
Proceedings of The 12th International Conference on Natural Language Generation, pages 575–583,
Tokyo, Japan, 28 Oct - 1 Nov, 2019. c©2019 Association for Computational Linguistics

575

Modeling Confidence in Sequence-to-Sequence Models

Jan Niehues
Department of Data Science

and Knowledge Engineering (DKE)
Maastricht University

jan.niehues@maastrichtuniversity.nl

Ngoc-Quan Pham
Institute of Anthropomatics

Karlsruhe Initute of Technology
ngoc.pham@kit.edu

Abstract

Recently, significant improvements have been
achieved in various natural language process-
ing tasks using neural sequence-to-sequence
models. While aiming for the best generation
quality is important, ultimately it is also nec-
essary to develop models that can assess the
quality of their output.

In this work, we propose to use the similarity
between training and test conditions as a mea-
sure for models’ confidence. We investigate
methods solely using the similarity as well as
methods combining it with the posterior prob-
ability. While traditionally only target tokens
are annotated with confidence measures, we
also investigate methods to annotate source to-
kens with confidence. By learning an inter-
nal alignment model, we can significantly im-
prove confidence projection over using state-
of-the-art external alignment tools. We eval-
uate the proposed methods on downstream
confidence estimation for machine translation
(MT). We show improvements on segment-
level confidence estimation as well as on con-
fidence estimation for source tokens. In addi-
tion, we show that the same methods can also
be applied to other tasks using sequence-to-
sequence models. On the automatic speech
recognition (ASR) task, we are able to find
60% of the errors by looking at 20% of the
data.

1 Introduction

Deep learning methods have significantly in-
creased the quality of natural language generation
tasks such as Machine Translation (MT). How-
ever, when deployed in a production environment,
understanding the model’s confidence and how
well it correlates with output quality is as impor-
tant as training the best models.

While humans are often capable of estimating
whether their decisions are sensible or produced

by random guesses, it is often not possible to know
how confident deep learning models are with re-
spect to their output (Gal, 2016). However, in-
formation regarding confidence can be essential in
production scenarios. In cases with a human-in-
the-loop, confidence can be used to identify the
parts of the machine output that require human in-
tervention, e.g. in post-editing for machine trans-
lation or to guide reformulation of the original in-
put to simplify the task for sequence-to-sequence
models.

Intuitively, models should have higher confi-
dence towards data points that are similar to their
training data. Motivated by this, our first contribu-
tion is an autoencoder network that is applied as an
extension to the sequence-to-sequence models to
measure the training-testing discrepancy. In con-
trast to methods that directly compare the test and
training data to generate confidence scores, we do
not need to store the whole training data, thereby
enabling our method to scale to larger datasets and
tasks.

Motivated by the successful application of pos-
terior probabilities for confidence estimation in
statistical machine translation (SMT) (Ueffing and
Ney, 2007) and traditional ASR systems (Siu and
Gish, 1999), our second contribution is a combi-
nation our approach with this prior approach.

Traditionally, confidence estimation has been
defined as a task of assessing the quality of the
whole sequence of words in the target sentence.
Especially when evaluating translations, there are
also several cases when it can be very beneficial
to estimate how well the source words are trans-
lated beyond coverage. For example, a person
only speaking the source language might be able
to reformulate the source sentence, if he knows
that the system has difficulties with certain words.
As our third contribution, we present a method to
estimate the alignment between source and target



576

tokens in complex sequence-to-sequence models.
We can show that this strongly outperforms exter-
nal state-of-the-art alignment methods.

Our experiments shows that in machine transla-
tion, the posterior probabilities can be competitive
with automatic metrics in terms of correlation with
human evaluation. For speech recognition, we are
able to find 60% of the errors by looking at 20%
of the data.

2 Confidence Estimation Task

Depending on the use case, there are different
ways to define the task of confidence estimation.
Furthermore, there is no clear separation between
confidence estimation and quality estimation. A
first important dimension is the granularity of the
predictions. We investigate three different use
cases in this work, described in the next three sub-
sections in greater detail.

Previous methods differ in whether they pre-
dicting continuous values or discrete labels. In this
work, we will predict continuous values, but eval-
uate against gold standard labels. In Section 5, we
describe in detail how we map continuous predic-
tions to discrete labels.

In addition, previous methods differ in whether
they can be trained on gold standard labels or if no
annotated training data is available. Training data
is a particular challenge in confidence estimation
since annotations are associated with the output of
a particular model. Therefore, this raises the ques-
tion whether the task is to estimate the quality of
any model, or of a particular one. This has im-
plications for whether we can use model internal
information or not. In this work, we focus on the
situation where we want to estimate the confidence
of a particular model, using internal information.
Since in a realistic real-world scenario we are not
able to collect annotated data for each model we
are interested in, we further do not use any labeled
training data.

2.1 Granularity

First, the confidence of the whole output sequence
can be estimated. Given an input sequence X =
x1 . . . xIw and an output sequence Y = y1 . . . yJw ,
the model estimates quality c for the whole se-
quence. We will present several methods that
calculate a sequence of confidence estimations
c′1, ..., c

′
L. Therefore, we need an additional ag-

gregation function for the sequence confidence es-

timates. In all our experiments, we are using the
minimum as the aggregation function.

In some use cases, it is important to get more
fine-grained quality estimation. To be specific, we
aim at estimating the confidence of every target
token xj instead of one single score for the se-
quence. Given an input sequence X = x1 . . . xIw
and an output sequence Y = y1 . . . yJw , the out-
put will be a sequence of quality estimations C =
c1 . . . cJw . One additional challenge is that we
might be interested in the confidence using a dif-
ferent granularity than the predicted by the model
c′1, ..., c

′
L (with L 6= Jw). For example, the user

is interested in word-based confidence, while the
system uses subword units. In this case, we as-
sume to have a mapping m between the positions
1 . . . Jw and 1 . . . L. In the example of subwords,
this is straightforward because segmentation is re-
coverable. Then, we also need an additional ag-
gregation function for the confidence estimates.
We estimate the confidence cj by aggm(l)=j(cl).
For this type of aggregation we also use the mini-
mum.

In machine translation, it is not only the con-
fidence at the output level that is of interest, but
also how adequately each individual source token
is translated. From an application point of view,
when the machine translation is used in an inter-
active scenario, this feature for example enables
the user to reformulate the source sentence in or-
der to avoid phrases that the system is not able to
handle.

Formally, given an input sequence X =
x1 . . . xIw and an output sequence Y = y1 . . . yJw ,
the model estimates a sequence of confidence
measures C = c1 . . . cIw . Therefore, in this case,
given the estimation of the model c′1, ..., c

′
L, we

need a mapping m between the positions 1 . . . Iw
and 1 . . . L.

2.2 Posterior Probabilities

As a baseline for our experiments, we use the pos-
terior probabilities. The intuition behind this tech-
nique is that the model will distribute the proba-
bility mass over several outputs in low-confidence
situations. In contrast, if the model is confident
about its prediction, it should assign a high proba-
bility to the prediction.

Formally, given an input sequence X =
x1 . . . xIw and an output sequence Y = y1 . . . yJw ,
we first define the input tokens X ′ = x′1 . . . x

′
Iy



577

and an output sequence Y ′ = y′1 . . . y
′
Jt

(e.g. by
using subwords). The encoder will first calculate
a sequence of hidden states E = e1, . . . eIt =
ENC(X ′). Secondly, we predict the target hid-
den states D = d1, . . . dJt = DEC(E, Y ′). Fi-
nally, we can use the posterior probabilities P =
p1, . . . , pJt calculated by:

pi = softmax(FF (di))[y
′
i] (1)

where FF is a linear transformation and [k] indi-
cates the k-th element of the vector. By using P
for C ′ as described in Section 2.1, we can calcu-
late now a sequence confidence or an output con-
fidence.

3 Training similarity

The similarity between test input and the examples
seen in training is an important indication for the
model’s performance. Intuitively, models should
be better at predicting examples similar to their
training data than examples very different from the
training data.

3.1 Approaches to measure similarity

Two sentences can be similar in many ways.
Therefore, there are also many ways to estimate
the similarity between sentences. For our use case,
it is important how similar the sentence repre-
sentation generated by the translation systems is.
Hence, we use the internal representations of the
neural machine translation model to measure the
similarity of the sentences.

In an NMT system, there are different represen-
tation levels which can be used to measure the sim-
ilarity of the sentence. For example, we can use
the final encoder hidden states, the final decoder
hidden states, or the context vectors. As motivated
in the introduction, one interesting use case for us-
ing confidence is to find difficult source segments,
so that the user can rewrite them. For this case, we
concentrate on the encoder hidden states.

We measure the training-test similarity as fol-
lows: First, we run the encoder on the source
side of the training data and store the encoder
hidden representation (top layer) for every sen-
tence k (Ek = ek1, . . . , e

k
Ikt

). Second, we cal-
culate the hidden representations of the test sen-
tences (Etst = etst1 , . . . , etst

ItstT
) and used approx-

imate k-nearest neighbor search (implemented in

the Annoy1 toolkit).
We investigated two methods to estimate the

similarity, one on the sentence level and one on
token level. First, we use the distance to the over-
all most similar training sentence by using the av-
erage vector of the encoder hidden states for the
training as well as for the test data. Formally:

s = min
k∈train

L2(avg(ek1, . . . , e
k
Ik
), avg(etst1 , . . . , etstItst))

(2)
Then we use s directly as the sequence confidence
c from Section 2.1.

The second method is to estimate the confidence
for each source token. This is achieved by finding
the nearest neighbor for each hidden encoder state
etsti .

si min
k∈train;ik∈1,...,Ik

L2(ekik , e
tst
i ) (3)

By using S = s1 . . . sItst as C ′ in Section 2.1, we
can calculate a sequence confidence or an confi-
dence for each input token.

3.2 Similarity estimation

The main disadvantage of aforementioned method
is that we need to calculate and store the hid-
den representation of all training examples. Such
storage consumption is non-trivial even for small
datasets like the TED corpus and it is infeasible
for large-scale sequence-to-sequence models.

Therefore, we also investigate methods to ap-
proximate the distance without storing the hidden
states for the whole training data. Here we pro-
pose to approximate this distance by using au-
toencoders. The autoencoder will be able to re-
construct typical hidden states seen in the training
data, while the reconstruction of unusual hidden
states will be less exact.

As shown in Figure 1, we are using an autoen-
coder with a single hidden layer. In our experi-
ments, we investigate different hidden sizes of the
autoencoder. Afterwards, we apply the sigmoid
activation function before predicting the output.

Next, we then can use the quality of the recon-
struction as a measure of the model’s confidence in
its predictions. We found that it is possible to get
the confidence qualitatively by measuring the L2-
distance between the hidden representation and its
reconstruction.

sei = L2(ei, Auto(ei)) (4)

1https://github.com/spotify/annoy



578

As for the direct measurement, we can use Se =
se1 . . . s

e
Itst as C ′ to calculate the confidence of the

sequence or for each input token. Furthermore, by
using the decoder states D instead of the encoder
states E, we can calculate Sd accordingly and use
it to estimate the sequence or target token confi-
dence.

Figure 1: Architecture of the autoencoder

3.3 Combining both approaches
While using similarity measurements is able to es-
timate the quality of the whole sequence as well
as of parts of the sequence, it also has two draw-
backs: First, in the L2-norm all dimensions are
equally important, while this might not be the case
for the final prediction of the words. Second, we
are only looking at the similarity between training
and test condition, but ignoring that some outputs
might be inherently more difficult to predict than
others.

Therefore, we combine both techniques and
thereby minimize their respective drawbacks. To
do so, the hidden representation is first replaced by
the reconstruction generated by the autoencoder.
After that, we calculate the probabilities based on
these reconstructed hidden representations. If we
use the autoencoder on the decoder states, Equa-
tion 1 needs to be modified to:

psi = softmax(FF (Auto(di)))[y
′
i] (5)

By using P s for C as described in Section 2.1,
we can calculate now a sequence confidence or
an output confidence. Similarly, we can replace
Auto(di) by d′i with D′ = DEC(Auto(E), Y ′)
to use the autoencoders on the encoder hidden
states. It is important to note, that the similarity
approximated by the encoder hidden states can be
used for source token confidence estimation, while
the combination of autoencoders on the source
hidden state and posterior probabilities can only be
used for target token confidence estimation. One
advantage of this combination is that no additional
parameters are introduced.

4 Alignment

While the previously presented models are all able
to generate confidence measures for each target to-
ken, only the distance-based similarity measures
are able to also generate scores for the source to-
kens. In order to generate source token confidence
qualitatively, a straightforward approach is to use
word alignment to map the confidence score from
the target side to the source.

Our baseline for these experiments uses the
IBM4 GIZA alignment model (Och and Ney,
2003) to map the posterior probabilities and the
combined approach’s confidence estimations from
target to source tokens. If several target tokens
align to the same source token, we again use the
minimal confidence.

Motivated by our autoencoding approach to
measure similarity between training and test data,
we investigate similar approaches to model the
alignment between source and target tokens. In
this case, we used a model to predict a target hid-
den state dj given a source state ei. If a source
word aligns to a target word, it should be possi-
ble to predict this target word primarily based on
this source word. Therefore, we choose the same
architecture as for the autoencoder. We use the
source hidden state to predict a target hidden state.
Then, we compare the predicted hidden state to
all decoder hidden states and describe the align-
ment strength between the source and target hid-
den state using the cosine similarity between the
predicted hidden state and the target hidden state.
Let NN() be the neural network-based predictor.
We then calculate the alignment by:

a′ij = cos sim(NN(ei), dj) (6)

Based on the alignment scores, we created an
alignment matrix by aligning each source word to
the target word with the strongest link according
to Equation 7.

a(i) = min
j∈1,...,J

a′ij (7)

Since there are not confidence labels with
aligned source and target words available, we can-
not simply train the neural network. Inspired by
the GIZA model, we utilize the EM algorithm for
training. Given an alignment a∗, we can train our
model using the following MSE-based loss func-
tion:

MSE(NN(ei), da∗i) (8)



579

This can be extended for soft alignments a to:

MSE(NN(ei),
∑
j

aijdj) (9)

This corresponds to the M-Step in the EM algo-
rithm. To be able to train the model using this loss
function, we need to estimate an alignment a in the
E-step. Given the source representation e1, . . . eI
of a sentence, we use the predictor to calculate the
prediction p1, . . . pI . Based on this, we calculate
the alignment similarities a′ij based on cosine sim-
ilarities between pi and the decoder hidden states
dj . In order to prevent the model from learning to
collapse into aligning all source words to the most
obvious words e.g. the period at the end of the sen-
tence, we normalize them to probabilities for each
target word. (a′ij = aij/

∑I
i′=1(ai′j)).

5 Evaluation

In this work, we evaluate the ability of sequence-
to-sequence models to estimate their confidence in
their own output on two different tasks: MT and
ASR.

It is necessary to define a gold standard
for the evaluation. For ASR, there is only
one ground truth. Accordingly, we can la-
bel each output word from the model as cor-
rect/substitution/deletion/insertion. Our confi-
dence measurement is then done on he word level
(predicting whether the word is correct or not) 2.

For machine translation, a single correct trans-
lation for each source sentence does not exist. To
account for this, our experiments are carried out in
the following way: We collected annotations with
incorrectly translated source words for 1177 sen-
tence pairs, resulting in 39.93% of the source sen-
tences containing mistranslated words. We were
not able to test our methods on existing quality
estimation data sets, as we cannot access internal
model information for this data.

Given the reference labels, the next step is to
measure the quality of the confidence measures. In
our experiments, we use four different measures.
The first possible scenario is that, we assume that
the user has a fixed amount of time and wants to
maximize the improvements. Therefore, we cal-
culate the confidence score for all the test data and
look at the 10% and 20% of the test data that the
model has given the lowest confidences. Then,

2If a word in the reference was deleted, we marked the
previous and next word also as an erroneous word.

we measure what percentage of errors according
to the reference are found in this part of the data.

In another scenario, we want to dynamically
correct as many sentences as would be beneficial.
This can be measured using the F-Score. Since
we need to map the confidence scores to labels,
we have the additional challenge of finding a good
threshold for when to assign the label “high con-
fidence” or “low confidence” to an output sen-
tence/word. Therefore, we report oracle F-Scores
using an optimal threshold found on the test data.
Furthermore, we evaluate an approach to find this
threshold in an unsupervised manner: While our
baseline system uses beam search with beam=8,
we also perform greedy decoding. We assume that
the model is not confident if the beam search leads
to a different outcome from the greedy decod-
ing, and create pseudo-labels where each segment
or token is labeled wrong if the results of beam
search and greedy search differ. Then, we select
the optimal threshold based by comparing the pre-
dict scores and these pseudo-labels and evaluate
the approach on the real labels.

6 Experiments

The sequence-to-sequence models in our work are
based on the state-of-the-art Transformer architec-
ture (Vaswani et al., 2017). We followed the model
configuration with the learning rate schedule from
the Base configuration in the original work. The
number of layers is adapted for each task for the
best performance possible and will be reported
respectively. The autoencoders are implemented
on top of the Transformer (with PyTorch (Paszke
et al., 2017)) using one hidden layer with differ-
ent sizes and sigmoid activation function. 3 The
MT model is a 12-layer Transformer trained on
the German-English TED corpus (Cettolo et al.,
2012) with the development set and test set from
the IWSLT 2017 evaluation campaign. The data is
preprocessed with Moses tokenization, true-casing
and segmented with byte-pair encoding (Sennrich
et al., 2016) with 40K codes. The model achieves
a BLEU score of 28.82 on the development set and
30.63 on the test data.

We conducted further ASR experiments on the
Switchboard-1 Release 2 (LDC97S62) corpus,
which contains over 300 hours of speech. The
Hub5’00 evaluation data (LDC2002S09) was used
as our test set. On this set, we are especially inter-

3https://github.com/isl-mt/NMTGMinor



580

ested in the influence of the model performance
on the quality estimation. Therefore, we trained 4
different models with 4,8,12 and 24 layers. These
models achieve a WER of 20.8, 14.8, 13.0 and
12.1 on the Switchboard test set respectively, and
33.2, 25.5, 23.9 and 23.0 on the Callhome set.

6.1 Machine translation results

The first concern in the experiments is the perfor-
mance on segment-level quality estimation for ma-
chine translation. The results are summarized in
Table 1.

Two baseline systems are presented in this ex-
periment. To measure the difficulty of the task, we
use the BEER evaluation metric as comparison,
which has been performing competitively in the
WMT Metric evaluations (Stanojevic and Simaan,
2014). It is important to note that the metric has
access to the reference translation, while the con-
fidence measure do not. Even with this advantage,
the metric does not clearly outperform a random
baseline, showing the difficulty of the task. Using
the model’s posterior probability, we can improve
on all four types of confidence measure. Among
the 10% of the sentences with the lowest confi-
dence, this method was able to find 17.66% of the
sentences with errors. For this task, this is further
the best performance. This confirms our hypoth-
esis that the posterior probabilities can be reliable
for modelling the system’s confidence.

Proceeding to experiments shown in the next
two lines, we evaluate the ability of using the sim-
ilarity between test and training data as a measure
for confidence. Although not performing as well
as the posterior probabilities, the data difference is
a good estimator for the task difficulty and the con-
fidence of the model. When comparing a single
sentence representation (Enc Sent Distance) and
the token representation (Enc Distance) in the next
line, the second one outperforms the first one, ex-
cept for the top 10%. Therefore, it seems to be
important to measure the distance of each individ-
ual token and not only of the whole sentence.

Motivated by these results, we trained the au-
toencoders on the individual tokens and not on
the whole sentence and used the autoencoder net-
works on the source hidden representation to esti-
mate the performance. We analyze the influence of
the size of the bottleneck of the autoencoder. The
network with bottleneck size of 256 (Enc Auto
256), which is half the size of the input size, man-

aged to get the best performance in all measures.
While we see a drop in performance due to the ap-
proximation, e.g. from 32.77% to 29.57% when
looking at 20% of the data, this is still better than
BEER.

We performed the same experiment using the
target hidden representations. Again, we inves-
tigated the influence of the bottleneck size and
achieved the best performance with a bottleneck
size of 256 (Dec Auto 256). Reasonably, the target
hidden states contain more information about the
sequence-to-be-generated than the source states.

Finally, when combining the output probability
with the decoder hidden states (Dec Auto 256 +
Prob), we are able to achieve the best performance.
Again, it is better to use the autoencoder on the
decoder hidden state than on the encoder hidden
state. It is worth noting that the pseudo-labels per-
form very well when including the posterior prob-
abilities. Interestingly, we see a clear drop in per-
formance between oracle and pseudo-labels when
not using the posterior probabilities.

Moreover, we evaluated methods to identify
source words with low confidence. The results for
these experiments are summarized in Table 2. In
this case the baseline is to map the posterior prob-
abilities to the source sentence using a GIZA (Och
and Ney, 2003) alignment. Again, we evaluate the
approach with the same four scores. As shown in
the first two lines, the Giza alignment from source
to target performance clearly better than the one
from target to source. Therefore, in the remaining
experiments, we only evaluate approaches using
the source to target alignment.

By using the training-test distance approxi-
mated by the autoencoder on the encoder states
(Enc Auto 256), we directly have an estimate on
the source side and so do not need to map target es-
timates to the source side. In this case, we see im-
provements over using the posterior probabilities.
Again, the pseudo labels perform not as well with-
out using the posterior probabilities. Next, we map
the other three measures, decoder hidden states
and the combination of encoder or decoder states
and output probabilities, using the Giza alignment
to the source. Interestingly, this time, solely using
the approximation of the training-test similarity is
even better than the combination with the output
probabilities. The best system is achieved by the
autoencoder of the decoder states (Dec Auto 256).
We see improvements by 3% and 10% over the



581

Model 10% 20% Oracle Pseudo-label
BEER 10.43 24.68 61.24 61.10
Prob 17.66 33.19 64.66 63.96
Enc Sent Distance 17.02 31.91 62.95 61.73
Enc Distance 16.81 32.77 63.66 62.64
Enc Auto 128 13.62 25.74 60.13 59.64
Enc Auto 256 14.47 29.57 61.94 61.37
Enc Auto 512 13.62 25.74 60.50 59.61
Dec Auto 128 15.11 30.00 62.87 61.63
Dec Auto 256 16.17 31.91 63.96 61.43
Dec Auto 512 15.11 31.28 62.92 60.31
Enc Auto 256 + Prob 16.38 34.04 64.48 64.15
Dec Auto 256 + Prob 17.02 34.04 65.92 65.54

Table 1: Segment-level confidence estimation for MT. First two columns: Percentage of found errors when select-
ing 10% and 20% of the data; Final two columns: F-score when using oracle threshold and thresholds optimized
on pseudo-labels

Model Alignment 10% 20% Oracle Pseudo-label
Prob Giza DE-EN 25.15 34.09 19.33 17.73
Prob Giza EN-DE 28.90 39.86 22.58 21.18
Enc Auto 256 28.78 49.58 23.54 16.31
Dec Auto 256 Giza EN-DE 32.21 49.51 24.85 19.49
Enc Auto 256 + Prob Giza EN-DE 29.75 40.44 22.97 22.37
Dec Auto 256 + Prob Giza EN-DE 32.21 47.38 24.54 24.37
Prob 256 32.34 44.59 25.16 24.25
Prob 512 32.79 44.91 25.45 24.39
Prob 2048 32.27 44.91 24.98 23.85
Prob 8192 33.38 46.34 25.63 24.33
Dec Auto 256 8192 33.89 53.27 26.23 21.65
Dec Auto 256 + Prob 8192 35.58 52.62 27.21 27.02

Table 2: Source word confidence for MT. First two columns: Percentage of found errors when selecting 10% and
20% of the data; Final two columns: F-score when using oracle threshold and thresholds optimized on pseudo-
labels

posterior probabilities when looking at 10% and
20% of the data. Finally, we tried to use an internal
alignment instead of the Giza alignment. There-
fore, we predict the decoder hidden states based on
the encoder hidden states as described in Section
4. Again, we investigated different sizes for the
hidden states used to map the posterior probabili-
ties. As shown in Table 2, all the models perform
better than the GIZA alignment. We can further
improve the quality by using a larger hidden layer.
Since we need to learn a very complex mapping
from source to target hidden states, a larger layer
is better. The best performance is achieved using
a layer of 8192 hidden units.

In the end, we also used the same model to map

the autoencoder predictions. The combination of
all three methods leads to the best results (Dec
Auto 256 + Prob, 8192). By looking only at 10%
of the words, we are able to find more than 35%
of the errors and for 20% of the words we identify
more than half of the errors.

6.2 Speech recognition results

The ASR results for this task are summarized in
Table 3. We present the percentage of found errors
when looking at 10 and 20 percent of the data. In
each column, we estimate the quality of one out-
put generated by the different models. Each row
represents the results when using one model to es-
timate the quality of the different outputs.



582

Generation 4 layer 8 layer 12 layer 24 layer
SWB CH SWB CH SWB CH SWB CH

WER 20.8 33.2 14.8 25.5 13.0 23.9 12.1 23.0
Layer Methods 10% 20% 10% 20% 10% 20% 10% 20%
4 prob 23.29 43.63 26.46 46.89 26.60 48.12 27.63 48.96
4 auto+prob 23.50 43.87 26.45 46.96 26.67 48.14 27.64 49.00
8 prob 30.00 53.08 29.37 51.83 32.65 54.76 32.46 55.02
8 auto+prob 30.00 53.20 29.67 53.80 32.63 57.10 32.43 57.87
12 prob 30.09 54.80 34.59 56.44 31.13 54.71 34.67 56.61
12 auto+prob 30.97 54.87 34.62 58.61 31.37 57.09 34.70 59.31
24 prob 31.21 55.40 35.34 57.29 35.91 57.54 31.95 55.30
24 auto+prob 31.65 57.26 36.05 61.15 36.73 60.97 37.42 60.77

Table 3: Confidence estimation on ASR using different ASR systems for output predictions and confidence esti-
mation: Found errors when selection 10% and 20% of the data

Here we evaluated four different models with
increasing transcription quality. The only differ-
ence between the models are the number of hidden
layers. We investigated models using 4, 8, 12 and
24 layers. In this task, the test set consists of two
subsets. The best model achieves a word error rate
of 12.1 and 23.0 on the two subsets, respectively.

Again, we use the output probabilities as well as
the combination of the autoencoder and the output
probabilities. We again use half the input size for
the bottleneck size. Firstly, as shown in the MT
experiments, we can improve the quality estima-
tion by combining the posterior probabilities and
the autoencoder approach. In all configurations,
the combination performs better or similar than the
posterior probability.

Secondly, the better models are able to better es-
timate the confidence on the same output. In most
cases, the performance can be improved by using
a more complex model to estimate the confidence.
One exception is the estimation of its own output.

Finally, the estimation of the distance between
training and test data mainly helps when using
stronger models, both for the generation of the out-
put and for confidence estimation. Furthermore,
this method also removes the effect of models per-
forming worse than their own output.

7 Related Work

Prior work has investigated confidence measure-
ment for speech recognition models (Siu and Gish,
1999), and statistical machine translation mod-
els using either word-level posteriors (Ueffing
and Ney, 2007) or external models (Gandrabur
and Foster, 2003). Deep learning models have

also received attention on uncertainty and confi-
dence measurement recently: (Gal and Ghahra-
mani, 2016) formulate neural network models
with dropout as Bayesian models to obtain uncer-
tainty based on sampling methods. Specifically,
for neural machine translation models or other
sequence-to-sequence models, quality estimation
has remained as a topic of concern. While most
prior research focused on developing confidence
measures for a general system using external fea-
tures (Specia et al., 2018), this works concentrates
on estimating the confidence of a specific system
by making use of the information available in the
internal representation of the network.

8 Conclusion

In this work, we investigated the ability of
sequence-to-sequence models to model their con-
fidence in their decisions. We performed experi-
ments using these models for two tasks: machine
translation and speech recognition.

We analyzed the influence of train-test mis-
match on quality estimation. By approximating
this mismatch using an autoencoder and combin-
ing it with the posterior probabilities, we are able
to improve confidence estimation over a strong
baseline. We showed that it is better to measure
the mismatch on the decoder hidden states than on
the encoder hidden states.

Secondly, we also investigated methods to pre-
dict how well each individual source token is
translated by a given model. In this case, measur-
ing the train-test mismatch was even more impor-
tant. Furthermore, we present an approach to in-
fer the internal alignment of complex sequence-to-



583

sequence models. Using this alignment instead of
a state-of-the-art external alignment for mapping
target confidence measure to source tokens clearly
improved the quality of the confidence measure
for source words

Acknowledgments
The project ELITR leading to this publication has
received funding from the European Unions Hori-
zon 2020 Research and Innovation Programme un-
der grant agreement No 825460. We thank Eliza-
beth Salesky for the constructive comments.

References
Mauro Cettolo, Christian Girardi, and Marcello Fed-

erico. 2012. Wit3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Con-
ference of the European Association for Machine
Translation (EAMT), pages 261–268, Trento, Italy.

Yarin Gal. 2016. Uncertainty in Deep Learning. Ph.D.
thesis, University of Cambridge.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems 29 (NIPS).

S. Gandrabur and G. Foster. 2003. Confidence estima-
tion for translation prediction. In Proceedings of the
Seventh Conference on Natural Language Learn-
ing at HLT-NAACL 2003 - Volume 4, CONLL ’03,
pages 95–102, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Franz Josef Och and Hermann Ney. 2003. A System-
atic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29(1):19–51.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

M. Siu and H. Gish. 1999. Evaluation of word con-
fidence for speech recognition systems. Computer
Speech & Language, 13(4):299 – 319.

L. Specia, F. Blain, V. Logacheva, R. Astudillo, and
A. F. T. Martins. 2018. Findings of the wmt 2018
shared task on quality estimation. In Proceedings of
the Third Conference on Machine Translation, Vol-
ume 2: Shared Task Papers, pages 702–722, Bel-
gium, Brussels. Association for Computational Lin-
guistics.

Milos Stanojevic and Khalil Simaan. 2014. Beer: Bet-
ter evaluation as ranking. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 414–419.

N. Ueffing and H. Ney. 2007. Word-level confidence
estimation for machine translation. Computational
Linguistics, 33:9–40.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

https://doi.org/10.3115/1119176.1119189
https://doi.org/10.3115/1119176.1119189
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/p16-1162
https://doi.org/https://doi.org/10.1006/csla.1999.0126
https://doi.org/https://doi.org/10.1006/csla.1999.0126
http://www.aclweb.org/anthology/W18-6452
http://www.aclweb.org/anthology/W18-6452
https://doi.org/10.1162/coli.2007.33.1.9
https://doi.org/10.1162/coli.2007.33.1.9

