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Abstract.  This paper proposes a method to automatically classify texts from different 
varieties of the same language. We show that similarity measure is a robust tool for 
studying comparable corpora of language variations. We take LDC’s Chinese Gigaword 
Corpus composed of three varieties of Chinese from Mainland China, Singapore, and 
Taiwan, as the comparable corpora. Top-bag-of-word similarity measures reflect distances 
among the three varieties of the same language. A Top-bag-of-word similarity based 
contrastive approach was taken to solve the text source classification problem. Our results 
show that a contrastive approach using similarity to rule out identity of source and to arrive 
actual source by inference is more robust that directly confirmation of source by similarity. 
We show that this approach is robust when applied to other texts. 
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1. Introduction 
Comparable corpora are corpora which select similar texts in more than one language or 
language variety1. These texts are typically gathered during the same time period. Comparable 
corpora are different from parallel corpora are widely used as resources for statistical machine 
translation, bilingual lexicons. Comparable corpora overcome the scarcity and limitations of 
parallel corpora, since sources for original, monolingual texts are much more abundant 
(Barzilay and Elhadad, 2003; Munteanu et al., 2004; Shao and Ng, 2004; Talvensaari et al., 
2007).  

The degree and nature of lexical similarity and contrast among Mandarin Chinese used in 
different Chinese speaking societies were widely observed but not thoroughly studied due to the 
lack of comparable corpora. Recently, LDC’s Chinese Gigaword (2003)contains three sets of 
monolingual corpora selected according to the same set of criteria but in different language 
varieties from China, Singapore and Taiwan. We will explore it as a comparable corpus for 
variations of Chinese in this paper. In particular, we propose a measure of top-bag-of-word 
similarity for comparing the language variants contained in Chinese GigaWord corpus. Texts 
from the same period of time from Central News Agency (Taiwan), Xinhua News Agency (PRC) 
and Lianhe Zaobao (Singapore) are extracted and compared in our study. By comparing these 
three varieties of Mandarin Chinese, we hope to find the language significant lexical contrasts 
and meaning variations. We also propose a constrative approach towards automatic text source 
classification based on co-occurence similarity measures with documents from the same time 
period of Chinese Gigaword. Experimental resultes indicated that our proposed constrastive 
approach is reliable and robust. 

The rest of this paper is organized as follows. Section 2 investigates related literature in word 
similarity measures in comparable corpus and a brief introduction to Chinese Gigaword. Section 
3 describe the text source classification based on co-occurence similarity. Section 4 presnts 
experimental results and further discussion. Finally, Section 5 concludes this study.  

                                                           
1  Definition of comparable corpus according to EAGLES report, accessed at 
http://www.ilc.cnr.it/EAGLES/corpustyp/node21.html
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2. Literature Review 
2.1 Word Similarity Measures in Comparable Corpus 
A comparable corpus is one which gathered the similar texts in more than one language or 
language variety from the same time periods. Comparable corpora were widely used in 
researches issues consist of machine translation, natural language processing and cross language 
information retrieval. Fung and Yee (1998) used a comparable-corpus-based approach to 
estimate the similarity between a word and its translation candidates. Fung and Cheung (2004) 
used multi-level bootstrapping to iteratively improve alignment for extracting parallel sentences 
from a quasi-comparable corpus. Cheng et al. (2004) mined bilingual search results obtained 
from search engines to translate unknown query terms. Their approach was with Web corpora 
that can alleviate the problem of the lack of large bilingual corpora and benefit cross-language 
Web search.  

Barzilay and Elhadad (2003) focused on monolingual comparable corpus, i.e. texts in the same 
language to address the task of sentence alignment. They found that context plays an important 
role to combine with a sentence similarity measure. Shao and Ng (2004) proposed a method by 
combining both context and transliteration information for the task of mining new word 
translations. They translated Chinese Words into English and tested it on Chinese and English 
Gigaword. Munteanu et al. (2004) improved machine translation performance via parallel 
sentence extraction from comparable corpora that consist of two large monolingual news texts 
in English and Arabic. Talvensaari et al. (2007) used Relative Average Term Frequency (RATF) 
valve to create a comparable corpus from articles by a Swedish news agency and a U.S. 
newspaper.  

Chen and You (2002) proposed using only syntactic related co-occurrences as context vectors 
and adopted information theoretic methods for measuring word similarity to solve the problem 
of data sparseness and characteristic precision. Gao et al. (2002) extended the basic co-
occurrence model by adding a decaying factor that decreases the mutual information when the 
distance between the terms increases. The experimental results also indicated that their proposed 
triple translation model brings further improvements than word-by-word translation. Weeds and 
Weir (2005) proposed a flexible framework called as co-occurrence retrieval for lexical 
distributional similarity. Zheng et al. (2007) presented a novel word co-occurrence model based 
on an ontology representation of word sense and its related applications.  

 
2.2 Introduction to Chinese Gigaword 
Automatic annotation is remains a challenging task in Chinese language processing.  For 
instance, ACL SigHan has hosted four bakeoff competition for segmentation, but none for POS 
tagging. There is only a handful of POS tagging systems and automatic taggers which are 
widely accepted and accessible. In Taiwan, Academia Sinica’s CKIP tagset has been considered 
the standard and has been used in annotating the Sinica Corpus (CKIP, 1995/1998), which were 
first annotated in 2006 and contains roughly 10 million words in the latest version (2007). In 
PRC, the Institute of Computational Linguistics (ICL)’s tagset has been considered the de facto 
standard and is widely available through the POS tagged People’s Daily Corpus (Yu et al., 2002; 
2003). However, an even greater challenge occurs with the new demand of very large corpora 
and the availability of the untagged LDC Gigaword Corpus. 

The Chinese Gigaword Corpus (CGW) released in 2003 by Linguistic Data Consortium 
(LDC). It contains about 1.12 billion Chinese characters, including 735 million characters from 
Taiwan’s Central News Agency (CNA) from 1991 to 2002, and 380 million characters from 
Mainland China’s Xinhua News Agency (XIN) from 1990 to 2002. CNA uses the complex 
character form and XIN uses the simplified character form. CGW has three major advantages 
for the corpus-based Chinese linguistic research: (1) It is large enough to reflect the real written 
language usage in either Taiwan or Mainland China. (2) All text data are presented in a SGML 
form, using a markup structure to provide each document with rich metadata for further 
inspecting. (3) CGW is appropriate for the comparison of the Chinese usage between Taiwan 
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and Mainland China, because it provides the same newswire text type, and these news texts 
were almost published during the overlapping time period. 

LDC’s Chinese Gigaword Corpus currently has a segmented and tagged version available 
(Huang, 2007). This version adopts the CKIP tagset and enhanced Sinica Word Segmenter (Ma 
and Chen, 2005) to segment the corpus into the words. And they utilized HMM method for POS 
tagging and morpheme-analysis-based method (Tseng and Chen, 2002) to predict POSs for new 
words. The annotated Chinese Gigaword Corpus was also performed automatically with 
automatic and partially manual post-checking (Ma and Huang, 2006). The precision accuracy is 
estimated to be over 95% for Central New Agency part of data from Taiwan. Quality assurance 
of automatic annotation of Chinese Gigaword Corpus based on heterogeneous tagging system is 
also proposed to improve the precision accuracy (Huang et al., 2008).   

3. Text Source Classification based on Top-bag-of-word similarity 
3.1 Top-bag-of-word similarity Measures  
Although there is as yet no agreement on the nature of the similarity of comparable corpora, 
there were several attempts to use comparable corpora for making similarity measures. In these 
attempts, top-bag-of-word similarity metric was widely used because it is simple and efficient 
(Gao et al., 2002; Chen and You, 2002; Cheng et al. 2004; Fung and Cheung, 2004; Weeds and 
Weir, 2005; Zheng et al, 2007).  

In our approach, the corpus is firstly represented as “bags of words” (Baeza-Yates and 
Ribeiro-Neto, 1999, Manning and Schutze, 1999). The top frequency word types (Weeds and 
Weir, 2005) are continuously selected as the main features for comparing the language variants. 
Once the corpus is reformatted as top bags of words, their similarity metric is defined in 
equation 1: 

 
Sim (Ci, Cj) = Co-Num (Ci, Cj)  /  Num (Cj)            (1) 

 
Where Sim(Ci, Cj) denotes the similarity between corpus i and corpus j; Num(Cj) denotes the 

number of representative words of corpus j; and Co-Num(Ci, Cj) denotes the number of word 
types which occurr in both corpus i and j. Obviously, the similarity between a corpus and itself, 
as well as another corpus which contains exactly the same word types, is 1and the similarity is 0 
if there are two corpus i and j have not common word types. 
 
3.2 Text Source Classification 
We further formulate the similarity matrix and determined intervals for text categorization. 
Table 1 shows a similarity matrix based on the definition of our top-bag-of-word similarity 
measures in comparable corpus of three kinds of language variations: C1, C2 and C3. The 
similarity of corpus itself i.e. Sim (C1, C1), Sim (C2, C2) and Sim (C3, C3) is 1. Sim (Ci, Cj) is 
equal to Sim (Cj, Ci), that is because of the corpus is reformatted as the same size of top bags of 
words based on this common word type measure. Assuming the similarity of Corpus C1 and C2 
is a, similarity of Corpus C2 and C3 is b and similarity of Corpus C2 and C3 is c. 
 
Table 1: A top-bag-of-word similarity matrix of C1, C2 and C3. 
 

  C1 C2 C3

C1 1 a c 
C2 a 1 b 
C3 c b 1 

 
As this similarity formulation, 1 means that two corpora have the same representing word types. 
Oppositely, 0 means the no representing word type co-occurs in these two corpora. If the 
similarity, a, is larger than c, it means C2 is more close to C1 than C3.  Our hypothesis is that if 
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C1 is applied as a baseline for classifying corpus sources, the text of document belongs to C1 
when its similarity falls into the interval [a, 1]; the text of document belongs to C2 when its 
similarity falls into the interval [c, a]; if similarity fall into the interval [0, c], the source of 
document is classified as C3. The classification process will adopt similar heuristics to generate 
determined intervals when C1, C2 and C3 are applied as a classification baseline individually. 
Different from individual corpus based classification, we further use a contrastive elimination 
algorithm that simple majority voting mechanism is employed for determining the final 
classification results. For example, if C2 receives two votes and C3 receives only one vote, so C2 
wins as the final classified results. 

4. Evaluation 
4.1 Data Source 
In order to compare the use of Chinese, the same time period of tagged Chinese Gigaword 
(Huang, 2007) is selected as comparable corpus. Three parts of resource is consisting of 
Taiwan’s Central News Agency (CNA), Mainland China’s Xinhua News Agency (XIN) and 
Singapore’s Lianhe Zaobao (ZBN). The same time period is October to November in 2000, 
January 2001 and April to September in 2003. Table 2 shows the document size of these 
comparable corpora. 
 
Table 2: Number of Document in data source 
 

  # of Doc. 
in CNA 

# of Doc. 
in XIN  

# of Doc. 
in ZBN 

200010 13,010 6,198 2,091 
200011 13,123 5,694 2,060 
200012 12,736 5,990 1,991 
200101 11,518 5,565 1,972 
200304 1,028 7,156 5,189 
200305 934 6,202 5,897 
200306 735 5,786 5,531 
200307 787 6,613 5,637 
200308 669 5,060 5,478 
200309 361 6,461 5,572 

 
In Table 2, it’ not difficult to find the document size is significant difference. The size of CNA in 
2003 is obviously smaller than that in 2001 and meanwhile smaller than the other two sources, 
XIN and ZBN. Since the document size is so different, we further analyzed the number of 
distinct word types in these comparable corpora.  
 

We adopted the CKIP tagset and enhanced Sinica Word Segmenter (Ma & Chen, 2005) to 
segment the corpus into the words. By these analyzed results shown in Table 3, we finally 
decided to use the top 5 thousands distinct word types for representing every comparable corpus 
individually. And we randomly selected a half of the same time period i.e. 200010, 200012, 
200304, 200306 and 200308 from three different sources as training data sets and the remaining 
parts of these corpora as testing data sets for applying similarity measure to text categorization, 
that is to say that the documents of testing data sets would be blind predicated into only one of 
CNA, XIN and ZBN. 
 
 
4.2 Experimental Results 
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Table 4 shows the co-occurrences similarity of CNA, XIN and ZBN. It is clear that all 
similarities of these three trained corpora is larger than 0.6 regardless of different sources. The 
main reason for high similarity is because all documents from Chinese Gigaword with the same 
time period and similar topics of documents. When we finished calculating this similarity matrix, 
determined intervals were generated according to our assumptive heuristics.  
 
Table 4: A top-bag-of-word similarity matrix of CNA, XIN and ZBN 
 

  CNA XIN  ZBN 
CNA 1 0.6068 0.6276 
XIN 0.6068 1 0.6814 
ZBN 0.6276 0.6814 1 

 
Table 5 shows the experimental results of classifying text sources in testing data sets. In 
individual source based classification, there is an agreement on classified results excluding 
CNA based classification. In CNA based classification column, “*” notation denoted incorrect 
classification results. All incorrect files were classified as XIN by CNA based classification, 
which is because of the lower top- bag-of-word similarity resulting from variant words for 
describing topics. Note that although document sizes of comparable corpora vary greatly, they 
do not distort the expected result from similarity measurement comparison. Hence we are 
assured of the robustness of the top-bag-of-word similarity measure regardless of corpus size 
variations. 
 
Table 5: Experimental results of text source classification in Chinese Gigaword 
 

  CNA Based 
Classification 

XIN Based 
Classification  

ZBN Based 
Classification 

Majority 
Voting  

cna_200010 0.9294 (C) 0.5974 (C) 0.6174 (C) C 
cna_200012 0.9246 (C) 0.594 (C) 0.6142 (C) C 
cna_200304 0.4322 (X)* 0.3544 (C) 0.3538 (C) C (C:2 , X:1) 
cna_200306 0.407 (X)* 0.3296 (C) 0.3344 (C) C (C:2 , X:1) 
cna_200308 0.4124 (X)* 0.326 (C) 0.3302 (C) C (C:2 , X:1) 
xin_200010 0.576 (X) 0.8658 (X) 0.6458 (X) X 
xin_200012 0.5828 (X) 0.8632 (X) 0.648 (X) X 
xin_200304 0.5946 (X) 0.8506 (X) 0.6744 (X) X 
xin_200306 0.5898 (X) 0.8626 (X) 0.659 (X) X 
xin_200308 0.5842 (X) 0.8452 (X) 0.6576 (X) X 
zbn_200010 0.6216 (Z) 0.6742 (Z) 0.8138 (Z) Z 
zbn_200012 0.6214 (Z) 0.6626 (Z) 0.802 (Z) Z 
zbn_200304 0.5876 (X)* 0.646 (Z) 0.8704 (Z) Z (Z:2, X:1) 
zbn_200306 0.5982 (X)* 0.648 (Z) 0.8908 (Z) Z (Z:2, X:1) 
zbn_200308 0.5956 (X)* 0.6428 (Z) 0.885 (Z) Z (Z:2, X:1) 

 
The characters of our proposed contrastive elimination algorithm that simple majority voting 
mechanism is employed for determining the final classification results are combined with 
similarity and dissimilarity measures from the suspected text sources. For example, the testing 
file “cna_200304”, if only applied similarity measure from the same text source, that’s to say, 
just CNA based classification was applied, experimental results indicated that this file will be 
classified as wrong text source XIN. Further analysis found that although the same time period 
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of news text from PRC, Taiwan and Singapore were selected as parts of Chinese Gigaword. 
There are still existing greatly differentiated topics. The contents of selected documents in CNA 
corpus consisted of many weather reports.  But if we involved dissimilarity measures from the 
other sources and majority voting mechanism was adjusted final decision, we can get the 
accurate prediction. It was proven that our proposed method will be reliable for variant words to 
describe different topics. We are also assured of the robustness of our contrastive elimination 
algorithm regardless of corpus topic variations. 

5. Conclusion and Future Work 
We propose a top-bag-of-word similarity measures for classifying texts from different variants 
of the same language. We take LDC’s Chinese Gigaword Corpus composed of three varieties of 
Chinese from Mainland China, Singapore, and Taiwan, as the comparable corpora. Top-bag-of-
word similarity measures are shown reflect distances among the three varieties of the same 
language. Our results show that proposed contrastive approach using similarity to rule out 
identity of source and to arrive actual source by inference is more robust that directly 
confirmation of source by similarity. And the document size does not influence the prediction. 
This robust result is notable given the similarity and almost very high degree of mutual 
intelligibility among these variants.  

Ongoing work is focusing on verifying the robustness of the top-bag-of-word similarity 
measure on outside data and with data from more than three different sources since study is an 
empirical research in Chinese Gigaword corpus. Other similarity measures for comparable 
corpus study are also being investigated. 
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