
A Sequential Truncation Parsing
Algorithm based on the Score Function

Keh-Ylh Su*, Jong-Nae Wang", Mei-Hul Su" and Jing-Shin Chang"'

'Department of Electrical Engineering
National Tslng Hua University, Hslnchu, Taiwan, R.O.C.

“ BTC R&D Center
28 R&D Road II, 2F

Science-Based Industrial Park, Hslnchu, Taiwan, R.O.C.

'“ Institute of Computer Science and Information Engineering
National Chlao Tung University, Hslnchu, Taiwan, R.O.C.

Key Words: Machine Translation, Parsing Strategy, Score Function,
Sequential Truncation Parsing Algorithm

ABSTRACT

In a natural language processing system, a large amount o f ambiguity and a large
branching factor are hindering factors in obtaining the desired analysis for a given sentence
in a short time. In this paper, we are proposing a sequential truncation parsing algorithm
to reduce the searching space and thus lowering the parsing time. The algorithm is based
on a score function which takes the advantages o f probabilistic characteristics o f syntactic
information in the sentences. A preliminary test on this algorithm was conducted with a
special version o f our machine translation system, the ARCHTRAN, and an encouraging
result was observed.

Motivation

In a natural language processing system, the number o f possible analyses associated with
a given sentence is usually large due to the ambiguous nature o f natural languages. But, it is
desirable that only the best one or two analyses are translated and passed to the post-editor
in order to reduce the load o f the post-editor. Therefore, in a practical machine translation
system, it is important to obtain the best (in probabilistic sense) syntax tree having the best
semantic interpretation within a reasonably short time. This is only possible with an intelligent
parsing algorithm that can truncate undesirable analyses as early as possible.

There are several methods to accelerate the parsing process [Su 88b], one o f which is
to decrease the size o f the searching space. This can be accomplished with a scored parsing
algorithm that truncates unlikely paths as early as possible [Su 87a, 87b] and hence decreases
the parsing time.

As for the searching strategy for the scored parsing algorithm, it may be either parallel or
sequential. But in our system, a time limit is used to stop the parsing process when a sentence
is taking too long to parse because its length or because it has a very complicated structure.
Therefore, the sequential searching strategy is better for us than the parallel approach because

-95- International Parsing Workshop '89

wc arc likely to have some complete syntax trees to work with even if the parsing was
suspended abnormally when its time expires. On the other hand, the parallel approach will
not have this advantage because none of the on-going paths have traversed to the end.

In this paper, we are proposing a sequential truncation algorithm for parsing sentences
efficiendy. This algorithm employs the score function we proposed in [Su 8 8a]. However,
this algorithm is different from the one proposed in [Su 87a, 87b], which described a parallel
truncation algorithm for scored parsing. Here, we are adopting a sequential truncation method.
While we are using this sequential approach, a large speed-up in the parsing time has been
.jb served.

Definition of the Score Function
In a scored parsing system, the best analysis is selected base on its score. Several scoring

mechanisms have been proposed in the literatures [Robi 83, Benn 85, Gars 87, Su 88a].
The one we adopt is the score function based on the conditional probability we proposed in
[Su 8 8a]. How to select the best analysis of a sentence is now convened into the problem
of finding the semantic interpretation (Semi), the syntactic structure (Synj) and the lexical
categories (LeXk) that maximize the conditional probability of the following equation,

S C O R E (Sem ,, S y n j L e x t)
= P (S e m t ' S y n j i L e x k \ w \ . . . w n)

= P (S e m t \ S y r i j ' L e x j e w i " W n) * P (S y r i j |Zexjt(u;i...u;n) * P (L e x ^ w i ^ w n) ̂ ̂

= S C O R E a t m { S e m i) * S C O R E s y n (S y n j) * S C O R E u x (L e x *) ,

where w i to wn stands for the words in the given sentence and the last three product terms
are semantic score, syntactic score and lexical score respectively. Since we are using
just the syntactic information in our current implementation, we will focus only on the
syntactic aspect o f this score function (i.e. S C O R E j y n (S y n j) , which can be approximated
by S C O R E s y n { S y n j) « P (S y n j \ L e x k) = P { S y r i j \ v i „ v n) , where V! to vn are the lexical
categories corresponding to w i to wn).

To show the mechanism informally, first refer to the syntax tree in Fig. 1. shown here
with its reduction sequences (produced with a bottom-up parsing algorithm), where Li is i-th
phrase level consists o f terminals and nonterminals. The transition from a phrase level Lj to
the next phrase level Li+i corresponds to a reduction or derivation of a nonterminal at time ty.

A

U - { A , }
B C L 7 - (B, C }

L 6 - { B .

L5 - { a

F. G }

F. W4 }

D E F G U - { a W3. W4 }

1 I I 1 U - { D , E, W3, W4 }
h i h 2 t4 h 5 L2 - { D, W2, W3, W4 }

w l w2 w3 w4 U - { WL W2, W3, W4 >

Fit 1 Dtfferert R o se Lcvds fcr a bottcrrKj) Pareng

96- International Parsing Workshop '89

The syntax score of the tree in Fig. 1 can be formulated as the following conditional
probability equation, where li and r* are the left and right contexts of the reducing symbols:

S C O R E s y n (S y n A)

= P . L 2 \ L \)

= P (L s \ L 7 . . L 2 , L \) * P (L j \ L s . . . L \) * . . . * P (L 2 \ L \) ^

~ ^ ({ ^ } | { h , B , C , r j }) * P ({ C } | { l e , F , G , r 6 }) * . . . * P ({ £ > } | { ’/ l i u ; l f r 1 })

Eq. 2 can be further reduced to the following equation if only one left and one right context
symbol are considered where “0” is the null symbol.

S C O R E S y n (S y n A)

« P ({ ^ } | { 0 , B , C , 0 }) * P ({ C } | { B , F , G , 0 }) * . . . * P ({ D } | { 0 , u , 1 , U ; 2 }) (3)

If we want to calculate the score at the point where a word is just being fetched (compact
multiple reductions and one shift into one step), the S C O R E ^ n f S y r i A) can also be approximated
into the following equation.

S C O R E 3 y n (S y n A)

= P (L s L 7 . . L 2 \ L i)

= ^ (^ 8,£7 ,£61^ 5,£4...£1) * P (£51^ 4,£3...£1) * P (LitLz\L2,L\) * P(Ij2\Li) (4)
* P (L s L 7 L6 \L5) * P (L s\L<) * P (L < L z\L2) * P (L 2 \L1)
* P (L s \ L 5) * P (L s \ L <) * P (L < \ L 2) * P (L 2 III)

Two assumptions were made in formulating Eq. 2 -4 . First, it is assumed that the forming
of phrase level i is only dependent on its immediate lower phrase level, since most information
percolated from other lower levels is contained in that level. And second, a reduction is only
locally context sensitive to its left or right context at each phrase level. This assumption is
also supported in other systems as well [Marc 80, Gars 87].

A simulation based solely on this syntactic score was conducted and reported in [Su 8 8a]
with a full-path searching algorithm. The result shows that the correct syntactic structures o f
over 85% of the test sentences were successfully picked when a total o f three local left and
right context symbols were consulted.

-97- Intemational Parsing Workshop '89

The Sequential Truncation Algorithm
Using the score function defined in the previous section, we will present the idea of

sequential truncation algorithm with Fig. 2.

stepO

shift

step 1

shift

step 2
shift j

/r e d u c e shift j

1

shift !
reduce

/
ii
i

^ shift !
X

reduce
\ shift

N . ^ !
ret̂ vjeduce shift j

word 1 wad 2 word 3

Fig. 2 The searching tree

Each path in Fig. 2 corresponds to a possible derivation of a given sentence. The parser
will use the depth-first strategy to traverse the searching tree. But during the searching process,
the parser compares the score of each path accumulated so far with a running threshold C(ai)
(a detailed definition will be given in the following section) at each step i when the next
word is fetched. If the score of the path is less than the running threshold C(ai), it will be
truncated, i.e. blocked, and the next path will be tried. This process continues until we get
the first complete parse tree (i.e. when the whole sentence is reduced to a S node). After
we obtain the first complete parse tree, a lower bound for the scores is acquired. The parser
will continue to traverse other pathes, but from now on, the score o f each path will also be
compared with the final accumulated score o f the first complete parse tree in addition to be
compared with the running threshold. This additional comparison is similar to the branch and
bound strategy employed in many A l applications [Wins 84] and it w ill accelerate the parsing
process further. The whole process is shown in the flow chart in Fig. 3. If the test fails
in either case, this path will be truncated. Continuing in this manner, we may get a second
complete parse tree which has a final score higher than the first one. In this case, we will
replace the lower bound with the final score o f the second parse tree and repeat the whole
process until the end o f the entire searching process.

If all the paths are blocked without arriving at any complete parse tree, we can adopt one
of two possible strategies. First, we could loosen the running thresholds, i.e. lowering the
C(qO, and try the deepest path gone so far again. Second, we can process this sentence in
fail-soft mode. The fail-soft mechanism will skip and discard the current state and attempts
to continue the parsing at some later point

-98- Intemationai Parsing Workshop '89

The effectiveness o f the sequential truncation algorithm depends on the distribution of
scores o f the database and the input sentences. As we can see, for each syntax tree can be
expressed as the product o f a sequence of conditional probability as shown in Eq. 4. Each
term in the product corresponds to a transition between two ’’shift" actions and is evaluated
immediately after a ’’shift". Taking the logarithm on both sides o f Eq. 4, we get the following
equation where X* denotes a sequence o f phrase levels at i-th step and L is the length of the
sentence.

L
log (S C O R E s)l„ (S y n)) = J ^ l o g P { X , (5)

1=1

j
If we define y j = ^ log P (X i \ X i - \) , then yj denotes the accumulated logarithmic score

i= l
up to the j-th word which is also the j-th shift of the sentence.

Suppose we have M sentences with their correct parse trees in the database. For each
parse tree, we can evaluate yj by using the logarithmic score function defined before. So for
the k-th sentence in the database, we obtain a sequence y*, y *, , where y*denotes
the accumulated logarithmic score o f the k-th sentence and L* denotes the length o f the k-th
sentence.

-99- Intemational Parsing Workshop '89

If wc regard each parse tree in the database as a sample point in a probability outcome
space, we may regard Y* as a random variable which maps each parse tree into an accumulated
logarithmic score (note, for a sentence with length L^, it will be associated, with random
variables : Vi, V2,...*£„)• So y*, with k from 1 to M, will be the samples of the random
variable Yi. Since each sentence has its own length, the number of samples in the database
for different random variable Yi will not be the same.

Using the samples in the database, we can draw a histogram for each Yi. We then
approximate each histogram by a continuous density function / y (y) . To allow a fraction
Qi, say 99%, of the best parse trees to pass the test at step i, we can set a constant C(c*i)
such that P { Y X> C (a t)) = a t. For each path, Yj is the random variable of the accumulated
logarithmic score up to the i-th shift, and C(ai) is the running threshold that we will use to
compare with the running accumulated logarithmic score at step i. Those paths with running
accumulated logarithmic score yi less than C(c*i) would be blocked. Using the notation
defined above, the probability of obtaining the desired parse tree for a sentence with length

L k

L* would be Yi a »*
»= i

If we set Zi as the random variable which maps all the possible paths of all the sentences
we want to parse into the accumulated logarithmic score at i-th word, then all the paths,
whether they can reach the final state of the searching tree or not, will have a set of running
accumulated logarithmic scores. Fig. 4 shows the relation between the density function (2)
of running score o f the input text and the density function f y (y) of cumulative score of the
database. In the figure, the dashed lines are the means of the density functions. Since the
step-wise cumulative score in the database is evaluated using the correct parse tree that we
have selected, we would expect that the expectation value of Yi will be greater than that o f Zi,
that is, E[Yi] > E[Zi]; and the variance of Yi is less than that of Zi, that is Var[Yi]<Var[Zi].

means

to be
tancated

Q cc j)
4a. a wcreecase

to be
truncated

Q « i)
4b. a better case

Rg.4 Relationship between the running sccre cf the inpU text
and the cumrnulative score of the database

Let f t denotes F'z (C (cti))y where F'z (z) is the cumulated distribution function o f Zi,
then f t is the probability that a path will be truncated at the i-th step o f the searching tree.
By using this sequential truncation method, the searching space would then be approximately

reduced to (1 - f t) , which is a small portion o f the original searching space generated by a

full path searching algorithm. Therefore the efficiency o f parsing is increased. Since f t in Fig.
4a is less than that in Fig. 4b, which correspond to the situation that has a large expectation

-100- Intematlonal Parsing Workshop ’89

difference (E[Y,]-E[Zi]) and a small variance ratio (Var[Yi]/Var{Zi]), the underlying grammar
that has the property of Fig. 4b would benefit most from this algorithm. In addition, we can
see that if we increase the running threshold C(c*i), we will get a greater fa and a lower aj.

Lk
The parsing efficiency will thus increase, but the probability (i.e. [] a ,) that we will get the

»=i
desired parse tree would decrease. How to select a good C(aO to achieve a desired parsing
success rate would be discussed in the following section.

How to set the running threshold
Using the model given in the last section, the probability that we will get the global

optimal solution, i.e. the parse tree with the largest probability, for a sentence with length L
L

is K l = [] <*„ where K l is a constant pre-selected by the system designer as a compromise

between the parsing time and the post-editing time. Assuming that the average branching
factor for each path at each stage is a constant N, then the average total number of paths
we have to try is :

9 (< * i = N + N * (1 - fa) * N + N * (1 - fix) * N * (1 - h) * N + -
= N * (\ + N * h (a \) + N 2 * h (a i) * h (012) + ...)

/ L—l i \ <*>
= J V * f l + ^ . / V ' * J"I h (a j) 1

In Eq. 6 , in order to minimize the path number, the relation h (a \) < h (0:2) ... < h (a ^)
must holds because h(aj) has a larger coefficient than h(ai+i).

The problem of selecting an appropriate running threshold C(aO is now converted into

one o f minimizing g(ai...a:L) under the constraint of a{ = K l - Taking the logarithm on
1 = 1

L
both sides, we get £ log a t = log K l . Then the Lagrange multiplier A is used to get

1 = 1
L

g* ^ * Y j °9 a «- Taldng the partial derivative o f g* with respects
1=1

to a i...a L , we will get the following equations :

* L
^ - = 0 , - ^ - = 0 , ... = 0 , and ^ l o g a i = log K l (7)
d a \ oa'i , 00LL l=1

There are (L + l) variables, which are a i...aL , and A, and (L + l) equations. So,
can be solved by the numerical method. Since a* is usually very close to 1, we can linearize
the function h(ai) in the region around <**=1 and approximate by h (a ,) % a * a,- + b. In this
way, we can substitute h(aj) in the above equation by a * a* -I- b to simplify the calculation.

During our derivation, we have assumed that the average branching factor at each stage
is a constant N. This constraint can be relaxed by assuming the average branching factor at
i-th stage to be N*. In this way, we will get a more complicated expression for g (a i...aL),
but it can still be solved in the same way.

The running threshold C(o;i) can now be computed off-line by selecting different Kl
for different sentence length L. We will call this set of C (a0 the “static running threshold”,

-101- Intemational Parsing Workshop 89

because once they are computed, they will not be changed during the sentence parsing.
However, if we arrive at a complete parse tree with much higher final accumulated running
score than the final accumulated running threshold, then even if a path can pass all the
accumulated running thresholds it might still be discarded when it is being compared with
the final accumulated running score. So, the running threshold should be adjusted to reflect a
high final accumulated running score. Therefore, it would be better if the running threshold
is changed to C '(ai)=C (ai)+A C (aj), where A C (ai) is set to 7 * (y* — C (a ,)) , where 0< 7 < 1
and y* is the accumulated logarithmic score o f the current best parse tree at the i-th step,
and 7 is a tunning constant pre-selected by the system designer. C'(aj) is then the “dynamic
running threshold”. Using the dynamic running threshold, the efficiency of parsing would
be further improved.

If it so happen that all the pathes are blocked before any complete parse tree is formed,
we can find the deepest path (let us assuming it to be at the j-th step) among the blocked ones
and continue it with a lowered running threshold of C'(aj)=y'] , where y' is the score of this
path at the j-th step. Since the procedure to lower the running threshold is quite complicated
and uses up memory space in run time, it might be better just invoke the fail-soft mechanism
for sentences whose paths are all blocked.

Testing

We completed two preliminary testings of truncation algorithm with special versions of
our English-Chinese MT system and a database o f 1430 sentences.

In the first experiment, the sentence parsing time needed by a charted parser that uses
bottom-up parsing with top-down filtering is compared with the time needed by the same
charted parser with truncation mechanism. From the test, we found that the average sentence
parsing time by the charted parser with truncation is improved by a factor o f four. For some
sentences, the improvement can go as high as a factor o f twenty. This result is encouraging
because minimizing parsing *time is critical to a practical MT system.

Nevertheless, we noted that our output quality has degraded slightly. By this, we mean
that the best selected tree produced by the charted parser with no truncation is not among
the trees produced by the charted parser with truncation. Exploring this problem further, we
discovered that the chart [Wino 83] used during parsing is in conflict with the truncation
mechanism. The reason for having chart is to be able to store all subtrees that were parsed in
previous path traversal. So, when we backtrack to the next path and arrive at the same range
o f inputs, the same subtrees can be used again without reparsing. However, the idea behind
the truncation mechanism is to discard subtree in the context in which it has low probability.
Therefore, if we adopt the truncation mechanism during parsing, not every subtree between a
string o f inputs is successfully constructed and stored into the chart. For example, in Fig. 5,
there are two possible subtrees between b and c when the pathes in the block A are expanded.

-102- Intemational Parsina Workshop '89

Lj R2 c a t ext

Fig. 5 . Chart with truncation mechanism

In Fig. 5, one of the subtrees is discarded and the other is stored into the chart. There are
two reasons why a subtree may be discarded. First, it might be caused by a natural language’s
constraints on the context dependency. Second, a subtree might be discarded because o f its
small running accumulated score (and thus truncated by the truncation mechanism.) Either
will leave us a chart with incomplete subchart. So, this will result in the best possible tree
being missing as a side-effect o f using this chart. For instance, in Fig. 5, the best tree might
be the second subtree with the left context o f L2 and with the right context o f R2 (i.e., its
probability is the highest.) But, since the path expansion starting from the left context o f Li
has the second subtree discarded because its probability under the context o f Li and Ri is
small, the best tree will never be formed. Therefore, with a chart having incomplete subcharts,
the possibility o f obtaining the best tree is determined by the pathes traversed before.

One solution to this incompatibility problem is to mark the sections o f the chart that are
complete. Hence, if an incomplete subchart is encountered again, it will be reparsed. On the
other hand, if a complete set o f chart is encountered, the subtrees can be copied directly from
the chart. Another solution is to suspend the truncation mechanism when a set is being tried
the first time. And if subtrees are copied directly from the chart, the truncation mechanism
resumes its normal function. In this way, it is guaranteed that every subchart in the chart is
complete. Both o f these solutions increase our sentence parsing time as the overhead. This
compromise, however, is unavoidable if the advantages o f using chart are to be maintained.

In the second experiment, we converted the charted parser for the first experiment into
one with sequential searching strategy and without the use o f the chart. Similar sentence
parsing test is conducted for this chartless parser but with a smaller analyses grammar. The
result shows that the total parsing time for this parser with truncation mechanism added is
better than the same parser without truncation by the factor o f three.

From the positive results o f the above two experiments, we have shown the inclusion
o f the sequential truncation algorithm is advantageous for a MT system. In addition, we
have also shown the feasibility o f harmonize the use of chart and the truncation algorithm.
Currently, we are in the process of resolving the incompatibility problem between the chart
and the truncation mechanism and constructing a working system with this solution.

-103- Intemational Parsing Workshop '89

Conclusion
In a natural language processing system, it is important to arrive at a good analysis for a

sentence in a relatively short time. One way to achieve this is to decrease the parsing time
by reducing the searching space. We have proposed a sequential truncation algorithm with
a score function to achieve this goal.

In this sequential truncation strategy, a sequence of running thresholds are used to bound
the searching space during each step of the scored parsing. In addition, a path can also be
blocked by the branch-and-bound mechanism if its accumulated score is lower than that of an
already completed parse tree. There are several reasons for adopting this strategy. First, the
first parse tree with a moderate quality can be found quickly and easily. Second, the running
threshold serves to truncate part of the path that is quite unlikely to lead to the best analysis,
and thus greatly reduces the searching space.

We have made a pilot test on the truncation mechanism with a charted parser that adopts
bottom-up parsing with top-down ‘"tering. With a database of 1430 sentences, the result
indicates an average improvement ir le sentence parsing time by the factor of four (for some
sentences the improvement goes as . gh as a factor of twenty). However, we also discovered
an incompatibility problem between the use of chart and the truncation mechanism. In another
pilot test we conducted on the truncation mechanism, the sentence parsing time is tested for
a chartless parser that adopts sequential parsing strategy. The result shows an improvement
in parsing time by a factor o f three for the inclusion of the truncation mechanism. These
encouraging results demonstrate a great promise for the sequential truncation strategy.

As our current research topic, we shall resolve the incompatibility problem between the
chart and the truncation algorithm and include the solution into our working MT system, the
ARCHTRAN.

References
[Benn 85] Bennett, W.S. and J. Slocum, "The LRC Machine Translation System," Computational

Linguistics, voL 11, No. 2-3, pp. 111-119, ACL, Apr.-Sep. 1985.
[Gars 87] Garside, Roger, Geoffrey Leech and Geoffrey Sampson (eds.), The Computational Analysis

of English : A Corpus-Based Approach, Longman , New York, 1987.
[Marc 80] Marcus, M.P., A Theory of Syntactic Recognition for Natural Language, MIT Press,

Cambridge, MA, 1980.
[Robi 82] Robinson, J.J., "DIAGRAM : A Grammar for Dialogues," CACM, vol. 25, No. 1, pp.

27-47, ACM, Jan. 1982.
[Su 87a] Su, K.-Y., J.-S. Chang, and H.-H. Hsu, "A Powerful Language Processing System for English-

Chinese Machine Translation," Proc. of 1987 Int. Conf. on Chinese and Oriental Language
Computing, pp.260-264, Chicago, Dl, USA, 1987.

[Su 87b] Su, K.-Y., J.-N. Wang, W.-H. Li, and J.-S. Chang, "A New Parsing Strategy in Natural
Language Processing Based on the Truncation Algorithm", Proc. of Natl. Computer Symposium
(NCS), pp. 580-586, Taipei, Taiwan. 1987.

[Su 88a] Su, K.-Y. and J.-S.Chang, "Semantic and Syntactic Aspects of Score Function," Proc.
COLJNG-88, vol. 2, pp. 642-644, 12th Int. Conf. on Comput. Linguistics, Budapest, Hungary,
22-27 Aug. 1988.

[Su 88b] Su, K.-Y., “Principles and Techniques of Natural Language Parsing : A Tutorial,” Proc. of
ROCUNG-I, pp.57-61, Nantou, Taiwan. Oct 1988.

[Wino 83] Wmograd, Terry, Language as a Cognitive Process, Addison-Wesley, Reading, MA., USA,
1983.

[Wins 84] Winston, P.H., Artificial Intelligence, Addison-Wesley, Reading, MA., USA, 1984.

-104- Intemational Parsing Workshop '89

