/models

https://www.allennlp.org/models
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Figure 2: Feature importance analysis based on a Ran-
dom Forest classifier trained to predict modeling scale.

3.8 and 2.4, respectively. Furthermore, prosodic
features — in particular assonance — play a role
in distinguishing character-level output from the
other models. Finally, word repetition and rhyme
density show near-zero importance scores.

Based on the present feature analysis, it can be
inferred that one of the main advantages of hierar-
chical modeling relates to increased lexical diver-
sity, which is further boosted by the ability to gen-
erate longer and more morphologically complex
words. On the other hand, character-level mod-
eling seems to be better characterized by surface-
level prosodic features (in particular assonance).
This analysis would connect with the interpreta-
tion advanced in Section 5.1, in which character-
level modeling was shown to provide an accurate
replication of a related surface-level textual prop-
erty: rhythm as captured by verse length.

6 Discussion & Conclusion

Based on a large-scale evaluation involving hun-
dreds of participants and authenticity judgments,
we have shown that the modeling scale influences
the quality of generated Hip-Hop lyrics. A feature
analysis shows that hierarchically generated text
displays morphologically and syntactically more
complex output as well as higher lexical diversity.
All such properties may help explain the better
scores achieved by the hierarchical model in the
absence of conditioning.

Furthermore, the proposed end-to-end approach
to enforce formal structure in texts has similarly
proved efficient. It reduces the human guessing
accuracy of all models and is particularly efficient
in the case of syllable-level modeling. Moreover,
our analysis of the interplay between modeling
scale and conditioning showed that syllable-level
modeling displays much greater ability to exploit
rhyme templates than the other lower-scale mod-

eling variants. This advantage can help to explain
the more pronounced effect of conditional tem-
plates on syllable-level modeling when consider-
ing that rhyme patterns contribute arguably more
strongly to the realism of a generated snippet.

And yet, character-level modeling scored much
better than the other models at generating the re-
quested verse lengths and was shown to be pos-
itively associated with prosodic features such as
assonance by the feature analysis. Both results
thus seem to suggest that character-level modeling
has an edge at capturing surface-level information.
The overall lower performance of the character-
level model implies, however, that such an advan-
tage does not translate in improved realism as per-
ceived by the participants.

Finally, the evaluation shows that despite the al-
ready mentioned advantages of hierarchical mod-
eling, the effects of conditional templates did not
compound in this case. This result is somewhat
discouraging, since the primary motivation of hi-
erarchical modeling is to overcome deficiencies
of both character and word-level modeling. The
analysis in Section 5.1 shows that our implemen-
tation of the conditioned HLM scores in between
the other two models. Future research might be
able to overcome this drawback by carefully de-
signing adaptive mechanisms that let the model
decide to which layer in the hierarchy a particu-
lar type of sentence-level conditional embedding
should be fed.

7 Future Work

Our study suggests several directions for future
work. The most urgent issue, briefly touched upon
above, concerns an investigation of improved hier-
archical architectures that can exploit conditioning
information better than either character-level and
word-level models in isolation. Moreover, the pos-
itive results obtained for the hierarchical model in
isolation encourage scaling up the modeling hier-
archy, investigating the inclusion of higher scales
such as stanza and document level. Furthermore,
while we have only considered templates cover-
ing formal aspects of the text, the same approach
can be extended to include content features such
as keyword or stanza-level topic information. Fi-
nally, in this study, we have restricted ourselves to
relatively short snippets of text, but future work
should move on and consider an evaluation on
more substantial text portions.
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