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Abstract 

This paper presents a novel method using 

graph-based semi-supervised learning (SSL) 

to improve the syntax parsing of unknown 

words. Different from conventional 

approaches that uses hand-crafted rules, rich 

morphological features, or a character-based 

model to handle unknown words, this method 

is based on a graph-based label propagation 

technique. It gives greater improvement on 

grammars trained on a smaller amount of 

labeled data and a large amount of unlabeled 

one. A transductiv
1
 graph-based SSL method

is employed to propagate POS and derive the 

emission distributions from labeled data to 

unlabeled one. The derived distributions are 

incorporated into the parsing process. The 

proposed method effectively augments the 

original supervised parsing model by 

contributing 2.28% and 1.72% absolute 

improvement on the accuracy of POS tagging 

and syntax parsing for Penn Chinese 

Treebank respectively. 

1 Introduction 

Parsing is an important and fundamental task in 

natural language processing. In the past years, 

many researches focusing on building high 

quality parsers for English (Charniak, 2000; 

Collins, 2003; Charniak and Johnson, 2005; 

Petrov et al., 2006) and these parsers obtain the 

state-of-the-art performance up to 92% accuracy. 

1Transductive learning is used to contrast inductive learning. 

A learner is transductive if it only works on the labeled and 

unlabeled training data, and cannot handle unseen data. 

Recently, Chinese parsing has received more and 

more attention, and several researchers attempt to 

develop accurate parsers for Chinese (Klein and 

Manning, 2003; Charniak and Johnson, 2005; 

Petrov and Klein, 2007). Inspired from their 

works, Huang et al., (2012) design a head 

propagation table to improve the parsing 

performance with a factored model. Nevertheless, 

as pointed out in (Harper and Huang, 2009), the 

improved performance around 84% F-measure 

that still falls far short of performance on English. 

This leaves a large space for the further 

improvement of Chinese parsing.  

As far as we known, there is a large portion of 

fixed errors stemming from unknown words in 

Chinese parsing. Therefore, a robust parser must 

have a mechanism of processing unknown words, 

where it discovers the POS tag and features 

information about unknown words during 

parsing. A number of researches design hand-

crafted rules or make use of rich morphological 

features to handle them. It is well known that 

Chinese words tend to have greater POS tag 

ambiguities than English and the morphological 

properties of Chinese words are complicated to 

be predicted of POS type for unknown words. 

For this reason, Harper and Huang (2007) 

present a character-based model to handle 

Chinese unknown words. Similar to their work, 

He et al., (2012) propose a more effective 

method. They mainly use an exponential function 

to represent the distance between the head 

character and other characters in an unknown 

word and use the geometric average to estimate 

the emission probability of it. However, in this 

paper, we focus on using a graph-based label 
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propagation method to deal with unknown words. 

Graph-based label propagation methods have 

made a remarkable improvement in several 

natural language processing tasks, e.g. 

knowledge acquisition (Talukar et al., 2008), 

Chinese word segmentation and POS tagging 

(Zeng et al., 2013) and etc. As far as we known, 

this study is the first attempt at applying graph-

based label propagation to resolve the problem of 

unknown word, which is mainly used to 

propagate POS tag and derive the emission 

probabilities to the large amount of unlabeled 

data by utilizing the limited resource (e.g. POS 

information from the labeled data, i.e. Penn 

Chinese Treebank and lexical emission 

probability learned by the PCFG-LA model). 

Then the derived unlabeled information 

generated by graph-based knowledge will be 

incorporated into the parser. In fact, this method 

explores a new way to exploit the use of 

unlabeled data to strengthen the supervised 

model in parsing. 

This paper is structured as follows. Section 2 

reviews the background, including the lexical 

model in the Berkeley PCFG-LA model and the 

graph-based label propagation methods. Section 

3 presents the details of our proposed model 

based on graph-based semi-supervised learning 

approach and compares with other unknown 

word recognition models. Experiments setup and 

result analysis are reported in section 4. The last 

section draws the conclusion and future work. 

2 Background 

2.1 Lexical Model in Berkeley Parser 

The Berkeley parser (Petrov et al., 2006; Petrov 

and Klein, 2007) is an efficient and effective 

parser that introduces latent annotations to learn 

high accurate context-free grammars (CFG) 

directly from a Treebank. Nevertheless, the 

lexical model of grammar is not well designed to 

effectively handle the out-of-vocabulary (OOV) 

words (aka unknown words) universally and the 

OOV model of Berkeley parser has proved to be 

more suitable for English in (Huang and Harper, 

2009; Attia et al., 2010). The built-in treatment to 

unseen words of Berkeley parser can be 

concluded as: utilizing the estimation of rare 

words
2
 to reflect the appearance likelihood of 

OOV words.  

                                                           
2In the newest version of Berkeley parser, words with 

frequent less than 10 will be regarded as rare words 

acquiescently. 

In order to get the more refine and accurate 

grammar, Petrov et al., (2006) developed a 

simple split-merge-smooth training procedure. In 

order to counteract over-fitting problem, they 

introduced a linear smoothing method to smooth 

the lexical emission probabilities: 

                      
 

   
∑           (1) 

                                         (2) 

where     denotes the number of latent tags from 

  and    means a set of latent subcategories 

              . In Equation (1),   is the 

model parameters which can be optimized by 

EM-algorithm. In Equation (2),    is a smoothing 

parameter. 

Since the lexical model can only generate 

words observed in the training data, a separate 

module is needed to handle the OOV words that 

appear in the test sentences. There are two ways 

to estimate an OOV word w based on a specific 

latent tag   . One is assigning the probability of 

generating rare words in the training data by   : 

           ; another is, suggested by the 

Berkeley parser as Sophisticated Lexicon, to 

calculate the emission probability through 

analysing the morphological features of the OOV 

words. In the Berkeley parser, English words are 

classified into a set of signatures based on the 

presence of characters, especially on a list of 

inherent suffixes (e.g., -ed, -ing), then the 

estimation of     ⁄ pair is: 

                                          (3) 
 

where   is the OOV signature for   and          
is computed by         

⁄ . 

Nevertheless, the features applied to Chinese 

word are simpler than English. Only the last 

character of word will be taken into account in 

estimating emission probabilities of rare word. 

Before applying such model, OOV words will be 

checked if they belong to temporal noun (NT)
3
, 

cardinal number (CD)
4
, ordinal number (OD)

5
 or 

proper noun (NR)
6
 preferentially. 

2.2 Graph-based Label Propagation 

Graph-based label propagation, a critical 

subclass of semi-supervised learning (SSL), has 

                                                           
3By checking if the word contains characters like “年” 

(year), “月” (month), or “日”“号”(day). 
4By checking if the word contains character of number.  
5By checking if the word contains character, such as “第”. 
6By checking if the word contains character, such as “·” 
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Algorithm 1: Words Label Propagation Algorithm 

Input: 

          
 : labeled texts 

            
   : unlabeled texts 

                     : emission probabilities trained by Berkeley parser 

Run: 

1.     = construct_POSTagGraph (  ,  )

2.     = propagate_POSTagProbability (   ,  ) 

3.         = propagate_POSTag (      ,  ) 

4. For           

5.      = construct_latentGraph (  ,   ) 

6.      = propagate_latentTagProbability (    ) 

7.    = combine (       
 ) 

Output: 

                   : emission probabilities of unknown words 
End 

been widely used and shown to outperform other 

SSL methods (Chapelle et al., 2006). Most of 

these algorithms are transductive in nature, so 

they cannot be used to predict an unseen test 

example in the future (Belkin et al., 2006). 

Typically, graph-based label propagation 

algorithms are run in two main steps: graph 

construction and label propagation. The graph 

construction provides a natural way to represent 

data in a variety of target domains. One 

constructs a graph whose vertices consist of 

labeled and unlabeled data. Pairs of vertices are 

connected by weighted edges which encode the 

degree to which they are expected to have the 

same label (Zhu et al., 2003). The great 

importance of graph construction methods leads 

to a number of graph construction algorithms in 

the past years. Popular graph construction 

methods include k-nearest neighbors (k-NN), e- 

neighborhood, and local reconstruction. In this 

paper , the k-NN method is used to construct the 

graph. Besides, label propagation operates on the 

constructed graph. Its primary objective is to 

propagate labels from a few labeled vertices to 

the entire graph by optimizing a loss function 

based on the constraints or properties derived 

from the graph, e.g. smoothness (Zhu et al., 2003; 

Subramanya and Bilmes, 2008; Talukdar and 

Crammer, 2009) or sparsity (Das and Smith, 

2012). State-of-the-art label propagation 

algorithms include LP-ZGL (Zhu et al., 2003), 

Adsorption (Baluja et al., 2008), MAD 

(Talukdarand and Crammer, 2009) and Sparse 

Inducing Penalties (Das and Smith, 2012). The 

Sparse Inducing Penalties algorithm is used in 

this study. 

3 The Proposed Approach 

The emphasis of this paper is on presenting a 

method to recognize Chinese unknown words by 

using two different kinds of data sources, e.g. 

labeled texts and unlabeled texts, to construct a 

specific similarity graph. In essence, this 

problem can be treated as incorporating gainful 

information, e.g. prior knowledge or label 

constraints, of unlabeled data into the supervised 

model. In our approach, we employ a 

transductive graph-based label propagation 

method to achieve such gainful information, e.g. 

label distributions are inferred from a similarity  

graph constructed over labeled and unlabeled 

data. Then, the derived label distributions are 

regarded as “soft evidence” to augment the 

parsing of Chinese unknown words based on a 

new learning objective function. The algorithm 

contains the following two stages (see Algorithm 

1). Firstly, given labeled data and unlabeled data, 

i.e.          
 with  labeled words and 

           
    with   unlabeled words, a 

specific similarity graph     representing    and 

   is constructed (POS tag graph). In this stage, 

we construct one graph over all of labeled data 

and unlabeled data and propagate one POS tag 

for each unlabeled word (see section 3.1). 

Secondly, probabilities of latent tag          are 

estimated subsequently. In this application, we 

will generate   graphs. Where   stands for the 

number of POS types, each graph is aimed at 

propagating latent tag for the unlabeled words in 

their most probable POS tag, which can be 

determined from the graph in first stage (see 

section 3.2). 
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Feature Example 

Trigram + Context 我非常开心 

Trigram 非常开 

Left Context 我非 

Right Context 开心 

Center Word 常 

Left Word + Right Word 非开 

Left Word + Right Context 非开心 

Left Context + Right Word 我非开 

 

Table 1: Features employed to measure the 

similarity between two vertices, in a given text 

example “我非常开心 ” (I am very happy), 

where the trigram is “非常开”. 

3.1 Assigning POS Tags to Unlabeled 

Words 

In this stage (corresponding to procedure 1-3 in 

Algorithm 1), the common practice is to 

construct a similarity graph for the labeled data 

and unlabeled data, and aim at assigning a POS 

tag to unlabeled data in a vertex constructing and 

label propagation tradition. The effect of the 

label propagation depends heavily on the the 

quality of the graph. Thus graph construction 

plays a central role in graph-based label 

propagation (Zhu et al., 2003).  

In this stage, we represent vertices by all of the 

word trigrams with occurrences in labeled and 

unlabeled sentences to construct the first graph. 

The graph construction is non-trivial. As Das and 

Petrov (2011) mentioned that taking individual 

words as the vertices would result in various 

ambiguities and the similarity measurement is 

still challenging. Therefore, in this paper, we 

follow the same intuitions of graph construction 

from (Subramanya et al., 2010) by using trigram 

and the objective focuses on the center word in 

each vertex. Formally, we are given a set of 

labeled texts           
 , and a set of unlabeled 

texts             
   . The goal is to form an 

undirected weighted graph        , in which 

  as the set of vertices, which covers all trigrams 

extracted from    and   . Here        , 

where    refers to trigrams that occurs at least 

once in labeled data and    refers to trigrams that 

occurs only in the unlabeled data. The edge 

     . In our case, we make use of the k-

nearest neighbors (k-NN) (k=5) method to 

construct the graph and the edge weights are 

measured by a symmetric similarity function as 

follows: 

     {
   (     )                       

                                       
  

                                                                    (4)               

where   denotes one vertex in the graph,      is 

the   nearest neighbors of    (            ) 

and    (     )  is a symmetric similarity 

measure between two vertices. The similarity 

function is computed based on the co-occurrence 

statistics over the features shown in Table 1.  

To induce label distributions of unlabeled 

word from labeled vertices to entire graph, the 

label propagation algorithm, Sparsity-Inducing 

Penalties (Sparsity) proposed by (Das and Smith, 

2012) is employed in this study. The following 

convex objective function is optimized in our 

case: 

              
 

∑‖     ‖
 

 

   

  ∑    

 

          

‖     ‖
 

   ∑  
 

 

   

 

s.t.          ‖  ‖   .                        (5)                                                                  

where    denotes empirical label distributions of 

labeled vertices and    denotes unnormalized 

estimate measures in every vertex. The     refers 

the similarity between trigram    and trigram  ,  

and      is a set of neighbors of trigram  .   and 

  are two hyperparameters. The squared-loss
7
 

criterion is used to formulate the objective 

function. The first term in Equation (5) is the 

seed match loss which penalizes    if they go too 

far away from the empirical labeled distribution 

  . The second term is the edge smoothness loss 

that requires    to be smoothed with respect to 

the graph, such that two vertices connected by an 

edge with high weight should be assigned similar 

labels. The final term is a regularizer to 

incorporate the prior knowledge, e.g. uniform 

distributions used in (Das and Petrov, 2011; 

Subramanya et al., 2010). 

The estimated label distribution    in Equation 

(5) is relaxed to be unnormalized, which 

simplifies the optimization. Thus, the objective 

function in Equation (5) can be optimized by 

                                                           
7E.g. ‖ ‖  ∑       , it can be seen as a multi-class 

extension of the quadratic cost criterion (Bengio et al., 2007) 

or as a variant of one of the objectives in (Zhu et al., 2003). 
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LBFGS-B (Zhu et al., 1997), a generic quasi-

Newton gradient-based optimizer. 

Mathematically, the problem of label 

propagation is to get the optimal emission label 

distribution    of every labeled vertex. 

Integrating the similarity between every two 

vertices, we can project the most probable POS 

(selection from the   ) tag to the unlabeled words. 

Through the construction of similarity graph 

and propagation of labels in this stage, each 

unlabeled word will get a POS tag. 

3.2 Generating Latent Tag and Emission 

Probability to Unlabeled Words 

In this stage (corresponding to procedure 4-7 in 

Algorithm 1), we mainly construct another type 

of graph     to generate latent tag and emission 

probability to unlabeled words. As mentioned, 

each unlabeled word gets only one POS tag in 

stage one. Consequently, we build a graph for 

each type POS tag respectively in order to obtain 

an optimal emission probability distribution for 

each unlabeled word at this stage. When 

constructing the similarity graph, each vertex 

represents a word instead of a trigram. Because 

we only need to consider this word’s latent tags 

and emission probability distribution based on its 

POS tag generated in the stage one. The graph 

construction and label propagation procedures 

are similar to that of the previous stage. It is 

worth noting that           in the Equation (5) 

that differs from the previous stage. The 

emission distribution    is generated from all 

possible vertices with the same POS tag in a 

similarity graph instead of all of possible POS 

types of a vertex. Finally, the label distributions 

can be propagated to the unlabeled words, and 

the label distribution content is same as the 

Berkeley lexicon (contain the respective rule 

scores and words) trained by Berkeley parser. 

3.3 Incorporation 

After the former steps, we can get a lexicon of 

unlabeled words with label distribution. The 

lexicon is treated as an OOV lexicon which 

covers most of OOV words that appear in testing 

data but not in the training data in our system. 

Then this OOV lexicon should be incorporated 

into the Berkeley parser. Our strategy of 

insertion is that: when an OOV word is detected, 

it should be firstly examined if the OOV lexicon 

contains such word, then corresponding 

estimation will be used; otherwise, the built-in 

OOV word model (mentioned in the section 2.1) 

will be used. During the parameter tuning phase, 

we try to use linear incorporation to inspect the 

impact of our OOV model to the whole parsing 

model: 

                                                         (6) 

                       s.t.       

 

where   ,    denote the estimation generated by 

our proposed OOV model and the Berkeley 

model respectively. 

3.4 Comparison with Other OOV 

Recognition Models 

The proposed approach in this paper differs from 

previous OOV recognition models. Collins (2003) 

assigned the UNKNOWN token to unknown 

words, and any        ⁄  pairs not seen in 

training data would give a zero of estimation. 

While in (Klein and Manning, 2003), the 

unknown words were split into one of several 

word-class categories, based on capitalization, 

suffix, digit, and other character features. For 

each of these categories, they took the 

maximum-likelihood estimation of 

                 and add a parameter k to 

smooth and accommodate unknown words. In 

(Petrov et al., 2006), they mainly utilized the 

estimation of rare words to reflect the appearance 

likelihood of OOV words and the details of the 

method have been mentioned in section 2.1. In 

fact, Chinese words are quite different from 

English, and the word formation processing for 

Chinese can be quite complex. Huang et al., 

(2007) reflected the fact that the characters in 

any position (prefix, infix, or suffix) can be 

predictive of the POS type for Chinese words. 

Inspired by their work, Huang and Harper (2009) 

improved Chinese unknown word parsing 

performance by using the geometric average of 

emission probabilities of all of the characters in 

the word. Differing from their concerns, we 

make use of a new perspective to employ 

unlabeled data to augment the supervised model 

and to handle the OOV word by graph-based 

semi-supervised learning. Our emphasis is to 

learn the semi-supervised model by smoothing 

the label distributions that are derived from a 

specific graph constructed with labeled and 

unlabeled data. Though graph-based knowledge, 

the OOV label distribution can be generated. It is 

worth nothing that the selection of unlabeled data 

should cover OOV words as much as possible. 

Because this approach is mainly used to assign a 

POS tag and emission probabilities to each 
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 Train Unlabeled Dev Test 

#Sentence 7,176 19,075 893 912 

#Word 201,460 1,110,947 26,170 26,134 

#OOV - - 2,168 2,223 

 

Table 2: The statistics summary of data. 

Figure 1: POS and parsing accuracy on development set, corresponding to different  . 

 

unlabeled data according to the similarity 

between any two vertices in a graph constructing 

among labeled data and unlabeled data. If all of 

OOV words are found in the unlabeled data, then 

each OOV word would be recognized by our 

model. When we construct a graph where a 

portion of vertices correspond to labeled 

instances, and the rest is unlabeled. Pairs of 

vertices are connected by a weighted edge 

denoting the similarity between the pair. In this 

process, optimization of a loss function based on 

smoothness properties of the graph is performed 

to propagate labels from the labeled vertices to 

the unlabeled ones. Overall, our method differs 

in three important aspects: firstly, the existing 

resource (e.g. annotated Treebank and the latent 

variable grammars induced by Berkeley parsing 

model) is well utilized. Secondly, the training 

procedure is simpler than the (Huang and Harper, 

2011). Thirdly, the derived label information 

from the graph is smoothed into the model by 

optimizing a modified objective function. 

4 Experiment 

4.1 Settings 

In our experiment, Xinhua news and Sinorama 

magazine portions of the most recently released 

Penn Chinese Treebank 7.0 (CTB 7.0) (Xue et al.,  

2002) are used as labeled text   . Besides, the 

P e k i n g  U n i v e r s i t y  C o r p u s  i n  S e c o n d 

International Chinese Word Segmentation  

 

 

Bakeoff
8
 is utilized as unlabeled data   . The 

unlabeled data has been word-segmented with 

Stanford segmenter (Chang et al., 2008) because 

it adopts the same segmentation scheme used in 

the Treebank. The CTB 7.0 corpus was collected 

during different time periods from different 

sources with a diversity of articles. In order to 

obtain a representative experimental data, we 

refer to the splitting standard of (Huang et al.,   

2007; Huang and Harper, 2009), dividing the 

whole corpus into blocks of 10 files sorted by 

ascending order. For each block, the first file is 

used for development, the second file is used for 

testing, and the remaining 8 files are used for 

training. The corresponding statistic information 

on the data is shown in Table 2. The 

development set is used to determine the optimal 

  value to reflect our OOV model. EVALB 

(Sekine and Collins, 1997) is used for the 

evaluation.  

4.2 Experiment Results 

We firstly run the experiment on development set, 

the Berkeley baseline model has an overall POS 

tags accuracy of 91.51% on the development set, 

which is fairly low compared to the accuracies of 

importing the graph-based OOV model. In our 

model, the parameter   is smoothed to 

accommodate OOV model used in Equation 6. 

Figure 1 depicts the impact of combining the 

baseline model (lexical model in Berkeley) and 

                                                           
8http://www.sighan.org/bakeoff2005/ 
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 Length R P F POS 

Baseline 
All 73.34 75.20 74.25 91.51 

<=40 75.48 76.02 75.75 91.87 

    
All 75.12 76.83 75.97 93.79 

<=40 77.34 77.71 77.52 94.19 

 

Table 3: POS and parsing accuracy on testing set. 

  

Models Parsing 
Answer: (IP (NP (NR 河南) (NR 西峡)) (VP (VV 发现) (NP (NN 恐龙) (NN 骨骼) (NN 化石)))) 

Baseline: ((IP (NP (NP (NR 河南))(NP (NN 西峡))) (VP (VV 发现) (IP (NP (NN 恐龙)(NN 骨骼)) (VP (VV 化石))))) 

Our model: (IP (NP (NR 河南) (NR 西峡)) (VP (VV 发现) (NP (NN 恐龙) (NN 骨骼) (NN 化石)))) 

 

Table 4: The parsing results for sentence: 河南西峡发现恐龙骨骼化石 (The dinosaur bone fossils 

were found in XiXia, Henan province). 

 

#Words in testing set #Tag in baseline model Our model Golden 

王翔-12 6-NR,4-NN,1-VV, 1-AD 12-NR 12-NR 

书展-12 9-NN, 1-NR,1-CD,1-JJ 12-NN 12-NN 

地对-7 5-NN, 1-NR,1-JJ 7-JJ 7-JJ 

捐助-3 1-VV, 1-NN, 1-VA 3-VV 3-VV 

次日-2 2-AD 2-NT 2-NT 

轻便-1 1-AD 1-VA 1-VA 

多所-1 1-VV 1-AD 1-AD 

 

Table 5:  The OOV words correctly tagged by our model.

graph-based OOV model using different   values. 

When    , the model uses only the lexical 

model estimation. While    , it uses only the 

graph-based OOV model prediction of words. It 

is interesting to note that the combination model 

results in significant improvement over the 

baseline lexical model in terms of F-score and 

OOV accuracy. When    , the estimation 

performs the best result. This strongly reveals 

that the knowledge derived from the similarity 

graph does effectively strengthen the model. 

Table 3 demonstrates the parsing result in the 

testing set. The best improvements in POS 

tagging and parsing are 2.28% and 1.72% 

respectively, which are statistically significant. 

4.3 Discussion 

By incorporating unlabeled data to boost the 

supervised model, our model outperforms the 

baseline. The main reason is that unlabeled data 

lack information, we use transductive graph-

based label distributions derived from labeled 

data. The derived label information is considered 

as prior knowledge relative to unlabeled data, 

thereby enriching the training data. Most 

importantly, the similarity graph can also be 

allowed to propagate the label distributions for 

unknown words. The improved performance of 

the described model can be illustrated by the 

excerpt in Table 4, extracted from the test data. 

The table shows the golden parsing in the first 

line, and the parsing results given by the 

Berkeley baseline model and our OOV model in 

the following lines. Parsing errors are marked in 

red bold. The results achieved by our model for 

this example are totally correct, whereas the 

baseline model get the erroneous parsing mainly 

occurred in generating extra phrasal tags (e.g. NP, 

IP, VP) and mis-tagging a POS tag (e.g. VV). In 

which the word “化石” (fossil) is an OOV word 

in the test data. Our model can properly 

determine the POS tag for this word with the 

help of the label distribution by constructing the 

similarity graph. As mentioned before the OOV 

lexicon which concludes almost OOV words, and 

we found the word “化石” (fossil) has assigned 

with the NN tag. So the corresponding estimation 

with this tag will be used firstly by our model 

during the parsing. According to the result shown 

in the Table 3, the POS tag has about 2.3% 
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improvement. To a great extent, it mainly 

contributes to the incorporating of the OOV 

lexicon into the Berkeley parser. The Table 5 

shows the sample OOV words are correctly 

tagged by utilizing the OOV lexicon in parsing. 

The first column stands for the number of times 

the word appears in the test data (e.g. 王翔 

(WangXiang) - 12 means the word “王翔 

(WangXiang)” appears 12 times in the test set). 

The other three columns stand for the times of 

this word’s with certain POS tag type when 

paring in the baseline model, our model and 

golden file respectively. From the table, we can 

see our OOV model has a high POS accuracy by 

incorporating the OOV lexicon into the parser. 

Simultaneously, it proves that the label 

distribution derived from the similarity graph can 

augment the parsing of unknown words. 

5 Conclusion 

In this paper, we show for the first time that the 

graph-based semi-supervised learning is able to 

improve the performance of a PCFG-LA parser 

on OOV words. The approach mainly uses a k-

nearest-neighbor algorithm to construct a 

similarity graph based on labeled and unlabeled 

data and then incorporates the graph knowledge 

into the Berkeley parser. Experimental 

comparisons on the Chinese Treebank corpus 

indicate that the proposed approach yields much 

better results than the baseline case without using 

unlabeled data.  

In future work, we will concentrate on 

applying the graph-based OOV model into other 

parsing model (e.g. coarse-to-fine) and apply the 

model to other languages. 
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