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Abstract

The field of distributional-compositional se-
mantics has yielded a range of computational
models for composing the vector of a phrase
from those of constituent word vectors. Ex-
isting models have various ranges of their
expressiveness, recursivity, and trainability.
However, these models have not been exam-
ined closely for their compositionality. We
implement and compare these models under
the same conditions. The experimentally ob-
tained results demonstrate that the model us-
ing different composition matrices for differ-
ent dependency relations achieved state-of-
the-art performance on a dataset for two-word
compositions (Mitchell and Lapata, 2010).

1 Introduction

Computing the meaning of a text has posed a chal-
lenge in NLP for many years. Based on the distri-
butional hypothesis (Firth, 1957), the meaning of a
word is typically represented as a real-valued vector,
with elements representing the frequencies of words
that co-occur in the context of the word in a cor-
pus. Numerous studies have demonstrated learned
word vectors from a large text corpus (Bullinaria
and Levy, 2007; Collobert and Weston, 2008; Tur-
ney and Pantel, 2010; Mnih and Kavukcuoglu, 2013;
Mikolov et al., 2013).

In contrast, the same approach is not scalable to
a complex linguistic unit (e.g., phrase or sentence)
because of the data sparseness problem: the longer
the length of a phrase, the fewer times the phrase oc-
curs in a corpus. For this reason, we cannot acquire

semantic information reliably from co-occurrence
statistics of a phrase. Recently, numerous studies
have explored compositional semantics, in which
the meaning of a phrase, clause, or sentence is com-
puted from those of its constituents (Mitchell and
Lapata, 2008; Mitchell and Lapata, 2010; Guevara,
2010; Zanzotto et al., 2010; Socher et al., 2011; Ba-
roni et al., 2012; Socher et al., 2012; Socher et al.,
2013a; Socher et al., 2014). These studies mostly
address theories and methods for computing a vec-
tor of a phrase from the vectors of its constituents;
the simplest but effective approach is to take the av-
erage of the two input vectors.

A simple approach such as additive and multi-
plicative compositions has been a strong baseline
over more complex models (Blacoe and Lapata,
2012; Socher et al., 2013b). However, Erk and Padó
(2008) argued the importance of syntax relations:
the simple additive/multiplicative approach yields
the same vector for phrases a horse draws and draw
a horse, ignoring the syntactic structure by which
horse in the former phrase is a subject whereas horse
in the latter is the object. They formulated a gener-
alized composition function including such a com-
position. However, this generalized composition is
too complex to learn. These models usually do not
work well for now.

As described in this paper, through a human-
correlation experiment, we explore the most useful
model among the representative models that have
been proposed to date in terms of the semantic com-
position. We cast the task of learning composi-
tion matrices, which are model parameters, to min-
imize the errors between phrase vectors composed
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by matrices and computed in a corpus. The ex-
perimentally obtained results demonstrate that the
model using different composition matrices for dif-
ferent dependency relations achieved state-of-the-art
performance for a dataset for two-word composi-
tions (Mitchell and Lapata, 2010). Moreover, the
results confirm the effectiveness of syntax-sensitive
compositions.

The remainder of the paper is organized as fol-
lows. Section 2 presents a survey of the previous
studies and their issues. Section 3 describes details
of the methods and the training procedure. Section
4 reports and discusses the experimentally obtained
results. We conclude this paper in Section 5.

2 Previous Work

In this section, we briefly overview representa-
tive methods for obtaining vector representations of
word meanings. We then describe the previous work
that composes the meaning of a phrase from its con-
stituents, followed by the issues and limitations that
arise in this work.

2.1 Obtaining word vectors

In distributional semantics, the meaning of a word
is represented by a vector, i.e., a point in d-
dimensional space. We can classify the previous
studies for obtaining word vectors into two groups:
approaches based on co-occurrence statistics and
language modeling.

The former approach (Bullinaria and Levy, 2007;
Mitchell and Lapata, 2010) counts the frequency
of words co-occurring with a target word in a cor-
pus, and refines the statistics using, for example,
Pointwise Mutual Information (PMI). Vectors ob-
tained using this method are high-dimensioned and
sparse. Therefore, some methods compress vectors
using a dimension reduction method such as Prin-
cipal Component Analysis (PCA) and Non-negative
Matrix Factorization (NMF).

The latter approach (Collobert and Weston, 2008;
Mnih and Kavukcuoglu, 2013; Mikolov et al., 2013)
formalizes the task of learning word vectors as a
byproduct of a language model (Bengio et al., 2003),
i.e., finding word vectors such that each word vector
can be predicted from surrounding words. In these
studies, word vectors are initialized by random val-

Table 1: Summary of the previous models. Vectors u,
v ∈ Rd present input (word) vectors, σ is an activation
function (e.g., sigmoid function and tanh). In general,
the more parameters a model has, the greater the expres-
sive power the model has during vector compositions.

Model Function Parameters
Add w1u+ w2v w1, w2 ∈ R

Fulladd W

[
u
v

]
W ∈ Rd×2d

RNN σ

(
W

[
u
v

])
W ∈ Rd×2d

Lexfunc Auv Au ∈ Rd×d

Relfunc σ

(
Wr

[
u
v

])
Wr ∈ Rd×2d

Fulllex σ

(
W

[
Avu
Auv

])
W ∈ Rd×2d,

Au, Av ∈ Rd×d

ues and are learned through back propagation on a
neural network.

2.2 Composing word vectors for phrases
The idea of computing a vector of a phrase from its
constituents is based on the Principle of Composi-
tionality (Frege, 1892), where the meaning of a com-
plex unit (e.g., phrase or sentence) comprises the
meanings of the constituents and the rule for com-
bining the constituents. Equation 1 formulates this
principle mathematically:

p = f(u,v). (1)

Here, given two input (e.g. word) vectors u ∈ Rd1

and v ∈ Rd1 , the model f yields a phrase vector
p ∈ Rd2 as a composition of the input vectors. In
other words, the model f is a function that computes
a phrase vector p for the inputs u and v. Setting
d = d1 = d2 allows recursive compositions, i.e.,
generating phrase or sentence vectors consisting of
three or more words.

Table 1 shows representative models from ear-
lier works. The Add model (Mitchell and Lapata,
2008; Mitchell and Lapata, 2010) computes a linear
combination of two input vectors u, v ∈ Rd with
weights w1, w2 ∈ R. This model works surpris-
ingly well in practice despite its simplicity. The Ful-
ladd model (Guevara, 2010; Zanzotto et al., 2010)
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extends the Add model, applying a linear transfor-
mation to inputs with a weight matrix W ∈ Rd×2d.
This model can not only scale but also rotate input
vectors, unlike the Add model.

Regarding linear transformation with a matrix W ,
Recursive Neural Network (RNN) model (Socher
et al., 2011) achieves a nonlinear transformation
through the use of an activation function (e.g., sig-
moid function and tanh). Lexfunc model (Baroni et
al., 2012) represents a dependent word u (e.g., ad-
jective) as a matrix Au and composes a phrase vector
with a matrix-vector product Auv. The underlying
idea of representing a dependent as a matrix is that
a modifier (dependent) changes some properties of a
governer and that it is achieved using a matrix trans-
forming a vector of the governer1.

Extending RNN, the Relfunc model (Socher et al.,
2013a; Socher et al., 2014) incorporates syntactical
relations in compositions, which composes phrase
vectors with a different weight matrix for a syntactic
relation between inputs. Generalizing Lexfunc and
RNN, the Fulllex model Socher et al. (2012) defines
the meaning of each word as a tuple of a vector and
matrix, where a vector represents the meaning of the
word itself and a matrix provides a function to other
words for compositions. In addition to these mod-
els, the Mult model and the Dil model (Mitchell and
Lapata, 2008; Mitchell and Lapata, 2010) have been
proposed.

Table 2 presents the benefits and shortcomings of
each model. It is easy to train the Add model because
it has only two parameters. Apparently, the Add
model has the least expressive power using very few
parameters. However, this simple model has been a
strong baseline in the literature (Blacoe and Lapata,
2012). Similarly to the Add model, Fulladd uses a
linear composition function; we can find a global op-
timum for the convex training objective. In contrast,
RNN, Relfunc and Fulllex are neural network mod-
els using nonlinear activation functions. The non-
linearity enriches the expressive power, but it makes
training difficult because the training objectives are
not convex.

Regarding the performance of these models aside
from Relfunc in the same condition, Dinu et al.

1For instance, we can regard red in the phrase red car as
changing the property of color of the word car.

Table 2: Problems of representative models.

Model Expre- Recur- Train- Non-
ssive sivity ing linearity

Add NA ! ! NA
Fulladd NA ! ! NA
RNN NA ! ! !
Lexfunc ! NA Depends NA
Relfunc ! ! ! !
Fulllex ! ! NA !

(2013) concluded that Lexfunc performed the best
among these models. According to their explana-
tion, Lexfunc performs well because it considers lin-
guistic relations between input words (e.g. modifi-
cation, verb–object relation). However, Lexfunc can-
not compose vectors recursively because of the dif-
ferent types of input–output representations (vector
or matrix).

In contrast, RNN, Relfunc, and Fulllex can com-
pose vectors recursively. The recursivity is an im-
portant property because it enables comparison of a
phrase vector (e.g., football player) with a word vec-
tor (e.g., footballer). However, Fulllex has an enor-
mous number of parameters, representing each word
as a distinct tuple of a vector and a matrix. In RNN,
on the other hand, all compositions are computed
only by a single weight matrix. Consequently, it can-
not distinguish different syntax relations in compo-
sitions. Located between RNN and Fulllex, Relfunc
can compose various types of syntax relations more
precisely than RNN with fewer parameters than Ful-
llex.

These models have produced excellent results on
many tasks such as syntax parsing or grounding
between texts and images. However, no report in
the literature describes an experiment examining se-
mantic compositions directly under the same con-
ditions. As described in this paper, we explore the
best model that can perform semantic compositions
well. Our experimentally obtained results show that
the Relfunc model achieves state-of-the-art perfor-
mance.
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3 Details of Methods
3.1 Mathematical Expression of Models
The Add model in Table 1 composes two input vec-
tors u and v simply with two parameters w1 and w2

(and a bias term b):

p = f(u,v) = w1u+ w2v + b1. (2)

Here, u, v, and 1 are d-dimensional column vectors
and all elements of 1 consist of 1.

Add can only scale whereas Fulladd can also ro-
tate because of a weight matrix W ∈ Rd×(2d+1):

p = f(u,v) = W

⎡

⎣
u
v
b

⎤

⎦ . (3)

Neural network models such as RNN in Table 1
compose a phrase vector p from two input vectors u
and v using a function f : R(2d+1)×1 −→ Rd×1,

p = f(u,v) = σ

(
W

⎡

⎣
u
v
b

⎤

⎦
)
. (4)

σ(.) is an element-wise sigmoid function that yields
a value for each element in the vector. In our work,
we use tanh as a sigmoid function.

Socher et al. (2014) extends this model so that
Relfunc can compose a vector depending on the rela-
tion r between two inputs. Equation 5 uses a compo-
sition matrix Wr and a bias term br for each relation
r,

p = f(u,v, r) = σ

(
Wr

⎡

⎣
u
v
br

⎤

⎦
)
. (5)

Here, Wr ∈ Rd×(2d+1) and br ∈ R are parame-
ters trained for each relation r. Introducing relation-
specific matrices, Equation 5 can compose a phrase
vector more precisely than RNN given by Equation
4. In this work, we use syntactic dependencies as
relations used for compositions. We also introduce
two restricted variants of Relfunc here.

1. Relation-specific additive model (Relfunc-add)
has two weight parameters w1, w2 ∈ R for each
relation r:

p = σ

(⎡

⎣
1

w1,rI w2,rI
...
1

⎤

⎦

⎡

⎣
u
v
br

⎤

⎦
)

(6)

2. Relation-specific component-wise additive
model (Relfunc-cadd) is modeled by diagonal
elements for u and v:

p = σ

(⎡

⎣
w1,1 0 w2,1 0 1

. . .
. . .

.

.

.

0 w1,d 0 w2,d 1

⎤

⎦

⎡

⎣
u
v
br

⎤

⎦
)

(7)

These variants are used to verify the effect of non-
diagonal elements of matrices Wr in the experi-
ments.

The Fulllex model, the most complicated model
among those in Table 1, first multiplies each input
vector by the other matrix, i.e., u is multiplied by
Av ∈ Rd×d and v multiplied by Au ∈ Rd×d. Sub-
sequently, Fulllex composes the phrase vector in the
same way for RNN and Relfunc,

p = f(u,v) = σ

(
W

⎡

⎣
Avu
Auv
b

⎤

⎦
)
. (8)

3.2 Training
We train model-specific parameters θ (e.g., for Add,
θ = ⟨w1, w2, b⟩, and for Relfunc, θ = ⟨Wr, br|r⟩)
in a supervised setting where a gold phrase vector q
is given for two input vectors of constituents u and
v. A training set consists of T training instances
{((ut,vt), qt)}Tt=1. The goal of training is to find
optimal parameters θ such that the parameters can
compose phrase vectors of good quality. We for-
malize this goal as a minimization problem of the
objective function defined by the square errors be-
tween composed vectors and gold vectors,

J(θ) =
1

T

T∑

t=1

1

2
∥pt − qt∥22 + λ∥θ∥1. (9)

Here, the vector pt presents a phrase vector com-
posed by Equations 2 - 8 from word vectors (ut,vt).
Vector qt denotes a gold phrase vector. There-
fore, the first term of Equation 9 represents a least-
squares problem (York, 1966) defined for vectors pt

and qt. The second term of Equation 9 presents
an L1-regularization term with a hyper-parameter
λ. We employ L1-regularization instead of L2-
regularization to make the composition model com-
pact.
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We use stochastic gradient descent and backprop-
agation (Rumelhart et al., 1988) to minimize the ob-
jective.

In general, a weight matrix W is updated by the
following equation,

W
′
= W − α

∂J(θ)

∂W
, (10)

where α is a learning rate.
Using stochastic gradient descent, we update a

weight matrix W every time one training instance
is processed. The gradient of the objective is

∂J(θ)

∂W
=

∂J(θ)

∂pt

∂pt

∂W
= et

⎡

⎣
ut

vt
b

⎤

⎦
T

+ λ
∂

∂W
∥θ∥1.

(11)

Here, et represents a d-dimensional column vector
with k-th element of

et,k = (pt,k − qt,k)(1− p2t,k). (12)

We used d
dx tanh(x) = 1 − tanh(x)2 to derive this

equation.
The second term of Equation 11 is not differ-

entiable. Following the work of Langford et al.
(2008) and Tsuruoka et al. (2009), we first update
the weight matrix W without consideration of the
L1 penalty. Then, we use Equation 13 to apply the
L1 regularization,

w
′
ij =

⎧
⎪⎨

⎪⎩

max(0, wij − αλ) if wij > 0

min(0, wij + αλ) if wij < 0

0 otherwise
, (13)

where wij denotes the (i, j) element of W .
A neural network model such as RNN, Relfunc,

and Fulllex is nonlinear, which means that the naive
training procedure might be trapped with a local
minimum. To prevent local minima, we employ
some technical methods. We update the learning rate
α for every iteration epoch l using the temperature
of the simulated annealing algorithm (Kirkpatrick et
al., 1983).

In addition, to date, the learning rate α is constant
to all matrices Wr in Relfunc. However, the distribu-
tion of relations in the training data is highly skewed.

Because the number of updates for a relation is di-
rectly proportional to the number of instances of the
relation in the dataset, some matrixes are updated
frequently, and some are rarely updated. Therefore,
we use the diagonal variant of AdaGrad (Duchi et
al., 2011; Socher et al., 2013a). This enables the
learning rate to vary each matrix Wr.

4 Experiment

In this section, we explain the method for construct-
ing vectors for words and phrases for the supervision
data, followed by an explanation of some details of
the training procedure. We then report experimen-
tally obtained results.

4.1 Obtaining vectors for words and phrases as
supervision data

Following the work of Dinu et al. (2013), we
constructed word and phrase vectors as follows.
We used a concatenation of three large corpora:
PukWaC2 (Baroni et al., 2009) (2 billion tokens),
WaCkypedia EN(Wikipedia 2009 dump) (Baroni
et al., 2009) (about 800 million tokens), and
ClueWeb093 (5 billion pages in English). The
distribution of PukWaC and WaCkypedia EN in-
cludes parse results from TreeTagger and Malt-
Parser. We used Stanford CoreNLP4 to parse
ClueWeb09. Counting frequencies of occurrences of
lemmas of content words (nouns, adjectives, verbs,
and adverbs), we identified the top 10,000 most fre-
quent words; we represent the set of these lemmas
(except adverbs) as vocabulary V .

We then find the frequencies of phrases consist-
ing only of two words in V (adjective–noun, noun–
noun, verb–noun). For words in V and phrases ap-
pearing more than 1,000 times in the corpora, we
build a co-occurrence matrix: each row is a vector
of a target word or phrase; an element in a row rep-
resents the frequency of co-occurrences of the target
word/phrase with a context word (content lemma).
We regard content lemmas appearing in the same
sentence within a distance of 50 words from a target
word as contexts. Then we transform each element
of the co-occurrence matrix into Pointwise Mutual

2http://wacky.sslmit.unibo.it/
3http://lemurproject.org/clueweb09/
4http://nlp.stanford.edu/software/

corenlp.shtml
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Information (PMI) (Evert, 2005). Finally, we com-
press the matrix into d dimension using Principal
Component Analysis (PCA) (Roweis, 1998) with
EM algorithm5. In this way, we obtained 10,000
word vectors and 17,433 phrase vectors.

4.2 Gold-standard data
We conducted a human-correlation experiment us-
ing the dataset6 created in Mitchell and Lapata
(2010). Each instance in the dataset is a triplet
⟨phrase1, phrase2, similarity⟩: a similarity is a se-
mantic similarity between the phrases annotated by
humans, with a value ranging from 1 (least similar)
to 7 (most similar). We designate this as human-
similarity. For example, the similarity between
vast amount and large quantity is 7 (most similar)
whereas the similarity between hear word and re-
member name is 1 (least similar).

For each POS pair (adjective–noun, noun–noun,
verb–noun), the dataset includes 108 instances anno-
tated by 18 human subjects (1,944 in total). We mea-
sure Spearman’s ρ between the human similarity and
the cosine similarity between each input pair of two
phrase vectors composed using a model. Because
one POS pair can include dependency relations of
several types , Relfunc composes phrase vectors in
a POS pair with several matrices. A high correla-
tion indicates that the model can compose a phrase
vector that reflects its semantic meaning.

4.3 Training
Excluding the phrases in the evaluation dataset, our
training set includes 16,845 phrase types for build-
ing a training set. For each phrase p type, we include
0.001×freq(p) duplicates in the training data, where
freq(p) is the frequency of occurrences of the phrase
p in the corpora. In this way, we obtained a training
set consisting of T = 175, 899 instances of phrases.

We set other hyper-parameters as described be-
low:

• Dimension d ∈ {50, 100, 200}.

• Learning rate α = 1/1.1l−1.
l is an epoch count.

5To handle a large amount of data, we implemented an on-
line variant of PCA.

6http://homepages.inf.ed.ac.uk/s0453356/
share

• L1-regularization coefficient λ ∈
{10−3, 10−4, 10−5, 10−6}.

• Convergence condition: |J l−1 − J l| < 10−6

• Maximum number of epochs: 100

Because models are sensitive to d and λ, we find d
and λ with the highest performance with respect to
each model. We observed that all models converged
in 50 to 100 epochs. We prepared 31 weight ma-
trices Wr corresponding to all types of dependency
relations. A weight matrix and a weight of a bias
term are initialized as (N (µ,σ2) denotes a normal
distribution with mean µ and variance σ2),

W = 0.01[Id×d, Id×d,0d×1]

+N (0(2d+1)×1, 0.001I(2d+1)×d),

b = N (0.0, 0.001).

(14)

We use a server running on four processors (12-
core, 2.2 GHz, AMD Opteron 6174) with 256 GB
main memory. Using 10 threads, approximately 7
hours were needed to train a model7. We use the
idea of Iterative Parameter Mixture (McDonald et
al., 2010) to parallelize the training process. Each
thread receives a subset of the training data, and es-
timates parameters individually on the subset. After
all threads finish an epoch for the subsets, we take
the average of the parameters from all threads, and
distribute it to the threads for the next epoch.

We trained models in Table 1 with the same exper-
imental setting (the same objective, the same train-
ing set, and the same hyper-parameters) except for
Lexfunc. This enables performance comparisons be-
tween different models. The reason for the absence
of Lexfunc is that it requires a vector and a matrix
for composition of a phrase. Two constituents for
a phrase are given as vectors in our experiments.
Therefore, we cannot conduct an experiment with
Lexfunc on the same setting.

4.4 Results
Table 3 reports the correlation of similarity values
with the gold-standard data. Upper-bound presents
the mean of inter-subject correlations (between a
subject and the others). Corpus obtains a phrase

7We used Python modules numpy and multiprocessing for
implementation of the training algorithm.
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Table 3: Spearman’s ρ of each POS pair, where ∗ de-
notes statistical significance (p < 0.01) between Relfunc
and the most competitive model among the other models:
Add-smp.

JJ-NN NN-NN VB-NN
Corpus 0.380 0.449 0.215
Add-smp 0.457 0.460 0.406
Add 0.335 0.304 0.338
Fulladd 0.359 0.359 0.366
RNN 0.364 0.360 0.367
Relfunc-add 0.440 0.455 0.388
Relfunc-cadd 0.419 0.445 0.413
Relfunc 0.469∗ 0.481∗ 0.430∗
Fulllex 0.322 0.160 0.222
Upper-bound 0.539 0.490 0.505

vector simply from the co-occurrence statistics in
the corpora (similarly to the supervision instances).
This setting corresponds to the distributional hy-
pothesis applied to phrases without considering se-
mantic composition. The reason for the low perfor-
mance of this approach is that some phrase vectors
are unavailable8 or unreliable in the corpora because
of the data sparseness problem.

Add-smp is the model in Table 1 with the weight
parameter fixed: w1 = w2 = 1.0. This approach
is equivalent to the simple additive baseline that
adds two word vectors without training. As Table
3 shows, Add-smp model is a strong competitive
model, beating RNN and Fulladd models. However,
the Relfunc model outperformed all the tested mod-
els including Add-smp in all relations. The differ-
ences between Relfunc and Add-smp are significant
(p < 0.01) in all relations.

Furthermore, Relfunc outperforms Relfunc-add
and Relfunc-cadd, which are the variants of Rel-
func. This result underscores the importance of non-
diagonal elements of weight matrices.

Although we cannot compare these results di-
rectly with those reported from other studies (Dinu
et al., 2013; Blacoe and Lapata, 2012) because of
the different computations of Spearman’s ρ9, our re-

8When a phrase vector is not available from the corpus, we
define the similarity as zero.

9Reports of those studies did not describe explicitly how
they computed the correlation coefficient.

Figure 1: Weight matrix of RNN.

sults are comparable. These results demonstrate the
effectiveness of using a different weight matrix for
each relation of compositions.

4.5 What the Learned Weight Matrices Look
Like

To explore why Relfunc outperforms RNN, we visu-
alize the weight matrices learned by the two models
in Figures 1 and 2. In the figures, the left side (split
by the center) presents the weights for the left word.
The right side presents weights for the right word.
The smaller a weight value in the matrix is, the dim-
mer the element is visualized; the larger a weight
value is, and the brighter the element is visualized.

Figure 1 visualizes the weight matrix trained by
RNN. The diagonal elements in the left and right
sides tend to be larger than the non-diagonal ele-
ments. This fact indicates that the i-th elements of
input word vectors most strongly influence the i-th
element of a phrase vector. The diagonal elements
of the right side are brighter than those of the left
side, which implies that RNN treats a right word as
more important than a left word in semantic compo-
sitions. That implication is reasonable because the
right word is usually the head of the phrase and is
therefore more important. However, such is not al-
ways the case. For example, in subject–predicate
constructions, the subject should be regarded as be-
ing as important as the predicate. The RNN model
cannot manage such cases.

In contrast, Relfunc learns the relative importance
of phrase components depending on the types of
syntactic constructions. Figure 2 demonstrates how
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(a) adjective modification (amod) (b) compound noun (nn)

(c) subject-predicate (nsubj) (d) determiner-noun (det)

Figure 2: Weight matrices of Relfunc.

the weight matrices are learned differently depend-
ing on syntactic dependency relations. In the matrix
for adjective modification, for example, the elements
of the right diagonal tend to be larger than those of
the left, which reflects a tendency by which a modi-
fied word (right word) is more important than a mod-
ifier (left word); yet, the left diagonal is assigned
reasonably large weight compared with that of the
RNN weight matrix. Different types of constructions
require different weight biases. Subject–predicate
constructions, for example, assign more weight on
the left diagonal.

Next we examine the effects of this difference us-
ing examples. Table 4 presents examples of simi-
larity scores assigned by human judgment (averaged
human-similarity scores) and those given by three
models: Relfunc, Add-smp, and RNN. For the first
two examples, the three models estimate the simi-
larity almost equally well. For the third example,
important part and significant role, RNN fails to

express that they are quite similar. This might be
true because RNN assigns too much weight to head
words, part and role, and loses the information given
by their modifiers.

The fourth examples, previous day and long pe-
riod, show the importance of learning the proper bal-
ance of weights between the left and right words.
Add-smp overestimates the similarity between the
two phrases whereas Relfunc and RNN appropriately
and specifically examines the difference between the
head words, day and period.

We have specifically addressed only the weights
of the diagonal elements. However, it should also
be noted that the non-diagonal elements play non-
negligible roles as demonstrated by the performance
gain between Relfunc and Relfunc-cadd (see Table
3). For further exploration of the model’s behavior,
more sophisticated methods of analyzing the weight
matrices and word vectors must be used. That goal
is left as a subject of future work.
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Table 4: Examples of human-similarity and co-similarity of three models.

instance GOLD Relfunc Add-smp RNN
certain circumstance

particular case 6.1 0.76 0.74 0.64

national government
cold air 1.0 -0.06 -0.07 -0.02

important part
significant role 6.3 0.62 0.64 0.31

previous day
long period 1.8 0.36 0.52 0.32

5 Conclusion and Future Work

As presented in this paper, we described the prop-
erties of the previous methods: the expressive
power, the recursivity, and the difficulty of train-
ing. To investigate the impact on these properties,
we reimplemented these models and conducted a
human-correlation experiment, which demonstrated
the state-of-the-art performance of Relfunc and the
usefulness of the syntactic information in composi-
tion. Moreover, learned weight matrices suggest that
compositions require different calculations based on
their linguistic properties. In future studies, we will
extend this work to examine the goodness of models
when they compose phrases consisting of three or
more words. We will address this problem for tasks
of paraphrase detection or entailment recognition.
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