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Abstract 

The absence of training data is a real prob- 
lem for corpus-based approaches to sense 
disambiguation, one that is unlikely to be 
solved soon. Selectional preference is tra- 
ditionally connected with sense ambigu- 
ity; this paper explores how a statistical 
model of selectional preference, requiring 
neither manual annotation of selection re- 
strictions nor supervised training, can be 
used in sense disambiguation. 

1 I n t r o d u c t i o n  

It has long been observed that selectional con- 
straints and word sense disambiguation are closely 
linked. Indeed, the exemplar for sense disambigua- 
tion in most computational settings (e.g., see Allen's 
(1995) discussion) is Katz and Fodor's (1964) use of 
Boolean selection restrictions to constrain semantic 
interpretation. For example, Mthough burgundy can 
be interpreted as either a color or a beverage, only 
the latter sense is available in the context of Mary 
drank burgundy, because the verb drink specifies the 
selection restriction +LIQUID for its direct objects. 

Problems with this approach arise, however, as 
soon as the domain of interest becomes too large or 
too rich to specify semantic features and selection re- 
strictions accurately by hand. This paper concerns 
the use of selectional constraints for automatic sense 
disambiguation in such broad-coverage settings. The 
approach combines statistical and knowledge-based 
methods, but unlike many recent corpus-based ap- 
proaches to sense disambiguation (¥arowsky, 1993; 
Bruce and Wiebe, 1994; Miller et al., 1994), it 
takes as its starting point the assumption that sense- 
annotated training text is not available. Motivat- 
ing this assumption is not only the limited avail- 
ability of such text at present, but skepticism that 
the situation will change any time soon. In marked 
contrast to annotated training material for part- 
of-speech tagging, (a) there is no coarse-level set 
of sense distinctions widely agreed upon (whereas 
part-of-speech tag sets tend to differ in the details); 

(b) sense annotation has a comparatively high er- 
ror rate (Miller, personal communication, reports an 
upper bound for human annotators of around 90% 
for ambiguous cases, using a non-blind evaluation 
method that may make even this estimate overly 
optimistic); and (c) no fully automatic method pro- 
vides high enough quality output to support the "an- 
notate automatically, correct manually" methodol- 
ogy used to provide high volume annotation by data 
providers like the Penn Treebank project (Marcus et 
al., 1993). 

2 Selectional Preference as 

Statistical Association 

The treatment of selectional preference used here is 
that proposed by Resnik (1993a; 1996), combining 
statistical and knowledge-based methods. The basis 
of the approach is a probabilistic model capturing 
the co-occurrence behavior of predicates and con- 
ceptual classes in the taxonomy. The intuition is il- 
lustrated in Figure 1. The prior distribution PrR(c) 
captures the probability of a class occurring as the 
argument in predicate-argument relation R, regard- 
less of the identity of the predicate. For example, 
given the verb-subject relationship, the prior prob- 
ability for (person) tends to be significantly higher 
than the prior probability for (insect). However, 
once the identity of the predicate is taken into ac- 
count, the probabilities can change -- if the verb is 
buzz, then the probability for ( insect)  Can be ex- 
pected to be higher than its prior, and (person) will 
likely be lower. In probabilistic terms, it is the dif- 
ference between this conditional or posterior distri- 
bution and the prior distribution that determines 
selectional preference. 

Information theory provides an appropriate way 
to quantify the difference between the prior and pos- 
terior distributions, in the form of relative entropy 
(Kullback and Leibler, 1951). The model defines 
the selectional preference strength of a predicate as: • 

SR(p) = D(er(clp)[I Pr(c)) 

= E pr(clp)log Pr(clp) 
Pr(c) " 
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Figure I: Prior and posterior distributions over argument classes. 

Intuitively, SR(p) measures how much information, 
in bits, predicate p provides about the conceptual 
class of its argument. The better Pr(c) approximates 
Pr(cip), the leas influence p is having on its argu- 
ment, and therefore the less strong its selectional 
preference. 

Given this definition, a natural way to character- 
ize the "semantic fit" of a particular class as the 
argument to a predicate is by its relative contribu- 
tion to the overall selectional preference strength. In 
particular, classes that fit very well can be expected 
to have higher posterior probabilities, compared to 
their priors, as is the case for (insect) in Figure 1. 
Formally, selectional association is defined as: 

Am(p, c) -- 1 Pr(c[p) 
Pr(c[p) log Pr(c) " 

This model of selectional preference has turned 
out to make reasonable predictions about human 
judgments of argument plausibility obtained by psy- 
cholinguistic methods (Resnik, 1993a). Closely re- 
lated proposals have been applied in syntactic dis- 
ambiguation (Resnik, 1993b; Lauer, 1994) and to 
automatic acquisition of more KatzFodoresque se- 
lection restrictions in the form of weighted disjunc- 
tions (Ribas, 1994). The selectional association has 
also been used recently to explore apparent cases of 
syntactic optionality (Paola Merlo, personal commu- 
nication). 

3 Estimation Issues 
If taxonomic classes were labeled explicitly in a 
training corpus, estimation of probabilities in the 
model would be fairly straightforward. But since 
text corpora contain words, not classes, it is neces- 
sary to treat each occurrence of a word in an ar- 
gument position as if it might represent any of the 
conceptual classes to which it belongs, and assign 
frequency counts accordingly. At present, this is 
done by distributing the "credit" for an observa- 
tion uniformly across all the conceptual classes con- 
taining an observed argument. Formally, given a 
predicate-argument relationship R (for example, the 
verb-object relationship), a predicate p, and a con- 
ceptual class c, 

~'~ count•(p, w) freqR(p,c) ~ ~ ~ ' 
tvEc 

where countR(p, w) is the number of times word w 
was observed as the argument of p with respect to 
R, and classes(w) is the number of taxonomic classes 
to which w belongs. Given the frequencies, proba- 
bilities are currently estimated using maximum like- 
lihood; the use of word classes is itself a form of 
smoothing (cf. Pereira et al. (1993)). I 

This estimation method is similar to that used by 
Yarowsky (1992) for Roget's thesaurus categories, 
and works for similar reasons. As an example, con- 
sider two instances of the verb-object relationship in 
a training corpus, drink coffee and drink wine. Cof- 
fee has 2 senses in the WordNet 1.4 noun taxonomy, 
and belongs to 13 classes in all, and wine has 2 senses 
and belongs to a total of 16 classes. This means 
that  the observed countverb_obj(drink , coffee) = 1 
will be distributed by adding 1-~ to the joint fre- 
quency with drink for each of the 13 classes con- 
taining coffee. Similarly, the joint frequency with 
drink will be incremented by ~ for each of the 16 
classes containing wine. Crucially, although each of 
the two words is ambiguous, only those taxonomic 
classes containing both words - -  e.g., (beverage) - -  
receive credit for both observed instances. In gen- 
eral, because different words are ambiguous in dif- 
ferent ways, credit tends to accumulate in the tax- 
onomy only in those classes for which there is real 
evidence of co-occurrence; the rest tends to disperse 
unsystematically, resulting primarily in noise. Thus, 
despite the absence of class annotation in the train- 
ing text, it is still possible to arrive at a usable esti- 
mate of class-based probabilities. 

4 An Unsupervised Method for 
Sense Disambiguation 

Table 1 presents a selected sample of Resnik's 
(1993a) comparison with argument plausibility judg- 
ments made by human subjects. What is most in- 
teresting here is the way in which strongly selecting 

1Word w is typically the head of a noun phrase, which 
could lead the model astray - -  for example, toy sol- 
diers behave differently from soldiers (McCawley, 1968). 
In principle, addressing this issue requires that noun 
phrases be mapped to taxonomic classes based on their 
compositional interpretation; however, such complica- 
tions rarely axise in practice. 
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Verb I Object [ A(Verb, Object) Class 
write letter 7.26 /irrit ingl 
read article 6.80 ~writing~ 
warn driver 4.73 (person) 
hear story 1.89 (communication) 
remember reply 1.31 (statement) 
expect visit 0.59 (act) 

Table I: Selectional ratings for plausible objects 

verbs "choose" the sense of their arguments. For ex- 
ample, letter has 3 senses in WordNet, 2 and belongs 
to 19 classes in all. In order to approximate its plau- 
sibility as the object of wrfle, the selectional associa- 
tion with wrote was computed for all I9 classes, and 
the highest value returned ~ in this case, (writing) 
("anything expressed in letters; reading matter").  
Since only one sense of letter has this class as an an- 
cestor, this method of determining argument plausi- 
bility has, in essence, performed sense disambigua- 
tion as a side effect. 

This observation suggests the following simple al- 
gorithm for disambignation by selectional prefer- 
ence. Let n be a noun that  stands in relationship 
R to predicate p, and let {sl, ..., st} be its possible 
senses. For i from 1 to h, compute: 

C, = {c lc  is an ancestor ofsi} 

as = max AR(p,c) 
cEC~ 

and assign as as the score for sense st. The simplest 
way to use the resulting scores, following Miller et 
al. (1994), is as follows: if n has only one sense, 
select it; otherwise select the sense st for which at is 
greatest, breaking ties by random choice. 

5 E v a l u a t i o n  

Task and materials. Test and training materials 
were derived from the Brown corpus of American 
English, all of which has been parsed and manually 
verified by the Penn T~eebank project (Marcus et 
al., 1993) and parts of which have been manually 
sense-tagged by the WordNet group (Miller et al., 
1993). A parsed, sense-tagged corpus was obtained 
by mergingthe WordNet sense-tagged corpus (ap- 
proximately 200,000 words of source text from the 
Brown corpus, distributed across genres) with the 
corresponding Penn Treebank parses, a The rest of 
the Brown corpus (approximately 800,000 words of 
source text) remained as a parsed, but not sense- 
tagged, training set. 

3(1) Written message, (2) varsity letter, (3) alpha- 
betic character. 

3The merge was mostly automatic, requiring manual 
intervention for only 3 of 103 files. 

The test set for the verb-object relationship was 
constructed by first training a selectional preference 
model on the training corpus, using the T~eebank's 
tgrep utility to extract verb-object pairs from parse 
trees. The 100 verbs that select most strongly for 
their objects were identified, excluding verbs appear- 
ing only once in the training corpus; test instances of 
the form (verb, object, correct sense) were then ex- 
tracted from the merged test corpus, including all 
triples where verb was one of the 100 test verbs. 4 

Evaluation materials were obtained in the same 
manner for several other surface syntactic reia- 
tionships, including verb-subject (John ~ admires), 
adjective-noun (tall =~ building), modifier-head 
(river =~ bank), and head-modifier (river ~= bank). 

Base l ine .  Following Miller et al. (1994), disam- 
biguation by random choice was used as a baseline: 
if a noun has one sense, use it; otherwise select at 
random among its senses. 

Resu l t s .  Since both the algorithm and the base- 
line may involve random choices, evaluation involved 
multiple runs with different random seeds. Table 2 
summarizes the results, taken over I0 runs, consid- 
ering only ambiguous test cases. All differences be- 
tween the means for algorithm and baseline were sta- 
tistically significant. 

Discussion. The results of the experiment show 
that disambignation using automatically acquired 
selectional constraints leads to performance signifi- 
cantly better than random choice. Not surprisingly, 
though, the results are far from what one might ex- 
pect to obtain with supervised training. In that re- 
spect, the most direct point of comparison is the per- 
formance of Miller et al.'s (1994) frequency heuristic 

always choose the most frequent sense of a word 
as evaluated using the full sense-tagged corpus, 

including nouns, verbs, adjectives, and adverbs. For 
ambiguous words, they report 58.2% correct, as com- 
pared to a random baseline of 26.8%. 

Crucially, however, the frequency heuristic re- 
quires sense-tagged training data (Miller et al. eval- 
uated via cross-validation), and this paper starts 
from the assumption that such data are unavail- 
able. A fairer comparison, therefore, considers al- 

4 Excluded were some inapplicable cases, e.g. where 
object was a proper noun tagged as (person). 
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Relationship 

verb-object 

verb-subject 

head-modifier 

modifier-head 

adjective-noun 

% Correct 
mean o" I min max 

(baseline) 28.5 5 .91  18.0 35.0 
(sel. pref.) 44.3 4.90 36.0 51.0 
(baseline) 29.1 5.23 20.0 38.0 
(sel. pref.) 40.8 2.86 36.0 44.0 
(baseline) 32.8 7.00 23.0 JJ.0 
(sel. pref.) 40.2 5.99 33.0 51.0 
(baseline) 30.8 6.25 24.0 JO.O 
sel. pref.) 39.9 2.60 35.0 43.0 
baseline) 29.1 8.40 16.0 38.0 

(sel. pref.) 35.3 3.95 31.0 40.0 

Table 2: Experimental results 

ternative unsupervised a l g o r i t h m s -  though unfor- 
tunately the literature contains more proposed algo- 
rithms than quantitative evaluations of those algo- 
rithms. One experiment where results were reported 
was conducted by Cowie et al. (1992); their method 
involved using a stochastic search procedure to max- 
imize the overlap in dictionary definitions (LDOCE) 
for alternative senses of words co-occurring in a sen- 
tence. They report an accuracy of 72% for dis- 
ambiguation to the homograph level, and 47% for 
disambiguation to the sense level. Since the task 
here involved WordNet sense distinctions, which are 
rather fine grained, the latter value is more appro- 
priate for comparison. Their experiment was more 
general in that  they did not restrict themselves to 
nouns; on the other hand, their test set involved dis- 
ambiguating words taken from full sentences, so the 
percentage correct may have been improved by the 
presence of unambiguous words. 

Sussna (1993) has also looked at unsupervised dis- 
ambiguation of nouns using WordNet. Like Cowie 
et al., his algorithm optimizes a measure of semantic 
coherence over an entire sentence, in this case pair- 
wise semantic distance between nouns in the sen- 
tence as measured using the noun taxonomy. Com- 
parison of results is somewhat difficult, however, for 
two reasons. First, Sussna used an earlier version of 
WordNet (version 1.2) having a significantly smaller 
noun taxonomy (35K nodes vs. 49K nodes). Sec- 
ond, and more significant, in creating the test data, 
Sussna's human sense-taggers (tagging articles from 
the Time IR test collection) were permitted to tag a 
noun with as many senses as they felt were "good," 
rather than making a forced choice; Sussna develops 
a scoring metric based on that fact rather than re- 
quiring exact matches to a single best sense. This 
is quite a reasonable move (see discussion below), 
but unfortunately not an option in the present ex- 
periment. Nonetheless, some comparison is possible, 
since he reports a "% correct," apparently treating 
a sense assignment as correct if any of the "good" 
senses is chosen - -  his experiments have a lower 

bound (chance) of about 40% correct, with his algo- 
rithm performing at 53-55%, considering only am- 
biguous cases. 

The best results reported for an unsupervised 
sense disambiguation method are those of Yarowsky 
(1992), who uses evidence from a wider context (a 
window of 100 surrounding words) to build up a 
co-occurrence model using classes from Roget's the- 
saurus. He reports accuracy figures in the 72-99% 
range (mean 92%) in disambiguating test instances 
involving twelve "interesting" polysemons words. As 
in the experiments by Cowie et al., the choice of 
coarser distinctions presumably accounts in part for 
the high accuracy. By way of comparison, some 
words in Yarowsky's test set would require choos- 
ing among ten senses in WordNet, as compared to 
a maximum of six using the Roget's thesaurus cat- 
egories; the mean level of polysemy for the tested 
words is a six-way distinction in WordNet as com- 
pared to a three-way distinction in Roget's the- 
saurus. 

As an aside, a rich taxonomy like WordNet per- 
mits a more continuous view of the sense vs. ho- 
mograph distinction. For example, town has three 
senses in WordNet, corresponding to an administra- 
tive district, a geographical area, and a group of peo- 
ple. Given town as the object of leave, selectional 
preference will produce a tie between the first two 
senses, since both inherit their score from a com- 
mon ancestor, (location). In effect, the automatic 
selection of a class higher in the taxonomy as hav- 
ing the highest score provides the same coarse cate- 
gory that might be provided by a homograph/sense 
distinction in another setting. The choice of coarser 
category varies dynamically with the context: as the 
argument in rural town, the same two senses still tie, 
but with (region) (a subclass of (location)) as the 
common ancestor that determines the score. 

In other work, Yarowsky (1993) has shown that 
local collocational information, including selectional 
constraints, can be used to great effect in sense dis- 
ambiguation, though his algorithm requires super- 
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vised training. The present work can be viewed as 
an attempt to take advantage of the same kind of 
information, but in an unsupervised setting. 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

Although the definition of selectional preference 
strength is motivated by the use of relative en- 
tropy in information theory, selectional association 
is not; the approach would benefit from experimen- 
tation with alternative statistical association mea- 
sures, particularly a comparison with simple mutual 
information and with the likelihood ratio. Combin- 
ing information about selectional preference could 
also be helpful, e.g., where a noun is both the object 
of a verb and modified by an adjective, though such 
cases are rarer than one might expect. 

More important is information beyond selectional 
preference, notably the wider context utilized by 
Yarowsky (1992). Performance of the method ex- 
plored here is limited at present, though not sur- 
prisingly so when taken in the context of previous 
attempts at unsupervised disambiguation using fine- 
grained senses. One main message to take away 
from this experiment is the observation that, al- 
though selectional preferences are widely viewed as 
an important factor in disambiguation, their practi- 
cal broad-coverage application appears limited - -  at 
least when disambiguating nouns - -  because many 
verbs and modifiers simply do not select strongly 
enough to make a significant difference. They may 
provide s o m e  evidence, but most likely only as a 
complement to other sources of information such as 
frequency-based priors, topical context, and the like. 

A c k n o w l e d g e m e n t s  

Much of this work was conducted at Sun Microsys- 
tems Laboratories in Chelmsford, Massachusetts. 

56 



[] 

mm 

m 

n 

m 

m 

mm 

mm 

m 

m 

m 

m 

mm 

m 

m 

m 

m 

m 

m 

m 

m 

m 

m 

R e f e r e n c e s  

James Allen. 1995. Natural Language Understand- 
ing. The Benjamin/Cummings Publishing Com- 
pany. 

Rebecca Bruce and Janyce Wiebe. 1994. Word- 
sense disambiguation using decomposable mod- 
els. In Proceedings of the 32nd Annual Conference 
of the Association for Computational Linguistics, 
Las Cruces, New Mexico, June. 

Jim Cowie, Joe Guthrie, and Louise Guthrie. 1992. 
Lexical disambiguation using simulated anneal- 
ing. In Proceedings of the 14th International Con- 
terence on Computational Linguistics (COLING- 
g2), pages 359-365, Nantes, France, August. 

J. J. Katz and J. A. Fodor. 1964. The structure of 
a semantic theory. In J. A. Fodor and J. J. Katz, 
editors, The Structure of Language, chapter 19, 
pages 479-518. Prentice Hall. 

S. Kullback and R. A. Leibler. 1951. On information 
and sufficiency. Annals of Mathematical Statis- 
tics, 22:79-86. 

Mark Laner. 1994. Conceptual association for com- 
pound noun analysis. In Proceedings of the 32nd 
Annual Meeting of the Association for Computa- 
tional Linguistics, Las Cruces, New Mexico, June. 
Student Session. 

Mitchell P. Marcus, Beatrice Santorini, and Mary 
Ann Marcinkiewicz. 1993. Building a large an- 
notated corpus of English: the Penn Treebank. 
Computational Linguistics, 19:313-330. 

James McCawley. 1968. The role of semantics in a 
grammar. In Emmon Bach and Robert Harms, 
editors, Universals in Linguistic Theory, pages 
124-169. Holt, Rinehart and Winston. 

George Miller, Claudia Leacock, Randee Tengi, and 
Ross Bunker. 1993. A semantic concordance. In 
ARPA Workshop on Human Language Technol- 
ogy. Morgan Kanfmann, March. 

George Miller, Martin Chodorow, Shari Landes, 
Claudia Leacock, and Robert Thomas. 1994. Us- 
ing a semantic concordance for sense identifica- 
tion. In ARPA Workshop on human Language 
Technology, Plainsboro, N J, March. 

Fernando Pereira, Naftali Tishby, and Lillian Lee. 
1993. Distributional clustering of English words. 
In Proceedings of the 3Ist Annual Meeting of the 
Association for Computational Linguistics (A CL- 
93), Morristown, New Jersey, June. Association 
for Computational Linguistics. 

Philip Resnik. 1993a. Selection and Information: 
A Class-Based, Approach to Lexical Relationships. 
Ph.D. thesis, University of Pennsylvania, Decem- 
ber. 

Philip Resnik. 1993b. Semantic classes and syntac- 
tic ambiguity. In Proceedings of the 1993 ARPA 
Human Language Technology Workshop. Morgan 
Kanfmann, March. 

Philip Resnik. 1996. Selectional constraints: An 
information-theoretic model and its computa- 
tional realization. Cognition, 61:127-159. 

Francesc Ribas. 1994. An experiment on learning 
appropriate selectional restrictions from a parsed 
corpus. In Proceedings of COLING 1994. 

Michael Sussna. 1993. Word sense disambiguation 
for free-text indexing using a massive semantic 
network. In Proceedings of the Second Interna- 
tional Conference on Information and Knowledge 
Management (CIKM-93), Arlington, Virginia. 

David Yarowsky. 1992. Word-sense disambigua- 
tion using statistical models of Roger's cate- 
gories trained on large corpora. In Proceedings of 
the 1Jth International Conference on Computa- 
tional Linguistics (COLING-92), pages 454-460, 
Nantes, France, July. 

David Yarowsky. 1993. One sense per collocation. 
ARPA Workshop on Human Language Technol- 
ogy, March. Princeton. 

57 


