@inproceedings{aoki-etal-2019-controlling,
title = "Controlling Contents in Data-to-Document Generation with Human-Designed Topic Labels",
author = "Aoki, Kasumi and
Miyazawa, Akira and
Ishigaki, Tatsuya and
Aoki, Tatsuya and
Noji, Hiroshi and
Goshima, Keiichi and
Kobayashi, Ichiro and
Takamura, Hiroya and
Miyao, Yusuke",
editor = "van Deemter, Kees and
Lin, Chenghua and
Takamura, Hiroya",
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
month = oct # "{--}" # nov,
year = "2019",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-8640",
doi = "10.18653/v1/W19-8640",
pages = "323--332",
abstract = "We propose a data-to-document generator that can easily control the contents of output texts based on a neural language model. Conventional data-to-text model is useful when a reader seeks a global summary of data because it has only to describe an important part that has been extracted beforehand. However, because depending on users, it differs what they are interested in, so it is necessary to develop a method to generate various summaries according to users{'} interests. We develop a model to generate various summaries and to control their contents by providing the explicit targets for a reference to the model as controllable factors. In the experiments, we used five-minute or one-hour charts of 9 indicators (e.g., Nikkei225), as time-series data, and daily summaries of Nikkei Quick News as textual data. We conducted comparative experiments using two pieces of information: human-designed topic labels indicating the contents of a sentence and automatically extracted keywords as the referential information for generation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aoki-etal-2019-controlling">
<titleInfo>
<title>Controlling Contents in Data-to-Document Generation with Human-Designed Topic Labels</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kasumi</namePart>
<namePart type="family">Aoki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akira</namePart>
<namePart type="family">Miyazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatsuya</namePart>
<namePart type="family">Ishigaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatsuya</namePart>
<namePart type="family">Aoki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroshi</namePart>
<namePart type="family">Noji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keiichi</namePart>
<namePart type="family">Goshima</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ichiro</namePart>
<namePart type="family">Kobayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-oct–nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a data-to-document generator that can easily control the contents of output texts based on a neural language model. Conventional data-to-text model is useful when a reader seeks a global summary of data because it has only to describe an important part that has been extracted beforehand. However, because depending on users, it differs what they are interested in, so it is necessary to develop a method to generate various summaries according to users’ interests. We develop a model to generate various summaries and to control their contents by providing the explicit targets for a reference to the model as controllable factors. In the experiments, we used five-minute or one-hour charts of 9 indicators (e.g., Nikkei225), as time-series data, and daily summaries of Nikkei Quick News as textual data. We conducted comparative experiments using two pieces of information: human-designed topic labels indicating the contents of a sentence and automatically extracted keywords as the referential information for generation.</abstract>
<identifier type="citekey">aoki-etal-2019-controlling</identifier>
<identifier type="doi">10.18653/v1/W19-8640</identifier>
<location>
<url>https://aclanthology.org/W19-8640</url>
</location>
<part>
<date>2019-oct–nov</date>
<extent unit="page">
<start>323</start>
<end>332</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Controlling Contents in Data-to-Document Generation with Human-Designed Topic Labels
%A Aoki, Kasumi
%A Miyazawa, Akira
%A Ishigaki, Tatsuya
%A Aoki, Tatsuya
%A Noji, Hiroshi
%A Goshima, Keiichi
%A Kobayashi, Ichiro
%A Takamura, Hiroya
%A Miyao, Yusuke
%Y van Deemter, Kees
%Y Lin, Chenghua
%Y Takamura, Hiroya
%S Proceedings of the 12th International Conference on Natural Language Generation
%D 2019
%8 oct–nov
%I Association for Computational Linguistics
%C Tokyo, Japan
%F aoki-etal-2019-controlling
%X We propose a data-to-document generator that can easily control the contents of output texts based on a neural language model. Conventional data-to-text model is useful when a reader seeks a global summary of data because it has only to describe an important part that has been extracted beforehand. However, because depending on users, it differs what they are interested in, so it is necessary to develop a method to generate various summaries according to users’ interests. We develop a model to generate various summaries and to control their contents by providing the explicit targets for a reference to the model as controllable factors. In the experiments, we used five-minute or one-hour charts of 9 indicators (e.g., Nikkei225), as time-series data, and daily summaries of Nikkei Quick News as textual data. We conducted comparative experiments using two pieces of information: human-designed topic labels indicating the contents of a sentence and automatically extracted keywords as the referential information for generation.
%R 10.18653/v1/W19-8640
%U https://aclanthology.org/W19-8640
%U https://doi.org/10.18653/v1/W19-8640
%P 323-332
Markdown (Informal)
[Controlling Contents in Data-to-Document Generation with Human-Designed Topic Labels](https://aclanthology.org/W19-8640) (Aoki et al., INLG 2019)
ACL
- Kasumi Aoki, Akira Miyazawa, Tatsuya Ishigaki, Tatsuya Aoki, Hiroshi Noji, Keiichi Goshima, Ichiro Kobayashi, Hiroya Takamura, and Yusuke Miyao. 2019. Controlling Contents in Data-to-Document Generation with Human-Designed Topic Labels. In Proceedings of the 12th International Conference on Natural Language Generation, pages 323–332, Tokyo, Japan. Association for Computational Linguistics.