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Abstract

We present a simple and effective ap-
proach to incorporating syntactic struc-
ture into neural attention-based encoder-
decoder models for machine translation.
We rely on graph-convolutional networks
(GCNs), a recent class of neural networks
developed for modeling graph-structured
data. Our GCNs use predicted syntactic
dependency trees of source sentences to
produce representations of words (i.e. hid-
den states of the encoder) that are sensitive
to their syntactic neighborhoods. GCNs
take word representations as input and
produce word representations as output, so
they can easily be incorporated as layers
into standard encoders (e.g., on top of bidi-
rectional RNNs or convolutional neural
networks). We evaluate their effectiveness
with English-German and English-Czech
translation experiments for different types
of encoders and observe substantial im-
provements over their syntax-agnostic ver-
sions in all the considered setups.

1 Introduction

Neural machine translation (NMT) is one of suc-
cess stories of deep learning in natural language
processing, with recent NMT systems outperform-
ing traditional phrase-based approaches on many
language pairs (Sennrich et al., 2016a). State-of-
the-art NMT systems rely on sequential encoder-
decoders (Sutskever et al., 2014; Bahdanau et al.,
2015) and lack any explicit modeling of syntax or
any hierarchical structure of language. One poten-
tial reason for why we have not seen much benefit
from using syntactic information in NMT is the
lack of simple and effective methods for incorpo-
rating structured information in neural encoders,

including RNNs. Despite some successes, tech-
niques explored so far either incorporate syntactic
information in NMT models in a relatively indi-
rect way (e.g., multi-task learning (Luong et al.,
2015a; Nadejde et al., 2017; Eriguchi et al., 2017;
Hashimoto and Tsuruoka, 2017)) or may be too
restrictive in modeling the interface between syn-
tax and the translation task (e.g., learning repre-
sentations of linguistic phrases (Eriguchi et al.,
2016)). Our goal is to provide the encoder with
access to rich syntactic information but let it de-
cide which aspects of syntax are beneficial for
MT, without placing rigid constraints on the in-
teraction between syntax and the translation task.
This goal is in line with claims that rigid syntac-
tic constraints typically hurt MT (Zollmann and
Venugopal, 2006; Smith and Eisner, 2006; Chiang,
2010), and, though these claims have been made in
the context of traditional MT systems, we believe
they are no less valid for NMT.

Attention-based NMT systems (Bahdanau et al.,
2015; Luong et al., 2015b) represent source sen-
tence words as latent-feature vectors in the en-
coder and use these vectors when generating a
translation. Our goal is to automatically incorpo-
rate information about syntactic neighborhoods of
source words into these feature vectors, and, thus,
potentially improve quality of the translation out-
put. Since vectors correspond to words, it is natu-
ral for us to use dependency syntax. Dependency
trees (see Figure 1) represent syntactic relations
between words: for example, monkey is a subject
of the predicate eats, and banana is its object.

In order to produce syntax-aware feature
representations of words, we exploit graph-
convolutional networks (GCNs) (Duvenaud et al.,
2015; Defferrard et al., 2016; Kearnes et al., 2016;
Kipf and Welling, 2016). GCNs can be regarded
as computing a latent-feature representation of a
node (i.e. a real-valued vector) based on its k-
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Figure 1: A dependency tree for the example sen-
tence: “The monkey eats a banana.”

th order neighborhood (i.e. nodes at most k hops
aways from the node) (Gilmer et al., 2017). They
are generally simple and computationally inexpen-
sive. We use Syntactic GCNs, a version of GCN
operating on top of syntactic dependency trees, re-
cently shown effective in the context of semantic
role labeling (Marcheggiani and Titov, 2017).

Since syntactic GCNs produce representations
at word level, it is straightforward to use them
as encoders within the attention-based encoder-
decoder framework. As NMT systems are trained
end-to-end, GCNs end up capturing syntactic
properties specifically relevant to the translation
task. Though GCNs can take word embeddings
as input, we will see that they are more effec-
tive when used as layers on top of recurrent neu-
ral network (RNN) or convolutional neural net-
work (CNN) encoders (Gehring et al., 2016), en-
riching their states with syntactic information.
A comparison to RNNs is the most challenging
test for GCNs, as it has been shown that RNNs
(e.g., LSTMs) are able to capture certain syntac-
tic phenomena (e.g., subject-verb agreement) rea-
sonably well on their own, without explicit tree-
bank supervision (Linzen et al., 2016; Shi et al.,
2016). Nevertheless, GCNs appear beneficial even
in this challenging set-up: we obtain +1.2 and +0.7
BLEU point improvements from using syntactic
GCNs on top of bidirectional RNNs for English-
German and English-Czech, respectively.

In principle, GCNs are flexible enough to incor-
porate any linguistic structure as long as they can
be represented as graphs (e.g., dependency-based
semantic-role labeling representations (Surdeanu
et al., 2008), AMR semantic graphs (Banarescu
et al., 2012) and co-reference chains). For ex-
ample, unlike recursive neural networks (Socher
et al., 2013), GCNs do not require the graphs to be
trees. However, in this work we solely focus on
dependency syntax and leave more general inves-
tigation for future work.

Our main contributions can be summarized as
follows:

• we introduce a method for incorporating
structure into NMT using syntactic GCNs;

• we show that GCNs can be used along with
RNN and CNN encoders;

• we show that incorporating structure is ben-
eficial for machine translation on English-
Czech and English-German.

2 Background

Notation. We use x for vectors, x1:t for a se-
quence of t vectors, and X for matrices. The i-th
value of vector x is denoted by xi. We use ◦ for
vector concatenation.

2.1 Neural Machine Translation
In NMT (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014b), given
example translation pairs from a parallel corpus, a
neural network is trained to directly estimate the
conditional distribution p(y1:Ty |x1:Tx) of translat-
ing a source sentence x1:Tx (a sequence of Tx

words) into a target sentence y1:Ty . NMT mod-
els typically consist of an encoder, a decoder and
some method for conditioning the decoder on the
encoder, for example, an attention mechanism. We
will now briefly describe the components that we
use in this paper.

2.1.1 Encoders
An encoder is a function that takes as input the
source sentence and produces a representation en-
coding its semantic content. We describe recur-
rent, convolutional and bag-of-words encoders.

Recurrent. Recurrent neural networks (RNNs)
(Elman, 1990) model sequential data. They re-
ceive one input vector at each time step and up-
date their hidden state to summarize all inputs up
to that point. Given an input sequence x1:Tx =
x1,x2, . . . ,xTx of word embeddings an RNN is
defined recursively as follows:

RNN(x1:t) = f(xt,RNN(x1:t−1))

where f is a nonlinear function such as an LSTM
(Hochreiter and Schmidhuber, 1997) or a GRU
(Cho et al., 2014b). We will use the function RNN
as an abstract mapping from an input sequence
x1:T to final hidden state RNN(x1:Tx), regardless
of the used nonlinearity. To not only summarize
the past of a word, but also its future, a bidirec-
tional RNN (Schuster and Paliwal, 1997; Irsoy and
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Cardie, 2014) is often used. A bidirectional RNN
reads the input sentence in two directions and then
concatenates the states for each time step:

BIRNN(x1:Tx , t) = RNNF (x1:t)◦RNNB(xTx:t)

where RNNF and RNNB are the forward and
backward RNNs, respectively. For further details
we refer to the encoder of Bahdanau et al. (2015).

Convolutional. Convolutional Neural Networks
(CNNs) apply a fixed-size window over the input
sequence to capture the local context of each word
(Gehring et al., 2016). One advantage of this ap-
proach over RNNs is that it allows for fast parallel
computation, while sacrificing non-local context.
To remedy the loss of context, multiple CNN lay-
ers can be stacked. Formally, given an input se-
quence x1:Tx , we define a CNN as follows:

CNN(x1:Tx , t) = f(xt−bw/2c, ..,xt, ..,xt+bw/2c)

where f is a nonlinear function, typically a lin-
ear transformation followed by ReLU, andw is the
size of the window.

Bag-of-Words. In a bag-of-words (BoW) en-
coder every word is simply represented by its word
embedding. To give the decoder some sense of
word position, position embeddings (PE) may be
added. There are different strategies for defining
position embeddings, and in this paper we choose
to learn a vector for each absolute word position
up to a certain maximum length. We then repre-
sent the t-th word in a sequence as follows:

BOW(x1:Tx , t) = xt + pt

where xt is the word embedding and pt is the t-th
position embedding.

2.1.2 Decoder
A decoder produces the target sentence condi-
tioned on the representation of the source sentence
induced by the encoder. In Bahdanau et al. (2015)
the decoder is implemented as an RNN condi-
tioned on an additional input ci, the context vector,
which is dynamically computed at each time step
using an attention mechanism.

The probability of a target word yi is now a
function of the decoder RNN state, the previous
target word embedding, and the context vector.
The model is trained end-to-end for maximum log
likelihood of the next target word given its context.

2.2 Graph Convolutional Networks

We will now describe the Graph Convolutional
Networks (GCNs) of Kipf and Welling (2016).
For a comprehensive overview of alternative GCN
architectures see Gilmer et al. (2017).

A GCN is a multilayer neural network that
operates directly on a graph, encoding informa-
tion about the neighborhood of a node as a real-
valued vector. In each GCN layer, information
flows along edges of the graph; in other words,
each node receives messages from all its imme-
diate neighbors. When multiple GCN layers are
stacked, information about larger neighborhoods
gets integrated. For example, in the second layer,
a node will receive information from its immediate
neighbors, but this information already includes
information from their respective neighbors. By
choosing the number of GCN layers, we regulate
the distance the information travels: with k lay-
ers a node receives information from neighbors at
most k hops away.

Formally, consider an undirected graph G =
(V, E), where V is a set of n nodes, and E is a
set of edges. Every node is assumed to be con-
nected to itself, i.e. ∀v ∈ V : (v, v) ∈ E . Now,
let X ∈ Rd×n be a matrix containing all n nodes
with their features, where d is the dimensionality
of the feature vectors. In our case, X will contain
word embeddings, but in general it can contain any
kind of features. For a 1-layer GCN, the new node
representations are computed as follows:

hv = ρ

( ∑
u∈N (v)

Wxu + b

)

where W ∈ Rd×d is a weight matrix and b ∈ Rd

a bias vector.1 ρ is an activation function, e.g. a
ReLU.N (v) is the set of neighbors of v, which we
assume here to always include v itself. As stated
before, to allow information to flow over multiple
hops, we need to stack GCN layers. The recursive
computation is as follows:

h(j+1)
v = ρ

( ∑
u∈N (v)

W (j)h(j)
u + b(j)

)

where j indexes the layer, and h(0)
v = xv.

1We dropped the normalization factor used by Kipf
and Welling (2016), as it is not used in syntactic GCNs
of Marcheggiani and Titov (2017).
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Figure 2: A 2-layer syntactic GCN on top of a convolutional encoder. Loop connections are depicted
with dashed edges, syntactic ones with solid (dependents to heads) and dotted (heads to dependents)
edges. Gates and some labels are omitted for clarity.

2.3 Syntactic GCNs
Marcheggiani and Titov (2017) generalize GCNs
to operate on directed and labeled graphs.2 This
makes it possible to use linguistic structures such
as dependency trees, where directionality and edge
labels play an important role. They also integrate
edge-wise gates which let the model regulate con-
tributions of individual dependency edges. We
will briefly describe these modifications.

Directionality. In order to deal with direction-
ality of edges, separate weight matrices are used
for incoming and outgoing edges. We follow the
convention that in dependency trees heads point
to their dependents, and thus outgoing edges are
used for head-to-dependent connections, and in-
coming edges are used for dependent-to-head con-
nections. Modifying the recursive computation for
directionality, we arrive at:

h(j+1)
v = ρ

( ∑
u∈N (v)

W
(j)
dir(u,v) h

(j)
u + b(j)

dir(u,v)

)

where dir(u, v) selects the weight matrix associ-
ated with the directionality of the edge connecting
u and v (i.e. WIN for u-to-v, WOUT for v-to-u,
and WLOOP for v-to-v). Note that self loops are
modeled separately,

so there are now three times as many parameters
as in a non-directional GCN.

2For an alternative approach to integrating labels and di-
rections, see applications of GCNs to statistical relation learn-
ing (Schlichtkrull et al., 2017).

Labels. Making the GCN sensitive to labels is
straightforward given the above modifications for
directionality. Instead of using separate matrices
for each direction, separate matrices are now de-
fined for each direction and label combination:

h(j+1)
v = ρ

( ∑
u∈N (v)

W
(j)
lab(u,v) h

(j)
u + b(j)

lab(u,v)

)

where we incorporate the directionality of an edge
directly in its label.

Importantly, to prevent over-parametrization,
only bias terms are made label-specific, in other
words: Wlab(u,v) = Wdir(u,v). The resulting syn-
tactic GCN is illustrated in Figure 2 (shown on top
of a CNN, as we will explain in the subsequent
section).

Edge-wise gating. Syntactic GCNs also include
gates, which can down-weight the contribution of
individual edges. They also allow the model to
deal with noisy predicted structure, i.e. to ignore
potentially erroneous syntactic edges. For each
edge, a scalar gate is calculated as follows:

g(j)
u,v = σ

(
h(j)

u · ŵ(j)
dir(u,v) + b̂

(j)
lab(u,v)

)
where σ is the logistic sigmoid function, and
ŵ(j)

dir(u,v) ∈ Rd and b̂(j)lab(u,v) ∈ R are learned pa-
rameters for the gate. The computation becomes:

h(j+1)
v =ρ

(∑
u∈N (v)

g(j)
u,v

(
W

(j)
dir(u,v) h

(j)
u + b(j)

lab(u,v)

))
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3 Graph Convolutional Encoders

In this work we focus on exploiting structural in-
formation on the source side, i.e. in the encoder.
We hypothesize that using an encoder that incor-
porates syntax will lead to more informative rep-
resentations of words, and that these representa-
tions, when used as context vectors by the decoder,
will lead to an improvement in translation qual-
ity. Consequently, in all our models, we use the
decoder of Bahdanau et al. (2015) and keep this
part of the model constant. As is now common
practice, we do not use a maxout layer in the de-
coder, but apart from this we do not deviate from
the original definition. In all models we make use
of GRUs (Cho et al., 2014b) as our RNN units.

Our models vary in the encoder part, where we
exploit the power of GCNs to induce syntactically-
aware representations. We now define a series of
encoders of increasing complexity.

BoW + GCN. In our first and simplest model,
we propose a bag-of-words encoder (with position
embeddings, see §2.1.1), with a GCN on top. In
other words, inputs h(0) are a sum of embeddings
of a word and its position in a sentence. Since the
original BoW encoder captures the linear order-
ing information only in a very crude way (through
the position embeddings), the structural informa-
tion provided by GCN should be highly beneficial.

Convolutional + GCN. In our second model,
we use convolutional neural networks to learn
word representations. CNNs are fast, but by def-
inition only use a limited window of context. In-
stead of the approach used by Gehring et al. (2016)
(i.e. stacking mulitple CNN layers on top of each
other), we use a GCN to enrich the one-layer CNN
representations. Figure 2 shows this model. Note
that, while the figure shows a CNN with a window
size of 3, we will use a larger window size of 5 in
our experiments. We expect this model to perform
better than BoW + GCN, because of the additional
local context captured by the CNN.

BiRNN + GCN. In our third and most powerful
model, we employ bidirectional recurrent neural
networks. In this model, we start by encoding the
source sentence using a BiRNN (i.e. BiGRU), and
use the resulting hidden states as input to a GCN.
Instead of relying on linear order only, the GCN
will allow the encoder to ‘teleport’ over parts of
the input sentence, along dependency edges, con-

necting words that otherwise might be far apart.
The model might not only benefit from this tele-
porting capability however; also the nature of the
relations between words (i.e. dependency relation
types) may be useful, and the GCN exploits this
information (see §2.3 for details).

This is the most challenging setup for GCNs,
as RNNs have been shown capable of capturing at
least some degree of syntactic information with-
out explicit supervision (Linzen et al., 2016), and
hence they should be hard to improve on by incor-
porating treebank syntax.

Marcheggiani and Titov (2017) did not observe
improvements from using multiple GCN layers in
semantic role labeling. However, we do expect
that propagating information from further in the
tree should be beneficial in principle. We hypoth-
esize that the first layer is the most influential one,
capturing most of the syntactic context, and that
additional layers only modestly modify the repre-
sentations. To ease optimization, we add a resid-
ual connection (He et al., 2016) between the GCN
layers, when using more than one layer.

4 Experiments

Experiments are performed using the Neural Mon-
key toolkit3 (Helcl and Libovický, 2017), which
implements the model of Bahdanau et al. (2015)
in TensorFlow. We use the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of
0.001 (0.0002 for CNN models).4 The batch size
is set to 80. Between layers we apply dropout
with a probability of 0.2, and in experiments with
GCNs5 we use the same value for edge dropout.
We train for 45 epochs, evaluating the BLEU per-
formance of the model every epoch on the vali-
dation set. For testing, we select the model with
the highest validation BLEU. L2 regularization is
used with a value of 10−8. All the model selection
(incl. hyperparameter selections) was performed
on the validation set. In all experiments we obtain
translations using a greedy decoder, i.e. we se-
lect the output token with the highest probability
at each time step.

We will describe an artificial experiment in §4.1
and MT experiments in §4.2.

3https://github.com/ufal/neuralmonkey
4Like Gehring et al. (2016) we note that Adam is too ag-

gressive for CNN models, hence we use a lower learning rate.
5GCN code at https://github.com/bastings/neuralmonkey
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4.1 Reordering artificial sequences
Our goal here is to provide an intuition for the ca-
pabilities of GCNs. We define a reordering task
where randomly permuted sequences need to be
put back into the original order. We encode the
original order using edges, and test if GCNs can
successfully exploit them. Note that this task is not
meant to provide a fair comparison to RNNs. The
input (besides the edges) simply does not carry any
information about the original ordering, so RNNs
cannot possibly solve this task.

Data. From a vocabulary of 26 types, we gen-
erate random sequences of 3-10 tokens. We then
randomly permute them, pointing every token to
its original predecessor with a label sampled from
a set of 5 labels. Additionally, we point every to-
ken to an arbitrary position in the sequence with a
label from a distinct set of 5 ‘fake’ labels. We sam-
ple 25000 training and 1000 validation sequences.

Model. We use the BiRNN + GCN model, i.e. a
bidirectional GRU with a 1-layer GCN on top. We
use 32, 64 and 128 units for embeddings, GRU
units and GCN layers, respectively.

Results. After 6 epochs of training, the model
learns to put permuted sequences back into or-
der, reaching a validation BLEU of 99.2. Fig-
ure 3 shows that the mean values of the bias
terms of gates (i.e. b̂) for real and fake edges are
far apart, suggesting that the GCN learns to dis-
tinguish them. Interestingly, this illustrates why
edge-wise gating is beneficial. A gate-less model
would not understand which of the two outgoing
arcs is fake and which is genuine, because only
biases b would then be label-dependent. Conse-
quently, it would only do a mediocre job in re-
ordering. Although using label-specific matrices
W would also help, this would not scale to the real
scenario (see §2.3).

4.2 Machine Translation
Data. For our experiments we use the En-De
and En-Cs News Commentary v11 data from the
WMT16 translation task.6 For En-De we also
train on the full WMT16 data set. As our valida-
tion set and test set we use newstest2015 and
newstest2016, respectively.

Pre-processing. The English sides of the cor-
pora are tokenized and parsed into dependency

6http://www.statmt.org/wmt16/translation-task.html

0 50 100 150 200 250
Steps (x1000)

4

2

0

2

4

6

8

M
ea

n 
ga

te
 b

ia
s

real edges
fake edges

Figure 3: Mean values of gate bias terms for real
(useful) labels and for fake (non useful) labels sug-
gest the GCN learns to distinguish them.

trees by SyntaxNet,7 using the pre-trained Parsey
McParseface model.8 The Czech and German
sides are tokenized using the Moses tokenizer.9

Sentence pairs where either side is longer than 50
words are filtered out after tokenization.

Vocabularies. For the English sides, we con-
struct vocabularies from all words except those
with a training set frequency smaller than three.
For Czech and German, to deal with rare words
and phenomena such as inflection and compound-
ing, we learn byte-pair encodings (BPE) as de-
scribed by Sennrich et al. (2016b). Given the size
of our data set, and following Wu et al. (2016), we
use 8000 BPE merges to obtain robust frequencies
for our subword units (16000 merges for full data
experiment). Data set statistics are summarized in
Table 1 and vocabulary sizes in Table 2.

Train Val. Test

English-German 226822 2169 2999
English-German (full) 4500966 2169 2999
English-Czech 181112 2656 2999

Table 1: The number of sentences in our data sets.

Hyperparameters. We use 256 units for word
embeddings, 512 units for GRUs (800 for En-De
full data set experiment), and 512 units for con-
volutional layers (or equivalently, 512 ‘channels’).
The dimensionality of the GCN layers is equiva-

7https://github.com/tensorflow/models/tree/master/syntaxnet
8The used dependency parses can be reproduced by using

the syntaxnet/demo.sh shell script.
9https://github.com/moses-smt/mosesdecoder

1962



Source Target

English-German 37824 8099 (BPE)
English-German (full) 50000 16000 (BPE)
English-Czech 33786 8116 (BPE)

Table 2: Vocabulary sizes.

lent to the dimensionality of their input. We report
results for 2-layer GCNs, as we find them most ef-
fective (see ablation studies below).

Baselines. We provide three baselines, each
with a different encoder: a bag-of-words encoder,
a convolutional encoder with window size w = 5,
and a BiRNN. See §2.1.1 for details.

Evaluation. We report (cased) BLEU results
(Papineni et al., 2002) using multi-bleu, as
well as Kendall τ reordering scores.10

4.2.1 Results
English-German. Table 3 shows test results
on English-German. Unsurprisingly, the bag-of-
words baseline performs the worst. We expected
the BoW+GCN model to make easy gains over
this baseline, which is indeed what happens. The
CNN baseline reaches a higher BLEU4 score than
the BoW models, but interestingly its BLEU1

score is lower than the BoW+GCN model. The
CNN+GCN model improves over the CNN base-
line by +1.9 and +1.1 for BLEU1 and BLEU4, re-
spectively. The BiRNN, the strongest baseline,
reaches a BLEU4 of 14.9. Interestingly, GCNs
still manage to improve the result by +2.3 BLEU1

and +1.2 BLEU4 points. Finally, we observe a big
jump in BLEU4 by using the full data set and beam
search (beam 12). The BiRNN now reaches 23.3,
while adding a GCN achieves a score of 23.9.

English-Czech. Table 4 shows test results on
English-Czech. While it is difficult to obtain high
absolute BLEU scores on this dataset, we can still
see similar relative improvements. Again the BoW
baseline scores worst, with the BoW+GCN eas-
ily beating that result. The CNN baseline scores
BLEU4 of 8.1, but the CNN+GCN improves on
that, this time by +1.0 and +0.6 for BLEU1 and
BLEU4, respectively. Interestingly, BLEU1 scores
for the BoW+GCN and CNN+GCN models are

10See Stanojević and Simaan (2015). TER (Snover et al.,
2006) and BEER (Stanojević and Sima’an, 2014) metrics,
even though omitted due to space considerations, are con-
sistent with the reported results.

Kendall BLEU1 BLEU4

BoW 0.3352 40.6 9.5
+ GCN 0.3520 44.9 12.2

CNN 0.3601 42.8 12.6
+ GCN 0.3777 44.7 13.7

BiRNN 0.3984 45.2 14.9
+ GCN 0.4089 47.5 16.1

BiRNN (full) 0.5440 53.0 23.3
+ GCN 0.5555 54.6 23.9

Table 3: Test results for English-German.

higher than both baselines so far. Finally, the
BiRNN baseline scores a BLEU4 of 8.9, but it
is again beaten by the BiRNN+GCN model with
+1.9 BLEU1 and +0.7 BLEU4.

Kendall BLEU1 BLEU4

BoW 0.2498 32.9 6.0
+ GCN 0.2561 35.4 7.5

CNN 0.2756 35.1 8.1
+ GCN 0.2850 36.1 8.7

BiRNN 0.2961 36.9 8.9
+ GCN 0.3046 38.8 9.6

Table 4: Test results for English-Czech.

Effect of GCN layers. How many GCN layers
do we need? Every layer gives us an extra hop
in the graph and expands the syntactic neighbor-
hood of a word. Table 5 shows validation BLEU
performance as a function of the number of GCN
layers. For English-German, using a 1-layer GCN
improves BLEU-1, but surprisingly has little effect
on BLEU4. Adding an additional layer gives im-
provements on both BLEU1 and BLEU4 of +1.3
and +0.73, respectively. For English-Czech, per-
formance increases with each added GCN layer.

En-De En-Cs
BLEU1 BLEU4 BLEU1 BLEU4

BiRNN 44.2 14.1 37.8 8.9
+ GCN (1L) 45.0 14.1 38.3 9.6
+ GCN (2L) 46.3 14.8 39.6 9.9

Table 5: Validation BLEU for English-German
and English-Czech for 1- and 2-layer GCNs.
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Effect of sentence length. We hypothesize that
GCNs should be more beneficial for longer sen-
tences: these are likely to contain long-distance
syntactic dependencies which may not be ade-
quately captured by RNNs but directly encoded
in GCNs. To test this, we partition the validation
data into five buckets and calculate BLEU for each
of them. Figure 4 shows that GCN-based models
outperform their respective baselines rather uni-
formly across all buckets. This is a surprising re-
sult. One explanation may be that syntactic parses
are noisier for longer sentences, and this prevents
us from obtaining extra improvements with GCNs.

<=10 11-20 21-30 31-40 41+
Sentence length

8

10

12

14

16

BL
EU

CNN
CNN + GCN
BiRNN
BiRNN + GCN

Figure 4: Validation BLEU per sentence length.

Discussion. Results suggest that the syntax-
aware representations provided by GCNs consis-
tently lead to improved translation performance
as measured by BLEU4 (as well as TER and
BEER). Consistent gains in terms of Kendall tau
and BLEU1 indicate that improvements correlate
with better word order and lexical/BPE selection,
two phenomena that depend crucially on syntax.

5 Related Work

We review various accounts to syntax in NMT as
well as other convolutional encoders.

Syntactic features and/or constraints. Sen-
nrich and Haddow (2016) embed features such as
POS-tags, lemmas and dependency labels and feed
these into the network along with word embed-
dings. Eriguchi et al. (2016) parse English sen-
tences with an HPSG parser and use a Tree-LSTM
to encode the internal nodes of the tree. In the
decoder, word and node representations compete
under the same attention mechanism. Stahlberg
et al. (2016) use a pruned lattice from a hierarchi-
cal phrase-based model (hiero) to constrain NMT.

Hiero trees are not syntactically-aware, but instead
constrained by symmetrized word alignments.
Aharoni and Goldberg (2017) propose neural
string-to-tree by predicting linearized parse trees.

Multi-task Learning. Sharing NMT parameters
with a syntactic parser is a popular approach to
obtaining syntactically-aware representations. Lu-
ong et al. (2015a) predict linearized constituency
parses as an additional task. Eriguchi et al. (2017)
multi-task with a target-side RNNG parser (Dyer
et al., 2016) and improve on various language
pairs with English on the target side. Nadejde et al.
(2017) multi-task with CCG tagging, and also in-
tegrate syntax on the target side by predicting a se-
quence of words interleaved with CCG supertags.

Latent structure. Hashimoto and Tsuruoka
(2017) add a syntax-inspired encoder on top of
a BiLSTM layer. They encode source words as
a learned average of potential parents emulating
a relaxed dependency tree. While their model is
trained purely on translation data, they also ex-
periment with pre-training the encoder using tree-
bank annotation and report modest improvements
on English-Japanese. Yogatama et al. (2016) in-
troduce a model for language understanding and
generation that composes words into sentences by
inducing unlabeled binary bracketing trees.

Convolutional encoders. Gehring et al. (2016)
show that CNNs can be competitive to BiRNNs
when used as encoders. To increase the receptive
field of a word’s context they stack multiple CNN
layers. Kalchbrenner et al. (2016) use convolution
in both the encoder and the decoder; they make use
of dilation to increase the receptive field. In con-
trast to both approaches, we use a GCN informed
by dependency structure to increase it. Finally,
Cho et al. (2014a) propose a recursive convolu-
tional neural network which builds a tree out of
the word leaf nodes, but which ends up compress-
ing the source sentence in a single vector.

6 Conclusions

We have presented a simple and effective approach
to integrating syntax into neural machine trans-
lation models and have shown consistent BLEU4

improvements for two challenging language pairs:
English-German and English-Czech. Since GCNs
are capable of encoding any kind of graph-based
structure, in future work we would like to go be-
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yond syntax, by using semantic annotations such
as SRL and AMR, and co-reference chains.
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