
ACL-08: HLT

46th
Annual Meeting

of the Association for
Computational Linguistics:

Human Language
Technologies

Proceedings of the Demo Session

June 16, 2008
The Ohio State University

Columbus, Ohio, USA



Production and Manufacturing by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53707
USA

c©2008 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii



Introduction

Welcome to the proceedings of the demo session. We received 21 submissions, 9 of which were selected
for inclusion in the program after review by at least two members of the program committee.

iii





Chair:

Jimmy Lin (University of Maryland)

Program Committee:

Marine Carpuat (HKUST)
Joyce Chai (Michigan State University)
Trevor Cohn (University of Edinburgh)
Damianos Karakos (Johns Hopkins University)
Terry Koo (MIT)
Alberto Lavelli (FBK-irst)
Don Metzler (Yahoo! Research)
Andrew Rosenberg (Columbia University)
Hiroshi Nakagawa (University of Tokyo)
Takenobu Tokunaga (Tokyo Instiute of Technology)

v





Table of Contents

Demonstration of a POMDP Voice Dialer
Jason Williams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Generating Research Websites Using Summarisation Techniques
Advaith Siddharthan and Ann Copestake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

BART: A Modular Toolkit for Coreference Resolution
Yannick Versley, Simone Paolo Ponzetto, Massimo Poesio, Vladimir Eidelman, Alan Jern, Jason

Smith, Xiaofeng Yang and Alessandro Moschitti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Demonstration of the UAM CorpusTool for Text and Image Annotation
Mick O’Donnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Interactive ASR Error Correction for Touchscreen Devices
David Huggins-Daines and Alexander I. Rudnicky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Yawat: Yet Another Word Alignment Tool
Ulrich Germann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

SIDE: The Summarization Integrated Development Environment
Moonyoung Kang, Sourish Chaudhuri, Mahesh Joshi and Carolyn P. Rosé . . . . . . . . . . . . . . . . . . 24

ModelTalker Voice Recorder—An Interface System for Recording a Corpus of Speech for Synthesis
Debra Yarrington, John Gray, Chris Pennington, H. Timothy Bunnell, Allegra Cornaglia, Jason

Lilley, Kyoko Nagao and James Polikoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

The QuALiM Question Answering Demo: Supplementing Answers with Paragraphs drawn from Wikipedia
Michael Kaisser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii





Proceedings of the ACL-08: HLT Demo Session (Companion Volume), pages 1–4,
Columbus, June 2008. c©2008 Association for Computational Linguistics

Demonstration of a POMDP Voice Dialer

Jason Williams
AT&T Labs – Research, Shannon Laboratory
180 Park Ave., Florham Park, NJ 07932, USA

jdw@research.att.com

Abstract

This is a demonstration of a voice di-
aler, implemented as a partially observable
Markov decision process (POMDP). A real-
time graphical display shows the POMDP’s
probability distribution over different possi-
ble dialog states, and shows how system out-
put is generated and selected. The system
demonstrated here includes several recent ad-
vances, including an action selection mecha-
nism which unifies a hand-crafted controller
and reinforcement learning. The voice dialer
itself is in use today in AT&T Labs and re-
ceives daily calls.

1 Introduction

Partially observable Markov decision processes
(POMDPs) provide a principled formalism for plan-
ning under uncertainty, and past work has argued
that POMDPs are an attractive framework for build-
ing spoken dialog systems (Williams and Young,
2007a). POMDPs differ from conventional dialog
systems in two respects. First, rather than main-
taining a single hypotheses for the dialog state,
POMDPs maintain a probability distribution called
a belief stateover many possible dialog states. A
distribution over a multiple dialog state hypothe-
ses adds inherent robustness, because even if an er-
ror is introduced into one dialog hypothesis, it can
later be discarded in favor of other, uncontaminated
dialog hypotheses. Second, POMDPs choose ac-
tions using an optimization process, in which a de-
veloper specifies high-level goals and the optimiza-
tion works out the detailed dialog plan. Because

of these innovations, POMDP-based dialog systems
have, in research settings, shown more resilience
to speech recognition errors, yielding shorter di-
alogs with higher task completion rates (Williams
and Young, 2007a; Williams and Young, 2007b).

Because POMDPs differ significantly from con-
ventional techniques, their operation can be difficult
to conceptualize. This demonstration provides an
accessible illustration of the operation of a state-of-
the-art POMDP-based dialog system. The system
itself is a voice dialer, which has been operational
for several months in AT&T Labs. The system in-
corporates several recent advances, including effi-
cient large-scale belief monitoring (akin to Young et
al., 2006), policy compression (Williams and Young,
2007b), and a hybrid hand-crafted/optimized dialog
manager (Williams, 2008). All of these elements
are depicted in a graphical display, which is updated
in real time, as a call is progressing. Whereas pre-
vious demonstrations of POMDP-based dialog sys-
tems have focused on showing the probability distri-
bution over dialog states (Young et al., 2007), this
demonstration adds new detail to convey how ac-
tions are chosen by the dialog manager.

In the remainder of this paper, Section 2 presents
the dialog system and explains how the POMDP ap-
proach has been applied. Then, section 3 explains
the graphical display which illustrates the operation
of the POMDP.

2 System description

This application demonstrated here is a voice dialer
application, which is accessible within the AT&T re-
search lab and receives daily calls. The dialer’s vo-

1



cabulary consists of 50,000 AT&T employees.
The dialog manager in the dialer is implemented

as a POMDP. In the POMDP approach, a distribu-
tion called a belief state is maintained over many
possible dialog states, and actions are chosen us-
ing reinforcement learning (Williams and Young,
2007a). In this application, a distribution is main-
tained over all of the employees’ phone listings in
the dialer’s vocabulary, such as Jason Williams’ of-
fice phone or Srinivas Bangalore’s cell phone. As
speech recognition results are received, this distri-
bution is updated using probability models of how
users are likely to respond to questions and how the
speech recognition process is likely to corrupt user
speech. The benefit of tracking this belief state is
that it synthesizes all of the ASR N-Best lists over
the whole dialog – i.e., it makes the most possible
use of the information from the speech recognizer.

POMDPs then choose actions based on this be-
lief state using reinforcement learning (Sutton and
Barto, 1998). A developer writes a reward func-
tion which assigns a real number to each state/action
pair, and an optimization algorithm determines how
to choose actions in order to maximize the expected
sumof rewards. In other words, the optimization
performs planning and this allows a developer to
specify the trade-off to use between task comple-
tion and dialog length. In this system, a simple re-
ward function assigns -1 per system action plus +/-
20 for correctly/incorrectly transferring the caller at
the end of the call. Optimization was performed
roughly following (Williams and Young, 2007b), by
running dialogs in simulation.

Despite their theoretical elegance, applying a
POMDP to this spoken dialog system has presented
several interesting research challenges. First, scal-
ing the number of listings quickly prevents the be-
lief state from being updated in real-time, and here
we track a distribution overpartitions, which is akin
to a beam search in ASR (Young et al., 2006). At
first, all listings are undifferentiated in a single mas-
ter partition. If a listing appears on the N-Best list,
it is separated into its own partition and tracked sep-
arately. If the number of partitions grows too large,
then low-probability partitions are folded back into
the master undifferentiated partition. This technique
allows a well-formed distribution to be maintained
over an arbitrary number of concepts in real-time.

Second, the optimization process which chooses
actions is also difficult to scale. To tackle this,
the so-called “summary POMDP” has been adopted,
which performs optimization in a compressed space
(Williams and Young, 2007b). Actions are mapped
into clusters calledmnemonics, and states are com-
pressed into state feature vectors. During opti-
mization, a set of template state feature vectors are
sampled, and values are computed for each action
mnemonic at each template state feature vector.

Finally, in the classical POMDP approach there is
no straightforward way to impose rules on system
behavior because the optimization algorithm con-
siders taking any action at any point. This makes
it impossible to impose design constraints or busi-
ness rules, and also needlessly re-discovers obvious
domain properties during optimization. In this sys-
tem, a hybrid POMDP/hand-crafted dialog manager
is used (Williams, 2008). The POMDP and con-
ventional dialog manager run in parallel; the con-
ventional dialog manager nominates asetof oneor
moreallowed actions, and the POMDP chooses the
optimal action from this set. This approach enables
rules to be imposed and allows prompts to easily be
made context-specific.

The POMDP dialer has been compared to a con-
vention version in dialog simulation, and improved
task completion from 92% to 97% while keeping di-
alog length relatively stable. The system has been
deployed in the lab and we are currently collecting
data to assess performance with real callers.

3 Demonstration

A browser-based graphical display has been created
which shows the operation of the POMDP dialer
in real time, shown in Figure 1. The page is up-
dated after the user speech has been processed, and
before the next system action has been played to
the user. The left-most column shows the system
prompt which was just played to the user, and the
N-Best list of recognized text strings, each with its
confidence score.

The center column shows the POMDP belief
state. Initially, all of the belief is held by the mas-
ter, undifferentiated partition, which is shown as a
green bar and always shown first. As names are rec-
ognized, they are tracked separately, and the top 10

2



Previous 
system action

N-Best 
recognition 

with 
confidence 

scores

POMDP belief 
state 

Features of the 
current dialog 

state

Allowed 
actions

Values of the 
allowed 
actions

Resulting 
system action, 
output to TTS

Figure 1:Overview of the graphical display. Contents are described in the text.

names are shown as blue bars, sorted by their belief.
If the system asks for the phone type (office or mo-
bile), then the bars sub-divide into a light blue (for
office) and dark blue (for mobile).

The right column shows how actions are selected.
The top area shows the features of the current state
used to choose actions. Red bars show the two con-
tinuous features: the belief in the most likely name
and most likely type of phone. Below that, three
discrete features are shown: how many phones are
available (none, one, or both); whether the most
likely name has been confirmed (yes or no); and
whether the most likely name is ambiguous (yes
or no). Below this, the allowed actions (i.e., those
which are nominated by the hand-crafted dialog
manager) are shown. Each action is preceded by the
action mnemonic, shown in bold. Below the allowed
actions, the action selection process is shown. The
values of the action mnemonic at the closest tem-
plate point are shown next to each action mnemonic.
Finally the text of this action, which is output to the
caller, is shown at the bottom of the right-hand col-
umn. Figure 2 shows the audio and video transcrip-
tion of an interaction with the demonstration.

4 Conclusion

This demonstration has shown the operation of a
POMDP-based dialog system, which incorporates
recent advances including efficient large-scale belief

monitoring, policy compression, and a unified hand-
crafted/optimized dialog manager. A graphical dis-
play shows the operation of the system in real-time,
as a call progresses, which helps make the POMDP
approach accessible to a non-specialist.

Acknowledgments

Thanks to Iker Arizmendi and Vincent Goffin for
help with the implementation.

References

R Sutton and A Barto. 1998.Reinforcement Learning:
an Introduction. MIT Press.

JD Williams and SJ Young. 2007a. Partially observable
Markov decision processes for spoken dialog systems.
Computer Speech and Language, 21(2):393–422.

JD Williams and SJ Young. 2007b. Scaling POMDPs for
spoken dialog management.IEEE Trans. on Audio,
Speech, and Language Processing, 15(7):2116–2129.

JD Williams. 2008. The best of both worlds: Unifying
conventional dialog systems and POMDPs. In(In sub-
mission).

SJ Young, JD Williams, J Schatzmann, MN Stuttle, and
K Weilhammer. 2006. The hidden information state
approach to dialogue management. Technical Re-
port CUED/F-INFENG/TR.544, Cambridge Univer-
sity Engineering Department.

SJ Young, J Schatzmann, B R M Thomson, KWeilham-
mer, and H Ye. 2007. The hidden information state
dialogue manager: A real-world POMDP-based sys-
tem. InProc NAACL-HLT, Rochester, New York, USA.

3



Transcript of audio Screenshots of graphical display

S1: Sorry, first and last name?

U1: Junlan Feng

S1: Dialing

S1: Junlan Feng.

U1: Yes

S1: First and last name?

U1: Junlan Feng

Figure 2:The demonstration’s graphical display during a call. The graphical display has been cropped and re-arranged for readability. The caller says “Junlan
Feng” twice, and although each name recognition alone carries a low confidence score, the belief state aggregates this information. This novel behavior enables
the call to progress faster than in the conventional system and illustrates one benefit of the POMDP approach. We have observed several other novel strategies
not in a baseline conventional dialer: for example, the POMDP-based system will confirm a callee’s name at different confidence levels depending on whether the
callee has a phone number listed or not; and uses yes/no confirmation questions to disambiguate when there are two ambiguous callees.

4



Proceedings of the ACL-08: HLT Demo Session (Companion Volume), pages 5–8,
Columbus, June 2008. c©2008 Association for Computational Linguistics

Generating research websites using summarisation techniques

Advaith Siddharthan & Ann Copestake
Natural Language and Information Processing Group

Computer Laboratory, University of Cambridge
{as372,aac10}@cl.cam.ac.uk

Abstract

We describe an application that generates web
pages for research institutions by summarising
terms extracted from individual researchers’
publication titles. Our online demo covers all
researchers and research groups in the Com-
puter Laboratory, University of Cambridge.
We also present a novel visualisation interface
for browsing collaborations.

1 Introduction
Many research organisations organise their websites
as a tree (e.g., department pages→ research group
pages→ researcher pages). Individual researchers
take responsibility for maintaining their own web
pages and, in addition, researchers are organised
into research groups that also maintain a web page.
In this framework, information easily gets outdated,
and publications lists generally stay more up-to-date
than research summaries. Also, as individuals main-
tain their own web pages, connections between re-
searchers in the organisation are often hard to find;
a surfer then needs to move up and down the tree
hierarchy to browse the profiles of different peo-
ple. Browsing is also diffcult because individual
web pages are organised differently, since standard-
ised stylesheets are often considered inappropriate
for diverse organisations.

Research summary pages using stylesheets can
offer alternative methods of information access and
browsing, aiding navigation and providing different
views for different user needs, but these are time-
consuming to create and maintain by hand. We are
exploring the idea of automatically generated and
updated web pages that accurately reflect the re-
search interests being pursued within a research in-
stitution. We take as input existing personal pages

from the Computer Laboratory, University of Cam-
bridge, that contain publication lists in html. In
our automatically generated pages, content (a re-
search summary) is extracted from publication ti-
tles, and hence stays up-to-date provided individ-
ual researchers maintain their publication lists. Note
that publication information is increasingly avail-
able through other sources, such as Google Scholar.

We aim to format information in a way that facil-
itates browsing; a screen shot is shown in Figure 1
for the researcherFrank Stajano, who is a member
of the SecurityandDTG research groups. The left
of the page contains links to researchers of the same
research groups and the middle contains a research
profile in the form of lists of key phrases presented
in five year intervals (by publication date). In addi-
tion, the right of the page contains a list of recom-
mendations: other researchers with similar research
interests. Web pages for research groups are created
by summarising the research profiles of individual
members. In addition, we present a novel interactive
visualisation that we have developed for displaying
collaborations with the rest of the world.

In this paper we describe our methodology for
identifying terms, clustering them and then creating
research summaries (§2) and a generative sum-
mariser of collaborations (§4) that plugs into a novel
visualisation (§3). An online demo is available at:
http://www.cl.cam.ac.uk/research/nl/webpage-demo/NLIP.html

2 Summarising research output
Our program starts with a list of publications ex-
tracted from researcher web pages; for example:

• S. Teufel. 2007. An Overview of evaluation meth-
ods in TREC Ad-hoc Information Retrieval and TREC
Question Answering.In Evaluation of Text and Speech
Systems. L. Dybkjaer, H. Hemsen, W. Minker (Eds.)
Springer, Dordrecht (The Netherlands).

5



From each publication entry such as that above,
the program extractsauthor names, title andyear of
publication. This is the only information used. We
do not use the full paper, as pdfs are not available for
all papers in publication pages (due to copyright and
other issues). The titles are then parsed using the
RASP parser (Briscoe and Carroll, 2002) and key-
phrases are extracted by pattern matching. From the
publication entry above, the extracted title:

“An overview of evaluation methods in TREC ad-hoc
information retrieval and TREC question answering”

produces five key-phrases:

‘evaluation methods’, ‘evaluation methods in TREC
ad-hoc information retrieval’, ‘TREC ad-hoc infor-
mation retrieval’, ‘TREC question answering’, ‘infor-
mation retrieval’

Figure 1: Screenshot: researcher web page.
http://www.cl.cam.ac.uk/research/nl/webpage-demo/FrankStajano.html

Figure 2: Screenshot: research group web page.
http://www.cl.cam.ac.uk/research/nl/webpage-demo/DTG.html

2.1 Individual researcher summaries
To create a web page for an individual researcher,
the key-phrases extracted from all the paper titles
authored by that researcher are clustered together
based on similarity - an example cluster is shown
below (from Karen Sparck Jones’ profile):

‘automatic classification for information retrieval’,
‘intelligent automatic information retrieval’, ‘infor-
mation retrieval test collections’, ‘information re-
trieval system’, ‘automatic classification’, ‘intelligent
retrieval’, ‘information retrieval’, ‘information sci-
ence’, ‘test collections’, ‘mail retrieval’, ‘trec ad-hoc
information retrieval’

A representative phrase (most similar to others in
the cluster) is selected from each cluster (‘informa-
tion retrieval’ from the above) and this phrase is
linked with all the publication dates for papers the
terms in the cluster come from. These extracted key-
phrases are enumerated as lists in five year intervals;
for example (from Karen Sparck Jones’ profile):

1990–1994: ‘information retrieval’; ‘document re-
trieval’; ‘video mail retrieval’; ‘automatic summari-
sation’; ‘belief revision’; ‘discourse structure’; ‘cam-
bridge/olivetti retrieval system’; ‘system architec-
ture’; ‘agent interaction’; ‘better NLP system evalua-
tion’; ‘early classification work’; ‘text retrieval’; ‘dis-
course modelling’...;

2.2 Recommendations (related people)
Recommendations for related people are generated
by comparing the terms extracted between 2000 and
2008 for each researcher in the Computer Labora-
tory. The (at most) seven most similar researchers
are shown in tabular form along with a list of terms
from their profiles that are relevant to the researcher
being viewed. These term lists inform the user as to
why they might find the related people relevant.

2.3 Research Group Pages

Group pages are produced by summarising the pages
of members of the group. Terms from individual
research profiles are clustered according to who is
working on them (gleaned from the author lists of
the the associated paper title). The group page is pre-
sented as a list of clusters. This presentation shows
how group members collaborate, and for each term
shows the relevant researchers, making navigation

6



easier. Two clusters for the Graphics and Interaction
(Rainbow) Group are show below to illustrate:

‘histogram warping’; ‘non-uniform b-spline subdi-
vision’; ‘stylised rendering’; ‘multiresolution im-
age representation’; ‘human behaviour’; ‘subdivi-
sion schemes’; ‘minimising gaussian curvature vari-
ation near extraordinary vertices’; ‘sampled cp sur-
faces’; ‘bounded curvature variants’:Neil Dodgson;
Thomas Cashman; Ursula Augsdorfer;

‘text for multiprojector tiled displays’; ‘tabletop in-
terface’; ‘high-resolution tabletop applications’; ‘dis-
tributed tabletops’; ‘remote review meetings’; ‘rapid
prototyping’:Peter Robinson; Philip Tuddenham;

3 Visualisation
Scalable Vector Graphics (SVG)1 is a language for
describing two-dimensional graphics and graphical
applications in XML. Interactive images such as
those in Figure 3 are produced by an XSLT script
that transforms an input XML data file containing
information about collaborations and latitudes and
longitudes of cities and countries into an SVG rep-
resentation2. This can be viewed through an Adobe
Browser Plugin3. In the map, circles indicate the lo-
cations of co-authors of members of the NLIP re-
search group, their size being proportional to the
number of co-authors at that location. The map can
be zoomed into, and at sufficient zoom, place names
are made visible. Clicking on a location (circle) pro-
vides a summary of the collaboration (the summari-
sation is described in§4), while clicking on a coun-
try (oval) provides a contrywise overview such as:

In the Netherlands, the NLIP Group has collabora-
tors in Philips Research (Eindhoven), University of
Twente (Enschede), Vrije Universiteit (VU) (Amster-
dam) and University of Nijmegen.

4 Summarising collaborations
Our summarisation module slots into the visualisa-
tion interface; an example is shown in Figure 4. The
aim is to summarise the topics that members of the
research group collaborate with the researchers in

1http://www.w3.org/Graphics/SVG/
2Author Affiliations and Latitudes/Longitudes are semi-

automatically extracted from the internet and hand corrected.
The visualisation is only available for some research groups.

3http://www.adobe.com/svg/viewer/install/main.html

Figure 3: Screenshot: Visualisation of Collaboration be-
tween the NLIP Group and the rest of the world

Figure 4: Screenshot: Visualisation of Collaborations of
ARG Group; zoomed into Europe and having clicked on
Catonia (Italy) for a popup summary

each location on. The space constraints are dic-
tated by the interface. To keep the visualisation
clean, we enforce a four sentence limit for the sum-
maries. There are four elements that each sentence
contains— names of researchers in research group,
names of researchers at location, terms that sum-
marise the collaboration, and years of collaboration.

Our summaries are produced by an iterative pro-
cess of clustering and summarising. In the first step,
terms (key phrases) are extracted from all the papers
that have co-authors in the location. Each term is
tagged with the year(s) of publication and the names
of researchers involved. These terms are then clus-
tered based on the similarity of words in the terms
and the similarity of their authors. Each such clus-
ter contributes one sentence to the summary. The
clustering process is pragmatic; the four sentence
per summary limit means that at most four clusters
should be formed. This means coarser clustering
(fewer and larger clusters) for locations with many
collaborations and finer-grained (more and smaller
clusters) for locations with fewer collaborations.

The next step is to generate a sentence from each
cluster. In this step, the terms in a sentence clus-
ter are reclustered according to their date tag. then
each time period is realised separately within the
sentence, for example:

7



Lawrence C Paulson collaborated with Cristiano
Longo and Giampaolo Bella from 1997 to 2003 on
‘formal verification’, ‘industrial payment and non-
repudiation protocol’, ‘kerberos authentication sys-
tem’ and ‘secrecy goals’ and in 2006 on ‘cardholder
registration in Set’ and ‘accountability protocols’.

To make the summaries more readable, lists of
conjunctions are restricted to a maximum length of
four. Terms are incorporated into the list in decreas-
ing order of frequency of occurrence. Splitting the
sentence above into two time periods allows for the
inclusion of more terms, without violating the re-
striction on list length. This form of sentence split-
ting is also pragmatic and is performed more aggres-
sively in summaries with fewer sentences, having
the effect of making short summaries slightly longer.
Another method for increasing the number of terms
is by aggregating similar terms. In the example be-
low, three terms (video mail retrieval, information
retrievalanddocument retrieval) are aggregated into
one term. Thus six terms have made it to the clause,
while keeping to the four terms per list limit.

In the mid 1990s, K Sparck Jones, S J Young and
M G Brown collaborated with J T Foote on ‘video
mail, information and document retrieval’, ‘cam-
bridge/olivetti retrieval system’, ‘multimedia docu-
ments’ and ‘broadcast news’.

The four word limit is also enforced on lists of
people. If there are too many people, the program
refers to them by affiliation; for example:

Joe Hurd collaborated with University of Utah on
‘theorem proving’, ‘encryption algorithms’, ‘func-
tional correctness proofs’ and ‘Arm verification’.

5 Discussion and Conclusions
Our summarisation strategy mirrors the multi-
document summarisation strategy of Barzilay
(2003), where sentences in the input documents are
clustered according to their similarity. Larger clus-
ters represent information that is repeated more of-
ten; hence the size of a cluster is indicative of im-
portance. The novelty of our application is that this
strategy has been used at a sub-sentential level, to
summarise terms that are then used to generate sen-
tences. While there has been research on generative
summarisation, much of this has been focused on

sentence extraction followed by some rewrite oper-
ation (e.g., sentence shortening (Vanderwende et al.,
2007; Zajic et al., 2006; Conroy et al., 2004), ag-
gregation (Barzilay, 2003) or reference regeneration
(Siddharthan et al., 2004; Nenkova and McKeown,
2003)). In contrast, our system does not extract sen-
tences at all; rather, it extracts terms from paper ti-
tles and our summaries are produced by clustering,
summarising, aggregating and generalising over sets
of terms and people. Our space constraints are dic-
tated by by our visualisation interface, and our pro-
gram employs pragmatic clustering and generalisa-
tion based on the amount of information it needs to
summarise.

Acknowledgements
This work was funded by the Computer Labora-
tory, University of Cambridge, and the EPSRC
(EP/C010035/1 and EP/F012950/1).

References

R. Barzilay. 2003. Information Fusion for Multidoc-
ument Summarization: Paraphrasing & Generation.
Ph.D. thesis, Columbia University.

E.J. Briscoe and J. Carroll. 2002. Robust accurate statis-
tical annotation of general text. InProceedings of the
3rd International Conference on Language Resources
and Evaluation, pages 1499–1504, Las Palmas, Gran
Canaria.

J.M. Conroy, J.D. Schlesinger, J. Goldstein, and D.P.
O’Leary. 2004. Left-brain/right-brain multi-
document summarization.Proceedings of DUC 2004.

A. Nenkova and K. McKeown. 2003. References to
named entities: a corpus study.Companion pro-
ceedings of HLT-NAACL 2003–short papers-Volume 2,
pages 70–72.

A. Siddharthan, A. Nenkova, and K. McKeown. 2004.
Syntactic simplification for improving content selec-
tion in multi-document summarization. InProceed-
ings of the 20th International Conference on Compu-
tational Linguistics (COLING 2004), pages 896–902,
Geneva, Switzerland.

L. Vanderwende, H. Suzuki, C. Brockett, and
A. Nenkova. 2007. Beyond SumBasic: Task-
focused summarization with sentence simplification
and lexical expansion.Information Processing and
Management, 43(6):1606–1618.

D. Zajic, B. Dorr, J. Lin, and R. Schwartz. 2006.
Sentence Compression as a Component of a Multi-
Document Summarization System.Proceedings of the
2006 Document Understanding Workshop, New York.

8



Proceedings of the ACL-08: HLT Demo Session (Companion Volume), pages 9–12,
Columbus, June 2008. c©2008 Association for Computational Linguistics

BART: A Modular Toolkit for Coreference Resolution

Yannick Versley
University of Tübingen

versley@sfs.uni-tuebingen.de

Simone Paolo Ponzetto
EML Research gGmbH

ponzetto@eml-research.de

Massimo Poesio
University of Essex
poesio@essex.ac.uk

Vladimir Eidelman
Columbia University
vae2101@columbia.edu

Alan Jern
UCLA

ajern@ucla.edu

Jason Smith
Johns Hopkins University

jsmith@jhu.edu

Xiaofeng Yang
Inst. for Infocomm Research

xiaofengy@i2r.a-star.edu.sg

Alessandro Moschitti
University of Trento

moschitti@dit.unitn.it

Abstract

Developing a full coreference system able
to run all the way from raw text to seman-
tic interpretation is a considerable engineer-
ing effort, yet there is very limited avail-
ability of off-the shelf tools for researchers
whose interests are not in coreference, or for
researchers who want to concentrate on a
specific aspect of the problem. We present
BART, a highly modular toolkit for de-
veloping coreference applications. In the
Johns Hopkins workshop on using lexical
and encyclopedic knowledge for entity dis-
ambiguation, the toolkit was used to ex-
tend a reimplementation of the Soon et al.
(2001) proposal with a variety of additional
syntactic and knowledge-based features, and
experiment with alternative resolution pro-
cesses, preprocessing tools, and classifiers.

1 Introduction

Coreference resolution refers to the task of identify-
ing noun phrases that refer to the same extralinguis-
tic entity in a text. Using coreference information
has been shown to be beneficial in a number of other
tasks, including information extraction (McCarthy
and Lehnert, 1995), question answering (Morton,
2000) and summarization (Steinberger et al., 2007).
Developing a full coreference system, however, is
a considerable engineering effort, which is why a
large body of research concerned with feature en-
gineering or learning methods (e.g. Culotta et al.
2007; Denis and Baldridge 2007) uses a simpler but
non-realistic setting, using pre-identified mentions,
and the use of coreference information in summa-

rization or question answering techniques is not as
widespread as it could be. We believe that the avail-
ability of a modular toolkit for coreference will sig-
nificantly lower the entrance barrier for researchers
interested in coreference resolution, as well as pro-
vide a component that can be easily integrated into
other NLP applications.

A number of systems that perform coreference
resolution are publicly available, such as GUITAR

(Steinberger et al., 2007), which handles the full
coreference task, and JAVARAP (Qiu et al., 2004),
which only resolves pronouns. However, literature
on coreference resolution, if providing a baseline,
usually uses the algorithm and feature set of Soon
et al. (2001) for this purpose.

Using the built-in maximum entropy learner
with feature combination, BART reaches 65.8%
F-measure on MUC6 and 62.9% F-measure on
MUC7 using Soon et al.’s features, outperforming
JAVARAP on pronoun resolution, as well as the
Soon et al. reimplementation of Uryupina (2006).
Using a specialized tagger for ACE mentions and
an extended feature set including syntactic features
(e.g. using tree kernels to represent the syntactic
relation between anaphor and antecedent, cf. Yang
et al. 2006), as well as features based on knowledge
extracted from Wikipedia (cf. Ponzetto and Smith, in
preparation), BART reaches state-of-the-art results
on ACE-2. Table 1 compares our results, obtained
using this extended feature set, with results from
Ng (2007). Pronoun resolution using the extended
feature set gives 73.4% recall, coming near special-
ized pronoun resolution systems such as (Denis and
Baldridge, 2007).

9



Figure 1: Results analysis in MMAX2

2 System Architecture

The BART toolkit has been developed as a tool to
explore the integration of knowledge-rich features
into a coreference system at the Johns Hopkins Sum-
mer Workshop 2007. It is based on code and ideas
from the system of Ponzetto and Strube (2006), but
also includes some ideas from GUITAR (Steinberger
et al., 2007) and other coreference systems (Versley,
2006; Yang et al., 2006). 1

The goal of bringing together state-of-the-art ap-
proaches to different aspects of coreference res-
olution, including specialized preprocessing and
syntax-based features has led to a design that is very
modular. This design provides effective separation
of concerns across several several tasks/roles, in-
cluding engineering new features that exploit dif-
ferent sources of knowledge, designing improved or
specialized preprocessing methods, and improving
the way that coreference resolution is mapped to a
machine learning problem.

Preprocessing To store results of preprocessing
components, BART uses the standoff format of the
MMAX2 annotation tool (Müller and Strube, 2006)
with MiniDiscourse, a library that efficiently imple-
ments a subset of MMAX2’s functions. Using a
generic format for standoff annotation allows the use
of the coreference resolution as part of a larger sys-
tem, but also performing qualitative error analysis
using integrated MMAX2 functionality (annotation

1An open source version of BART is available from
http://www.sfs.uni-tuebingen.de/˜versley/BART/.

diff, visual display).
Preprocessing consists in marking up noun

chunks and named entities, as well as additional in-
formation such as part-of-speech tags and merging
these information into markables that are the start-
ing point for the mentions used by the coreference
resolution proper.

Starting out with a chunking pipeline, which
uses a classical combination of tagger and chun-
ker, with the Stanford POS tagger (Toutanova et al.,
2003), the YamCha chunker (Kudoh and Mat-
sumoto, 2000) and the Stanford Named Entity Rec-
ognizer (Finkel et al., 2005), the desire to use richer
syntactic representations led to the development of
a parsing pipeline, which uses Charniak and John-
son’s reranking parser (Charniak and Johnson, 2005)
to assign POS tags and uses base NPs as chunk
equivalents, while also providing syntactic trees that
can be used by feature extractors. BART also sup-
ports using the Berkeley parser (Petrov et al., 2006),
yielding an easy-to-use Java-only solution.

To provide a better starting point for mention de-
tection on the ACE corpora, the Carafe pipeline
uses an ACE mention tagger provided by MITRE
(Wellner and Vilain, 2006). A specialized merger
then discards any base NP that was not detected to
be an ACE mention.

To perform coreference resolution proper, the
mention-building module uses the markables cre-
ated by the pipeline to create mention objects, which
provide an interface more appropriate for corefer-
ence resolution than the MiniDiscourse markables.
These objects are grouped into equivalence classes
by the resolution process and a coreference layer is
written into the document, which can be used for de-
tailed error analysis.

Feature Extraction BART’s default resolver goes
through all mentions and looks for possible an-
tecedents in previous mentions as described by Soon
et al. (2001). Each pair of anaphor and candi-
date is represented as a PairInstance object,
which is enriched with classification features by fea-
ture extractors, and then handed over to a machine
learning-based classifier that decides, given the fea-
tures, whether anaphor and candidate are corefer-
ent or not. Feature extractors are realized as sepa-
rate classes, allowing for their independent develop-

10



Figure 2: Example system configuration

ment. The set of feature extractors that the system
uses is set in an XML description file, which allows
for straightforward prototyping and experimentation
with different feature sets.

Learning BART provides a generic abstraction
layer that maps application-internal representations
to a suitable format for several machine learning
toolkits: One module exposes the functionality of
the the WEKA machine learning toolkit (Witten
and Frank, 2005), while others interface to special-
ized state-of-the art learners. SVMLight (Joachims,
1999), in the SVMLight/TK (Moschitti, 2006) vari-
ant, allows to use tree-valued features. SVM Classi-
fication uses a Java Native Interface-based wrapper
replacing SVMLight/TK’s svm classify pro-
gram to improve the classification speed. Also in-
cluded is a Maximum entropy classifier that is
based upon Robert Dodier’s translation of Liu and
Nocedal’s (1989) L-BFGS optimization code, with
a function for programmatic feature combination.2

Training/Testing The training and testing phases
slightly differ from each other. In the training phase,
the pairs that are to be used as training examples
have to be selected in a process of sample selection,
whereas in the testing phase, it has to be decided
which pairs are to be given to the decision function
and how to group mentions into equivalence rela-
tions given the classifier decisions.

This functionality is factored out into the en-

2see http://riso.sourceforge.net

coder/decoder component, which is separate from
feature extraction and machine learning itself. It
is possible to completely change the basic behav-
ior of the coreference system by providing new
encoders/decoders, and still rely on the surround-
ing infrastructure for feature extraction and machine
learning components.

3 Using BART

Although BART is primarily meant as a platform for
experimentation, it can be used simply as a corefer-
ence resolver, with a performance close to state of
the art. It is possible to import raw text, perform
preprocessing and coreference resolution, and either
work on the MMAX2-format files, or export the re-
sults to arbitrary inline XML formats using XSL
stylesheets.

Adapting BART to a new coreferentially anno-
tated corpus (which may have different rules for
mention extraction – witness the differences be-
tween the annotation guidelines of MUC and ACE
corpora) usually involves fine-tuning of mention cre-
ation (using pipeline and MentionFactory settings),
as well as the selection and fine-tuning of classi-
fier and features. While it is possible to make rad-
ical changes in the preprocessing by re-engineering
complete pipeline components, it is usually possi-
ble to achieve the bulk of the task by simply mix-
ing and matching existing components for prepro-
cessing and feature extraction, which is possible by
modifying only configuration settings and an XML-

11



BNews NPaper NWire
Recl Prec F Recl Prec F Recl Prec F

basic feature set 0.594 0.522 0.556 0.663 0.526 0.586 0.608 0.474 0.533
extended feature set 0.607 0.654 0.630 0.641 0.677 0.658 0.604 0.652 0.627
Ng 2007∗ 0.561 0.763 0.647 0.544 0.797 0.646 0.535 0.775 0.633

∗: “expanded feature set” in Ng 2007; Ng trains on the entire ACE training corpus.

Table 1: Performance on ACE-2 corpora, basic vs. extended feature set

based description of the feature set and learner(s)
used.

Several research groups focusing on coreference
resolution, including two not involved in the ini-
tial creation of BART, are using it as a platform
for research including the use of new information
sources (which can be easily incorporated into the
coreference resolution process as features), different
resolution algorithms that aim at enhancing global
coherence of coreference chains, and also adapting
BART to different corpora. Through the availability
of BART as open source, as well as its modularity
and adaptability, we hope to create a larger com-
munity that allows both to push the state of the art
further and to make these improvements available to
users of coreference resolution.

Acknowledgements We thank the CLSP at Johns
Hopkins, NSF and the Department of Defense for
ensuring funding for the workshop and to EML
Research, MITRE, the Center for Excellence in
HLT, and FBK-IRST, that provided partial support.
Yannick Versley was supported by the Deutsche
Forschungsgesellschaft as part of SFB 441 “Lin-
guistic Data Structures”; Simone Paolo Ponzetto has
been supported by the Klaus Tschira Foundation
(grant 09.003.2004).

References
Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best

parsing and maxent discriminative reranking. In Proc. ACL
2005.

Culotta, A., Wick, M., and McCallum, A. (2007). First-order
probabilistic models for coreference resolution. In Proc.
HLT/NAACL 2007.

Denis, P. and Baldridge, J. (2007). A ranking approach to pro-
noun resolution. In Proc. IJCAI 2007.

Finkel, J. R., Grenager, T., and Manning, C. (2005). Incorpo-
rating non-local information into information extraction sys-
tems by Gibbs sampling. In Proc. ACL 2005, pages 363–370.

Joachims, T. (1999). Making large-scale SVM learning prac-
tical. In Schölkopf, B., Burges, C., and Smola, A., editors,
Advances in Kernel Methods - Support Vector Learning.

Kudoh, T. and Matsumoto, Y. (2000). Use of Support Vector
Machines for chunk identification. In Proc. CoNLL 2000.

Liu, D. C. and Nocedal, J. (1989). On the limited memory
method for large scale optimization. Mathematical Program-
ming B, 45(3):503–528.

McCarthy, J. F. and Lehnert, W. G. (1995). Using decision trees
for coreference resolution. In Proc. IJCAI 1995.

Morton, T. S. (2000). Coreference for NLP applications. In
Proc. ACL 2000.

Moschitti, A. (2006). Making tree kernels practical for natural
language learning. In Proc. EACL 2006.

Müller, C. and Strube, M. (2006). Multi-level annotation of
linguistic data with MMAX2. In Braun, S., Kohn, K., and
Mukherjee, J., editors, Corpus Technology and Language
Pedagogy: New Resources, New Tools, New Methods. Peter
Lang, Frankfurt a.M., Germany.

Ng, V. (2007). Shallow semantics for coreference resolution. In
Proc. IJCAI 2007.

Petrov, S., Barett, L., Thibaux, R., and Klein, D. (2006). Learn-
ing accurate, compact, and interpretable tree annotation. In
COLING-ACL 2006.

Ponzetto, S. P. and Strube, M. (2006). Exploiting semantic role
labeling, WordNet and Wikipedia for coreference resolution.
In Proc. HLT/NAACL 2006.

Qiu, L., Kan, M.-Y., and Chua, T.-S. (2004). A public reference
implementation of the RAP anaphora resolution algorithm.
In Proc. LREC 2004.

Soon, W. M., Ng, H. T., and Lim, D. C. Y. (2001). A machine
learning approach to coreference resolution of noun phrases.
Computational Linguistics, 27(4):521–544.

Steinberger, J., Poesio, M., Kabadjov, M., and Jezek, K. (2007).
Two uses of anaphora resolution in summarization. Informa-
tion Processing and Management, 43:1663–1680. Special
issue on Summarization.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y.
(2003). Feature-rich part-of-speech tagging with a cyclic de-
pendency network. In Proc. NAACL 2003, pages 252–259.

Uryupina, O. (2006). Coreference resolution with and without
linguistic knowledge. In Proc. LREC 2006.

Versley, Y. (2006). A constraint-based approach to noun phrase
coreference resolution in German newspaper text. In Kon-
ferenz zur Verarbeitung Natürlicher Sprache (KONVENS
2006).

Wellner, B. and Vilain, M. (2006). Leveraging machine read-
able dictionaries in discriminative sequence models. In Proc.
LREC 2006.

Witten, I. and Frank, E. (2005). Data Mining: Practical ma-
chine learning tools and techniques. Morgan Kaufmann.

Yang, X., Su, J., and Tan, C. L. (2006). Kernel-based pronoun
resolution with structured syntactic knowledge. In Proc.
CoLing/ACL-2006.

12



Proceedings of the ACL-08: HLT Demo Session (Companion Volume), pages 13–16,
Columbus, June 2008. c©2008 Association for Computational Linguistics

Demonstration of the UAM CorpusTool for text and image annotation 

 

 
Mick O’Donnell 

Escuela Politécnica Superior 

Universidad Autónoma de Madrid 

28049, Cantoblanco, Madrid, Spain 
michael.odonnell@uam.es 

 

 

 

 

 
 

Abstract 

This paper introduced the main features of the 

UAM CorpusTool, software for human and 

semi-automatic annotation of text and images. 

The demonstration will show how to set up an 

annotation project, how to annotate text files 

at multiple annotation levels, how to auto-

matically assign tags to segments matching 

lexical patterns, and how to perform cross-

layer searches of the corpus. 

1 Introduction 

In the last 20 years, a number of tools have been 

developed to facilitate the human annotation of 

text. These have been necessary where software for 

automatic annotation has not been available, e.g., 

for linguistic patterns which are not easily identi-

fied by machine, or for languages without suffi-

cient linguistic resources. 

The vast majority of these annotation tools have 

been developed for particular projects, and have 

thus not been readily adaptable to different annota-

tion problems. Often, the annotation scheme has 

been built into the software, or the software has 

been limited in that they allow only certain types 

of annotation to take place. 

A small number of systems have however been 

developed to be general purpose text annotation 

systems, e.g., MMAX-2 (Müller and Strube 2006), 

GATE (Cunningham et al 2002), WordFreak 

(Morton and LaCivita 2003) and Knowtator 

(Ogren 2006). 

With the exception of the last of these however, 

these systems are generally aimed at technically 

advanced users.  WordFreak, for instance, requires 

writing of Java code to adapt to a different annota-

tion scheme. Users of MMAX-2 need to edit XML 

by hand to provide annotation schemes. Gate al-

lows editing of annotation schemes within the tool, 

but it is a very complex system, and lacks clear 

documentation to help the novice user become 

competent. 

The UAM CorpusTool is a text annotation tool 

primarily aimed at the linguist or computational 

linguist who does not program, and would rather 

spend their time annotating text than learning how 

to use the system. The software is thus designed 

from the ground up to support typical user work-

flow, and everything the user needs to perform an-

notation tasks is included within the software. 

2 The Project Window 

In the majority of cases, the annotator is interested 

in annotating a range of texts, not just single texts. 

Additionally, in most cases annotation at multiple 

linguistic levels is desired (e.g., classifying the text 

as a whole, tagging sections of text by function 

(e.g., abstract, introduction, etc.), tagging sen-

tences/clauses, and tagging participants in clauses. 

To overcome the complexity of dealing with mul-

tiple source files annotated at multiple levels, the 

main window of the CorpusTool is thus a window 

for project management (see Figure 1). 

 

13



 
Figure 1: The Project Window of UAM CorpusTool 

 

 
Figure 3: An annotation window for ‘Participant’ layer. 

 
<?xml version='1.0' encoding='utf-8'?> 

<document> 

  <segments> 

    <segment id='1' start='158' end='176' 

             features='participant;human' state='active'/> 

    <segment id='2' start='207' end='214' 

               features='participant;organisation;company'  

               state='active'/> 

   ... 

  </segments> 

</document> 

Figure 4: Annotation Storage Example 

 

14



This window allows the user to add new annota-

tion layers to the project, and edit/extend the anno-

tation scheme for each layer (by clicking on the 

“edit” button shown with each layer panel). It also 

allows the user to add or delete source files to the 

project, and to open a specific file for annotation at 

a specific layer (each file has a button for each 

layer). 

3 Tag Hierarchy Editing 

Most of the current text annotation tools lack built-

in facilities for creating and editing the coding 

scheme (the tag set). UAM CorpusTool uses a hie-

rarchally organised tag scheme, allowing cross-

classification and multiple inheritance (both dis-

junctive and conjunctive). The scheme is edited 

graphically, adding, renaming, moving or deleting 

features, adding new sub-distinctions, etc. See Fig-

ure 3. 

An important feature of the tool is that any 

change to the coding scheme is automatically 

propagated throughout all files annotated at this 

layer. For instance, if a feature is renamed in the 

scheme editor, it is also renamed in all annotation 

files. 

The user can also associate a gloss with each 

tag, and during annotation, the gloss associated 

with each feature can be viewed to help the coder 

determine which tag to assign. 

participant

PARTICIPANTS-
TYPE

person

country

organisation
ORGANISATION-
TYPE

company

government

union

other-organisation

political-party

FORM
proper

common

pronominal  

Figure 2: Graphical Editing of the Tag Hierarchy 

4 Annotation Windows 

When the user clicks on the button for a given text 

file/layer, an annotation window opens (see Figure 

3). This window shows the text in the top panel 

(with previously identified text segments indicated 

with underlining). When the user creates a new 

segment (by swiping text) or selects an existing 

segment, the space below the text window shows 

controls to select the tags to assign to this segment. 

Tags are drawn from the tag scheme for the current 

layer. Since the tag hierarchy allows cross-

classification, multiple tags are assigned to the 

segment. CorpusTool allows for partially overlap-

ping segments, and embedding of segments. 

Annotated texts are stored using stand-off XML, 

one file per source text and layer. See Figure 4 for 

a sample. The software does not currently input 

from or export to any of the various text encoding 

standards, but will be extended to do so as it be-

comes clear which standards users want supported. 

Currently the tool only supports assigning tags 

to text. Annotating structural relations between text 

segments (e.g., co-reference, constituency or rhe-

torical relations) is not currently supported, but is 

planned for later releases. 

5 Corpus Search 

A button on the main window opens a Corpus 

Search interface, which allows users to retrieve 

lists of segments matching a query. Queries can 

involve multiple layers, for instance, subject 

in passive-clause in english would 

retrieve all NPs tagged as subject in clauses tagged 

as passive-clause in texts tagged as ‘english’ (this 

is thus a search over 3 annotation layers). Searches 

can also retrieve segments “containing” segments. 

One can also search for segments containing a 

string. 

Where a lexicon is provided (currently only 

English), users can search for segments containing 

lexical patterns, for instance, clause con-

taining ‘be% @participle’ would return 

all clause segments containing any inflection of 

‘be’ immediately followed by any participle verb 

(i.e. most of the passive clauses). Since dictionaries 

are used, the text does not need to be pre-tagged 

with a POS tagger, which may be unreliable on 

texts of a different nature to those on which the 

tagger was trained. Results are displayed in a 

KWIK table format. 

6 Automating Annotation 

Currently, automatic segmentation into sentences 

is provided. I am currently working on automatic 

NP segmentation.  

The search facility outlined above can also be 

used for semi-automatic tagging of text. To auto-

code segments as ‘passive-clause’, one specifies a 

search pattern (i.e., clause containing 

15



‘be% @participle’). The user is presented 

with all matches, with a check-box next to each. 

The user can then uncheck the hits which are false 

matches, and then click on the “Store” button to 

tag all checked segments with the ‘passive-clause’ 

feature. A reasonable number of syntactic features 

can be identified in this way. 

7 Statistical processing 

The tool comes with a statistical analysis interface 

which allows for specified sub-sections of the cor-

pora (e.g., ‘finite-clause in english’ vs. ‘finite-

clause in spanish’)  to be described or contrasted. 

Statistics can be of the text itself (e.g., lexical den-

sity, pronominal usage,  word and segment length, 

etc.), or relate to the frequency of annotations. 

These statistics can also be exported in tab-

delimited form for processing in more general sta-

tistical packages. 

8 Intercoder Reliability Testing 

Where several users have annotated files at the 

same layers, a separate tool is provided to compare 

each annotation document, showing only the dif-

ferences between coders, and also indicating total 

coder agreement. The software can also produce a 

“consensus” version of the annotations, taking the 

most popular coding where 3 or more coders have 

coded the document. In this way, each coder can 

be compared to the consensus (n comparisons), 

rather than comparing the n! pairs of documents.  

9 Annotating Images 

The tool can also be used to annotate images in-

stead of text files. In this context, one can swipe 

regions of the image to create a selection, and as-

sign features to the selection. Since stand-off anno-

tation is used for both text and image, much of the 

code-base is common between the two applica-

tions. The major differences are: i) a different an-

notation widget is used for text selection than for 

image selection; ii) segments in text are defined by 

a tuple: (startchar, endchar), while image segments 

are defined by a tuple of points ( (startx,starty), 

(endx,endy)), and iii) search in images is restricted 

to tag searching, while text can be searched for 

strings and lexical patterns. 

10 Conclusions 

UAM CorpusTool is perhaps the most user-

friendly of the annotation tools available, offering 

easy installation, an intuitive interface, yet power-

ful facilities for management of multiple docu-

ments annotated at multiple levels. 

The main limitation of the tool is that it cur-

rently deals only with feature tagging. Future work 

will add structural tagging, including co-reference 

linking, rhetorical structuring and syntactic struc-

turing. 

The use of the tool is rapidly spreading: in the 

first 15 months of availability, the tool has been 

downloaded 1700 times, to 1100 distinct CPUs 

(with only minimal advertisement). It is being used 

for various text annotation projects throughout the 

world, but mostly by individual linguists perform-

ing linguistic studies.   

UAM CorpusTool is free, available currently for 

Macintosh and Windows machines. It is not open 

source at present, delivered as a standalone execu-

table. It is implemented in Python, using TKinter . 

Acknowledgments 

The development of UAM CorpusTool was par-

tially funded by the Spanish Ministry of Education 

and Science (MEC) under grant number 

HUM2005-01728/FILO (the WOSLAC project). 

References  

C. Müller, and M. Strube. 2006. Multi-Level Annotation 

of Linguistic Data with MMAX2. In S. Braun, K. 

Kohn, J. Mukherjee (eds.) Corpus Technology 

and Language Pedagogy. New Resources, New 

Tools, New Methods (English Corpus Linguis-

tics, Vol.3). Frankfurt: Peter Lang. 197-214. 

H. Cunningham, D. Maynard, K. Bontcheva and V. 

Tablan. 2002. GATE: A Framework and Graphi-

cal Development Environment for Robust NLP 

Tools and Applications. Proceedings of the 40th 

Meeting of the Association for Computational 

Linguistics (ACL'02). Philadelphia, July 2002. 

T.S. Morton and J. LaCivita. 2003. WordFreak: An 

Open Tool for Linguistic Annotation. Proceed-

ings of HLT-NAACL. 17-18. 

P.V. Ogren 2006. Knowtator: a plug-in for creating 

training and evaluation data sets for biomedical 

natural language systems. Proceedings of the 9th 

International Protégé Conference. 73–76. 

 

16



Proceedings of the ACL-08: HLT Demo Session (Companion Volume), pages 17–19,
Columbus, June 2008. c©2008 Association for Computational Linguistics

Interactive ASR Error Correction for Touchscreen Devices

David Huggins-Daines
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
dhuggins@cs.cmu.edu

Alexander I. Rudnicky
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

air@cs.cmu.edu

Abstract

We will demonstrate a novel graphical inter-
face for correcting search errors in the out-
put of a speech recognizer. This interface
allows the user to visualize the word lattice
by “pulling apart” regions of the hypothesis
to reveal a cloud of words simlar to the “tag
clouds” popular in many Web applications.
This interface is potentially useful for dicta-
tion on portable touchscreen devices such as
the Nokia N800 and other mobile Internet de-
vices.

1 Introduction

For most people, dictating continuous speech is con-
siderably faster than entering text using a keyboard
or other manual input device. This is particularly
true on mobile devices which typically have no hard-
ware keyboard whatsoever, a 12-digit keypad, or at
best a miniaturized keyboard unsuitable for touch
typing.

However, the effective speed of text input using
speech is significantly reduced by the fact that even
the best speech recognition systems make errors.
After accounting for error correction, the effective
number of words per minute attainable with speech
recognition drops to within the range attainable by
an average typist (Moore, 2004). Moreover, on a
mobile phone with predictive text entry, it has been
shown that isolated word dictation is actually slower
than using a 12-digit keypad for typing SMS mes-
sages (Karpov et al., 2006).

2 Description

It has been shown that multimodal error correction
methods are much more effective than using speech

alone (Lewis, 1999). Mobile devices are increas-
ingly being equipped with touchscreens which lend
themselves to gesture-based interaction methods.

Therefore, we propose an interactive method of
visualizing and browsing the word lattice using ges-
tures in order to correct speech recognition errors.
The user is presented with the decoding result in a
large font, either in a window on the desktop, or in a
full-screen presentation on a touchscreen device. If
the utterance is too long to fit on the screen, the user
can scroll left and right using touch gestures. The
initial interface is shown in Figure 1.

Figure 1: Initial hypothesis view

Where there is an error, the user can “pull apart”
the result using a touch stroke (or a multitouch ges-
ture where supported), revealing a “cloud” of hy-
pothesis words at that point in the utterance, as
shown in Figure 2.

It is also possible to expand the time interval over
which the cloud is calculated by dragging sideways,
resulting in a view like that in Figure 3. The user
can then select zero or more words to add to the hy-
pothesis string in place of the errorful text which was
“exploded”, as shown in Figure 4.

17



Figure 2: Expanded word view

Figure 3: Word cloud expanded in time

The word cloud is constructed by finding all
words active within a time interval whose log poste-
rior probability falls within range of the most prob-
able word. Word posterior probabilities are cal-
culated using the forward-backward algorithm de-
scribed in (Wessel et al., 1998). Specifically, given a
word lattice in the form of a directed acyclic graph,
whose nodes represent unique starting points t in
time, and whose edges represent the acoustic likeli-
hoods of word hypotheses wt

s spanning a given time
interval (s, t), we can calculate the forward variable
αt(w), which represents the joint probability of all
word sequences ending in wt

s and the acoustic ob-
servations up to time t, as:

αt(w) = P (Os
1, w

t
s) =

∑
vt

s∈prev(w)

P (w|v)P (wt
s)αs(v)

Here, P (w|v) is the bigram probability of (v, w)
obtained from the language model and P (wt

s) is the
acoustic likelihood of the word model w given the
observed speech from time s to t, as approximated
by the Viterbi path score.

Figure 4: Selecting replacement words

Likewise, we can compute the backward variable
βt(w), which represents the conditional probabil-
ity of all word sequences beginning in wt

s and the
acoustic observations from time t + 1 to the end of
the utterance, given wt

s:

βt(w) = P (OT
t |wt

s) =
∑

ve
t∈succ(w)

P (v|w)P (ve
t )βe(v)

The posterior probability P (wt
s|OT

1 ) can then be
obtained by multiplication and normalization:

P (wt
s|OT

1 ) =
P (wt

s, O
T
1 )

P (OT
1 )

=
αt(w)βt(w)
P (OT

1 )

This algorithm has a straightforward extension to
trigram language models which has been omitted
here for simplicity.

This interface is inspired by the web browser
zooming interface used on the Apple iPhone (Ap-
ple, Inc., 2008), as well as the Speech Dasher
lattice correction tool (Vertanen, 2004). We feel
that it is potentially useful not only for auto-
matic speech recognition, but also for machine
translation and any other situation in which
a lattice representation of a possibly errorful
hypothesis is available. A video of this in-
terface in Ogg Theora format1 can be viewed at
http://www.cs.cmu.edu/˜dhuggins/touchcorrect.ogg.

1For Mac OS X: http://xiph.org/quicktime/download.html
For Windows: http://www.illiminable.com/ogg/downloads.html

18



3 Script Outline

For our demonstration, we will have available
a poster describing the interaction method being
demonstrated. We will begin by describing the mo-
tivation for this work, followed by a “silent” demo
of the correction method itself, using pre-recorded
audio. We will then demonstrate live speech input
and correction using our own voices. The audience
will then be invited to test the interaction method on
a touchscreen device (either a handheld computer or
a tablet PC).

4 Requirements

To present this demo, we will be bringing two Nokia
Internet Tablets as well as a laptop and possibly a
Tablet PC. We have no requirements from the con-
ference organizers aside from a suitable number of
power outlets, a table, and a poster board.

Acknowledgements

We wish to thank Nokia for donating an N800 Inter-
net Tablet used to develop this software.

References
E. Karpov, I. Kiss, J. Leppänen, J. Olsen, D. Oria, S.

Sivadas and J. Tian 2006. Short Message Sys-
tem dictation on Series 60 mobile phones. Work-
shop on Speech in Mobile and Pervasive Environ-
ments (SiMPE) in Conjunction with MobileHCI 2006.
Helsinki, Finland.

Keith Vertanen 2004. Efficient Computer Interfaces
Using Continuous Gestures, Language Models, and
Speech. M.Phil Thesis, University of Cambridge,
Cambridge, UK.

Apple, Inc. 2008. iPhone: Zoom-
ing In to Enlarge Part of a Webpage.
http://docs.info.apple.com/article.html?artnum=305899

Roger K. Moore 2004. Modelling Data Entry Rates for
ASR and Alternative Input Methods. Proceedings of
Interspeech 2004. Jeju, Korea.

James R. Lewis 1999. Effect of Error Correction Strat-
egy on Speech Dictation Throughput Proceedings of
the Human Factors and Ergonomics Society 43rd An-
nual Meeting.

Frank Wessel, Klaus Macherey, Ralf Schlüter 1998. Us-
ing Word Probabilities as Confidence Measures. Pro-
ceedings of ICASSP 1998.

19



Proceedings of the ACL-08: HLT Demo Session (Companion Volume), pages 20–23,
Columbus, June 2008. c©2008 Association for Computational Linguistics

Yawat: Yet Another Word Alignment Tool

Ulrich Germann

University of Toronto

germann@cs.toronto.edu

Abstract

Yawat
1 is a tool for the visualization and ma-

nipulation of word- and phrase-level alignments

of parallel text. Unlike most other tools for

manual word alignment, it relies on dynamic

markup to visualize alignment relations, that

is, markup is shown and hidden depending on

the current mouse position. This reduces the

visual complexity of the visualization and al-

lows the annotator to focus on one item at a

time. For a bird’s-eye view of alignment pat-

terns within a sentence, the tool is also able to

display alignments as alignment matrices. In

addition, it allows for manual labeling of align-

ment relations with customizable tag sets. Dif-

ferent text colors are used to indicate which

words in a given sentence pair have already

been aligned, and which ones still need to be

aligned. Tag sets and color schemes can easily

be adapted to the needs of specific annotation

projects through configuration files. The tool

is implemented in JavaScript and designed to

run as a web application.

1 Introduction

Sub-sentential alignments of parallel text play an
important role in statistical machine translation
(SMT). Aligning parallel data on the word- or
phrase-level is typically one of the first steps in build-
ing SMT systems, as those alignments constitute the
basis for the construction of probabilistic translation
dictionaries. Consequently, considerable effort has
gone into devising and improving automatic word
alignment algorithms, and into evaluating their per-
formance (e.g., Och and Ney, 2003; Taskar et al.,
2005; Moore et al., 2006; Fraser and Marcu, 2006,
among many others). For the sake of simplicity, we
will in the following use the term “word alignment”

1Yawat was first presented at the 2007 Linguistic Annota-

tion Workshop (Germann, 2007).

to refer to any form of alignment that identifies words
or groups of words as translations of each other.

Any explicit evaluation of word alignment qual-
ity requires human intervention at some point, be
it in the direct evaluation of candidate word align-
ments produced by a word alignment system, or in
the creation of a gold standard against which can-
didate word alignments can be compared automati-
cally. This human intervention works best with an
interactive, visual interface.

2 Word alignment visualization

Over the years, numerous tools for the visualization
and creation of word alignments have been devel-
oped (e.g., Melamed, 1998; Smith and Jahr, 2000;
Ahrenberg et al., 2002; Rassier and Pedersen, 2003;
Daumé; Tiedemann; Hwa and Madnani, 2004; Lam-
bert, 2004; Tiedemann, 2006). Most of them employ
one of two visualization techniques. The first is to
draw lines between associated words, as shown in
Fig. 1. The second is to use an alignment matrix
(Fig. 2), where the rows of the matrix correspond to
the words of the sentence in one language and the
columns to the words of that sentence’s translation
into the other language. Marks in the matrix’s cells
indicate whether the words represented by the row
and column of the cell are linked or not. A third
technique, employed in addition to drawing lines by
Melamed (1998) and as the sole mechanism by Tiede-
mann (2006), is to use colors to indicate which words
correspond to each other on the two sides of the par-
allel corpus.

The three techniques just mentioned work reason-
ably well for very short sentences, but reach their
limits quickly as sentence length increases. Align-
ment visualization by coloring schemes requires as
many different colors as there are words in the
(shorter) sentence. Alignment visualization by draw-
ing lines and alignment matrices both require that
each of the two sentences in each sentence pair is

20



I have not any doubt that would be the position of the Supreme Court of Canada .

Je ne doute pas que telle serait la position de la Cour suprême du Canada .

I Je
have ne
not doute
any pas

doubt que
that telle

would serait
be la
. . . . . .

Figure 1: Visualization of word alignments by drawing lines.

Je ne do
ut

e

pa
s
te
lle
se
ra

it

la po
sit

io
n

de la Cou
r
su

pr
êm

e

du Can
ad

a

.
I •

have •

not • •

any
doubt •

that •

would •

be •

the •

position •

of •

the •

Supreme •

Court •

of •

Canada •

. •

Figure 2: Visualization of word alignments with an align-

ment matrix.

presented in a single line or column. Pairs of long
sentences therefore often cannot be shown entirely on
the screen. Aligning pairs of long sentences then re-
quires scrolling back and forth, especially when there
are considerable differences in word order between
the two languages. Moreover, as sentence length in-
creases, visualization by drawing lines quickly be-

comes cluttered, and alignment matrices become
hard to track. We believe that it is not only because
of the intrinsic difficulties of explaining translations
by word alignment but also because of such interface
issues that aligning words manually has the reputa-
tion of being a very tedious task.

3 Yawat

Yawat (Yet Another Word Alignment Tool) was de-
veloped to remedy this situation by providing an ef-
ficient interface for creating and editing word align-
ments manually. It is implemented as web applica-
tion with a thin CGI script on the server side and
a browser-based2 client written in JavaScript. This
setup facilitates collaborative efforts with multiple
annotators working remotely without the overhead
of needing to organize the transfer of alignment data
separately. The server-side data structure was de-
liberately kept small and simple, so that the tool or
some of its components can be used as a visualization
front-end for existing word alignments.

Yawat’s most prominent distinguishing feature is

2Unfortunately, differences in the underlying DOM imple-
mentations make it laborious to implement truly browser-
independent web applications in JavaScript. Yawat was de-
veloped for FireFox and currently won’t work in Internet Ex-
plorer.

Figure 3: Alignment visualization with Yawat. As the mouse is moved over a word, the word and all words linked

with it are highlighted. The highlighting is removed when the mouse leaves the word in question. This allows the

annotator to focus on one item at a time, without any distracting visual clutter from other word alignments.

21



Figure 4: Yawat allows alignment relations to be labeled via context menues. Parallel text can be displayed side-by-

side as in this screenshot or stacked as in Fig. 3.

the use of dynamic instead of static visualization.
Rather than showing alignment links permanently
by drawing lines or showing marks in an alignment
matrix, associated words are shown only for one word
at a time, as determined by the location of the mouse
pointer. When the mouse is moved over a word in the
text, the word and all the words associated with it
are highlighted; when the mouse is moved away, the
highlighting is removed. Figure 3 gives a snapshot of
the tool in action.

Designed primarily as a tool for creating word
alignments, one design objective was to minimize
mouse travel required to align words. The inter-
face therefore has no ‘link words’ button but uses
mouse clicks on words directly to establish alignment
links. A left-click on a word puts the tool into edit
mode and opens an ‘alignment group’ (i.e., a set of
words that supposedly constitute the expression of
a concept in the two languages). Additional left-
clicks on other words add them to or remove them
from the current alignment group. A final right-click
closes the group and puts the tool back into view
mode. The typical case of aligning just two indi-
vidual words thus takes only a single click on each
of the two words: a left-click on the first word and a
right-click on the second. As words are aligned, their
color changes to indicate that they have been dealt
with, so that the annotator can easily keep track of
which words have been aligned, and which ones still
need to be aligned. Notice the difference in color
(or shading in a gray-scale printout) in the sentences
in Fig. 3, whose first halves have been aligned while
their latter halves are still unaligned.

In view mode, alignment groups can be labeled
with a customizable set of tags via a context menu

Figure 5: Yawat can also show alignments as alignment

matrices. The tooltip-like floating bar above the mouse

pointer provides column labels.

triggered by a right-click on a word (Fig. 4). For ex-
ample, one might want to classify translational corre-
spondences as ‘literal’, ‘non-literal / free’, or ‘coref-
erential without intensional equivalence’. Different
colors are used to indicate different types of align-
ment; color schemes and tag sets can be configured
on the server side.

3.1 Alignment matrix display

One of the drawbacks of the dynamic visualization
scheme employed in Yawat is that it provides no
bird’s-eye view of the overall alignment structure, as

22



it is provided by alignment matrices. We therefore
decided to add alignment matrices as an additional
visualization option. Alignment matrices are created
on demand and can be switched on and off for each
sentence pair. Word alignments can be edited in the
alignment matrix view by clicking into the respective
matrix cells to link or unlink words. Alignments ma-
trices and the normal side-by-side or top-and-bottom
display of the sentence pair in question are inter-
linked, so that an changes in the alignment matrix
are immediately visible in the ‘normal’ display and
vice versa (see Fig. 5).

4 Conclusion

We presented Yawat, a tool for the creation and
visualization of word- and phrase alignments. An
on-line demo is currently available at http://www.

cs.toronto.edu/∼germann/yawat/yawat.cgi. A
package including the server-side scripts and the
client-side code is available upon request.

References

Ahrenberg, Lars, Mikael Andersson, and Magnus
Merkel. 2002. “A system for incremental and in-
teractive word linking.” Third International Con-
ference on Linguistic Resources and Evaluation
(LREC-2002), 485–490. Las Palmas, Spain.

Daumé, Hal. “HandAlign.” http://www.cs.utah.

edu/∼hal/HandAlign/.

Fraser, Alexander and Daniel Marcu. 2006. “Semi-
supervised training for statistical word align-
ment.” Joint 44th Annual Meeting of the Associa-
tion for Computational Linguistics and 21th Inter-
national Conference on Computational Lignuistics
(COLING-ACL ’98), 769–776. Sydney, Australia.

Germann, Ulrich. 2007. “Two tools for creating
and visualizing sub-sentential alignments of paral-
lel text.” Linguistic Annotation Workshop (LAW
’07), 121–124. Prague, Czech Republic.

Hwa, Rebecca and Nitin Madnani. 2004.
“The umiacs word alignment interface.”
http://www.umiacs.umd.edu/∼nmadnani/

alignment/forclip.htm.

Lambert, Patrik. 2004. “Alignment set toolkit.”
http://gps-tsc.upc.es/veu/personal/

lambert/software/AlignmentSet.html.

Melamed, I. Dan. 1998. Manual Annotation of
Translational Equivalence: The Blinker Project.
Technical Report 98-07, Institute for Research in
Cognitive Science (IRCS), Philadelphia, PA.

Moore, Robert C., Wen-tau Yih, and Andreas Bode.
2006. “Improved discriminative bilingual word
alignment.” Joint 44th Annual Meeting of the
Association for Computational Linguistics and
21th International Conference on Computational
Lignuistics (COLING-ACL ’98), 513–520. Sydney,
Australia.

Och, Franz Josef and Hermann Ney. 2003. “A sys-
tematic comparison of various statistical align-
ment models.” Computational Linguistics,
29(1):19–51.

Rassier, Brian and Ted Pedersen. 2003. “Alpaco:
Aligner for parallel corpora.” http://www.d.umn.

edu/∼tpederse/parallel.html.

Smith, Noah A. and Michael E. Jahr. 2000. “Cairo:
An alignment visualization tool.” Second Inter-
national Conference on Linguistic Resources and
Evaluation (LREC-2000).

Taskar, Ben, Simon Lacoste-Julien, and Dan
Klein. 2005. “A discriminative matching ap-
proach to word alignment.” Human Language
Technology Conference and Conference on Em-
pirical Methods in Natural Language Process-
ing (HLT/EMNLP ’05), 73–80. Morristown, NJ,
USA.

Tiedemann, Jörg. “UPlug: Tools for linguistic cor-
pus processing, word alignment and term extrac-
tion from parallel corpora.” http://stp.ling.

uu.se/cgi-bin/joerg/Uplug.

Tiedemann, Jörg. 2006. “ISA & ICA — Two web in-
terfaces for interactive alignment of bitexts.” Fifth
International Conference on Linguistic Resources
and Evaluation (LREC-2006). Genoa, Italy.

23



Proceedings of the ACL-08: HLT Demo Session (Companion Volume), pages 24–27,
Columbus, June 2008. c©2008 Association for Computational Linguistics

SIDE: The Summarization Integrated Development Environment 
 

Moonyoung Kang, Sourish Chaudhuri, Mahesh Joshi, Carolyn P. Rosé 

Carnegie Mellon University 
5000 Forbes Avenue 

Pittsburgh, PA 15213 USA 
moonyoun,schaudhu,maheshj,cprose@cs.cmu.edu 

 

Abstract 

In this type-II demo, we introduce SIDE1 (the 
Summarization Integrated Development Envi-
ronment), an infrastructure that facilitates 
construction of summaries tailored to the 
needs of the user. It aims to address the issue 
that there is no such thing as the perfect sum-
mary for all purposes. Rather, the quality of a 
summary is subjective, task dependent, and 
possibly specific to a user. The SIDE frame-
work allows users flexibility in determining 
what they find more useful in a summary, 
both in terms of structure and content. As an 
educational tool, it has been successfully user 
tested by a class of 21 students in a graduate 
course on Summarization and Personal Infor-
mation Management. 

1 Introduction 

A wide range of summarization systems have 
been developed in the past 40 years, beginning 
with early work in the Library sciences field. To 
this day, a great deal of research in summarization 
focuses on alternative methods for selecting sub-
sets of text segments based on a variety of forms of 
rhetorical analysis and relevance rankings.  Never-
theless, while there is much in common between 
approaches used for summarization in a variety of 
contexts, each new summarization project tends to 
include a new system development effort, because 
a general purpose, extensible framework for sum-

                                                             
1  The working system can be downloaded from 
http://www.cs.cmu.edu/~cprose/SIDE.html, and a video 
of an example of SIDE use can be found at 
http://ankara.lti.cs.cmu.edu/side/video.swf. 
This project is supported by ONR Cognitive and Neural 
Sciences Division, Grant number N000140510043 
 
 

marization has not been made available. As an ex-
ample, Teufel and Moens’ (2002) argue that the 
summarization strategy for scientific articles must 
be different from news articles because the former 
focus on novelty of information, are much longer 
and very different in structure. 

A large proportion of summarization systems do 
not allow users to intervene in the summarization 
process so that the form of the summary could be 
tailored to the individual user’s needs (Mieskes, M., 
Müller, C., & Strube, M., 2007). From the same 
document, many summaries can potentially be 
generated, and the most preferable one for one user 
will not, in general, be the same as what is pre-
ferred by a different user. The fact that users with 
similar backgrounds can have vastly differing in-
formation needs is highlighted by Paice and Jones’ 
(1993) study where an informal sentence selection 
experiment had to be abandoned because the par-
ticipants, who were agriculture experts, were too 
influenced by their research interests to agree with 
each other. However, summarization systems tend 
to appear as black boxes from the user’s perspec-
tive and the users cannot specify what they would 
want in the summary.  

SIDE is motivated by the two scenarios men-
tioned above - the absence of a common tool for 
generating summaries from different contexts, as 
well as the fact that different users might have dif-
ferent information needs from the same document. 
Bellotti (2005) discusses the problem of informa-
tion overload in communication media such as e-
mail and online discussion boards. The rapid 
growth of weblogs, wikis and dedicated informa-
tion sources makes the problem of information 
overload more acute. It also means that summari-
zation systems have the responsibility of taking 
into account the kind of information that its user 
would be interested in. 

With SIDE, we attempt to give the user a greater 
say in deciding what kind of information and how 
much of it the user wants as part of his summary.  

24



In the following sections, we elaborate on the 
features of SIDE and its technical details.   

2 Functionality 

The design of SIDE is aimed at allowing the user 
as much involvement at every stage of the sum-
mary generation process as the user wishes. SIDE 
allows the user to select a set of documents to train 
the system upon, and to decide what aspects of 
input documents should be detected and used for 
making choices, particularly at the stage of select-
ing a subset of segments to preserve from the 
source documents. The other key feature of the 
development environment is that it allows devel-
opers to plug in custom modules using the Plugin 
Manager in the GUI. In this way, advanced users 
can extend the capabilities of SIDE for meeting 
their specific needs while still taking advantage of 
the existing, general purpose aspects of SIDE. 
     The subsequent sub-sections discuss individual 
parts of system behavior in greater detail at a con-
ceptual level. Screen shots and more step by step 
discussion of how to use the GUI are given with 
the case study that outlines the demo script. 

2.1 Filters 

To train the system and create a model, the user 
has to define a filter. Defining a filter has 4 steps – 
creating annotated files with user-defined annota-
tions, choosing feature sets to train (unigrams, bi-
grams etc), choosing evaluation metrics (Word 
Token Counter, TF-IDF) and choosing a classifier 
to train the system. 
   Annotating Files: The GUI allows the user to 
create a set of unstructured documents. The user 
can create folders and import sets of documents or 
individual documents. The GUI allows the user to 
view the documents in their original form; alterna-
tively, the user can add it to the filter and segment 
it by sentence, paragraph, or by own definition. 
The user can define a set of annotations for each 
filter, and use those to annotate segments of the file. 
The system has sentence and paragraph segmenters 
built into it. The user can also define a segmenter 
and plug it in. 
   Feature Sets: The feature set panel allows the 
user to decide which features the user wants to use 
in training the model. It is built on top of TagHel-
per Tools (Donmez et al., 2005) and uses it to ex-
tract the features chosen by the user. The system 

has options for using unigrams, bigrams, Part-Of-
Speech bigrams and punctuation built into it, and 
the user can specify whether they wish to apply 
stemming and/or stop word removal. Like the 
segmenters, if the user wants to use a specific fea-
ture to train, the user can plug in the feature extrac-
tor for the same through the GUI. 
   Evaluation Metrics: The evaluation metric de-
cides how to order the sentences that are chosen to 
be part of the summary. In keeping with the plug-
in architecture of the system, the user can define 
own metric and plug it into the system using the 
Plugin Manager. 
   Classifier: The user can decide which classifier 
to train the model with. This functionality is built 
on top of TagHelper Tools, which uses the Weka 
toolkit (Witten & Frank, 2005) to give users a set 
of classifiers to choose from. Once the system has 
been trained, the user can see the training results in 
a panel which provides a performance summary - 
including the kappa scores computed through 10-
fold cross validation and the confusion matrix, the 
sets of features extracted from the text, and the 
settings that were used for training the model. 
    The user can choose the model for classifying 
segments in the target document. The user also can 
plug-in a machine learning algorithm to the system 
if necessary. 

2.2 Summaries 

Summaries are defined by Recipes that specify 
what types of segments should be included in the 
resulting summary, and how a subset of the ones 
that meet those requirements should be selected 
and then arranged. Earlier we discussed how filters 
are defined.  One or more filters can be applied to a 
text so that each segment has one or more labels.  
These labels can then be used to index into a text. 
For example, a Recipe might specify using a logi-
cal expression such that only a subset of segments 
whose labels meet some specified set of constraints 
should be selected. The selected subset is then op-
tionally ranked using a specified Evaluation metric. 
Finally, from this ranked list, some number or 
some percentage of segments will then finally be 
selected to be included in the resulting summary.  
The segments are then optionally re-ordered to the 
original document order before including them in 
the summary, which is then displayed to the user. 

25



3 Case Study  

The following subsections describe an example 
where the user starts with some unstructured doc-
uments and uses the system to generate a specifica-
tion for a summary, which can then be applied to 
other similar documents. 
    We illustrate a script outline of our demo pres-
entation. The demo shows how simple it is to move 
through the steps of configuring SIDE for a type of 
summary that a user would like to be able to gen-
erate.  In order to demonstrate this, we will lead the 
user through an annotation task where we assign 
dialogue acts to turns in some tutoring dialogues.  
From this annotated data, we can generate summa-
ries that pull out key actions of particular types.  
For example, perhaps we would like to look at all 
the instructions that the tutor has given to a student 
or all the questions the student has asked the tutor.  
The summarizing process consists of annotating 
training documents to define filters, deciding 
which features to use along with what machine 
learning algorithm to train the filters, training the 
actual filters, defining a summary in terms of the 
structured annotation that is accomplished by the 
defined filters, and finally, summarizing target files 
using the resulting configuration. The purpose of 
SIDE is to provide both an easy GUI interface for 
people who are not familiar with programming, 

and extensible, plug-and-play code for those who 
want to program and change SIDE into a more so-
phisticated and specialized type of summarizer. 
The demo will provide options for both novice us-
ers primarily interested in working with SIDE 
through its GUI interface and for more experienced 
users who would like to work with the code.   

3.1 Using the GUI 

The summarization process begins with loading 
unstructured training and testing documents. Next, 
filters are defined by adding training documents, 
segmenting each by choosing an automatic seg-
menter, and assigning annotations to the segments. 
   After a document is segmented, the segments are 
annotated with labels that classify segments using 
a user-defined coding scheme (Figure 1). Unanno-
tated segments are later ignored during the training 
phase. Next, a set of feature types, such as uni-
grams, bigrams, part of speech bigrams, etc., are 
selected, which together will be used to build the 
feature space that will be input to a selected ma-
chine learning algorithms, or ensemble of algo-
rithms. In this example, ‘Punctuation’ Feature 
Class Extractor, which can distinguish interroga-
tive sentence, is selected and for ‘Evaluation Met-
rics’, ‘Word Token Counter’ is selected. Now, we 
train this model with an appropriate machine learn-
ing algorithm. In this example, J48 which is

 

 
Figure 1: The interface where segments are annotated. 

26



Boolean
Expression

Tree

Ranker
Limiter

Boolean
Expression

Tree

Ranker
Limiter

 
Figure 2: The interface for defining how to build a summary from the annotated data. 

 
one of Weka’s (Witten & Frank, 2005) decision 
tree learners is chosen as the learning algorithm. 
Users can explore different ensembles of machine 
learning algorithms, compare performance over the 
training data using cross-validation, and select the 
best performing one to use for summarization. 
    Once one or more filters have been defined, we 
must define how summaries are built from the 
structured representation that is built by the filters.  
Figure 2 shows the main interface for doing this.  
Recipes consist of four parts, namely ‘Selecting’, 
‘Ranking’, ‘Limiting’, ‘Sequencing’. Selection is 
done using a boolean expression tree consisting of 
‘and’, ‘or’, and ‘is’ nodes. By doing selection, only 
those segments with proper annotations will be 
selected for inclusion in the resulting summary. 
Ranking is done by the Evaluation Metric selected 
when defining the Recipe. The size of a summary 
can be limited by limiting the number of segments 
you want in your summary. Finally, the summary 
can be reordered as you wish and displayed. 

4 Current Directions 

Currently, most of the functionality in SIDE fo-
cuses on the content selection problem.  We ac-
knowledge that to move beyond extractive forms 

of summarization, additional functionality at the 
summary generation stage is necessary.  Our cur-
rent work focuses on addressing these issues. 

References 

Bellotti, V., Ducheneaut, N., Howard, M., Smith, I., & 
Grinter, R. (2005). Quality versus Quantity: E-Mail 
Centric Task Management and Its Relation with 
Overload, Human-Computer Interaction, Volume 20,  

Donmez, P., Rosé, C. P., Stegmann, K., Weinberger, A., 
and Fischer, F. (2005). Supporting CSCL with Auto-
matic Corpus Analysis Technology , Proceedings of 
Computer Supported Collaborative Learning. 

Mieskes, M., Müller, C., & Strube, M. (2007) Improv-
ing extractive dialogue summarization by utilizing 
human feedback, Proceedings of the 25th IASTED 
International Multi-Conference: artificial intelligence 
and applications, p.627-632 

Paice, Chris D. & Jones, Paul A. (1993) The identifica-
tion of important concepts in highly structured tech-
nical papers. In Proceedings of the 16th ACM-SIGIR 
Conference, pages 69–78 

Teufel, S. & Moens, M. (2002). Summarizing Scientific 
Articles: Experiments with Relevance and Rhetorical 
Status, Computational Linguistics, Vol 28, No. 1. 

Witten, Ian H.; Frank, Eibe (2005). Data Mining: Prac-
tical machine learning tools and techniques, 2nd Edi-
tion. Morgan Kaufmann, San Francisco.  

27



Proceedings of the ACL-08: HLT Demo Session (Companion Volume), pages 28–31,
Columbus, June 2008. c©2008 Association for Computational Linguistics

ModelTalker Voice Recorder – An Interface System for Recording a 

Corpus of Speech for Synthesis 

 

 
Debra Yarrington, John Gray,  

Chris Pennington  

 

H. Timothy Bunnell, Allegra Cornaglia, 

Jason Lilley, Kyoko Nagao,  

James Polikoff,  
AgoraNet, Inc. Speech Research Laboratory 

Newark, DE  19711 A.I. DuPont Hospital for Children 

USA Wilmington, DE  19803, USA 
{yarringt, gray, penningt} 

@agora-net.com 

{bunnell, cornagli, lilley,  

nagao, polikoff}@asel.udel.edu 
 

 

 

 

Abstract 

We will demonstrate the ModelTalker Voice 

Recorder (MT Voice Recorder) – an interface 

system that lets individuals record and bank a 

speech database for the creation of a synthetic 

voice. The system guides users through an au-

tomatic calibration process that sets pitch, 

amplitude, and silence. The system then 

prompts users with both visual (text-based) 

and auditory prompts. Each recording is 

screened for pitch, amplitude and pronuncia-

tion and users are given immediate feedback 

on the acceptability of each recording. Users 

can then rerecord an unacceptable utterance. 

Recordings are automatically labeled and 

saved and a speech database is created from 

these recordings. The system’s intention is to 

make the process of recording a corpus of ut-

terances relatively easy for those inexpe-

rienced in linguistic analysis. Ultimately, the 

recorded corpus and the resulting speech da-

tabase is used for concatenative synthetic 

speech, thus allowing individuals at home or 

in clinics to create a synthetic voice in their 

own voice. The interface may prove useful  

for other purposes as well. The system facili-

tates the recording and labeling of large cor-

pora of speech, making it useful for speech 

and linguistic research, and it provides imme-

diate feedback on pronunciation, thus making 

it useful as a clinical learning tool.  

 

1 Demonstration 

1.1 MT Voice Recorder Background 

While most of us are familiar with the highly intel-

ligible but somewhat robotic sound of synthetic 

speech, for the approximately 2 million people in 

the United States with a limited ability to commu-

nicate vocally (Matas et al., 1985), these synthetic 

voices are inadequate. The restricted number of 

available voices lack the personalization they de-

sire. While intelligibility is a priority for these in-

dividuals, almost equally important is the 

naturalness and individuality one associates with 

one’s own voice. Individuals with difficulty speak-

ing can be any age, gender, and from any part of 

the country, with regional dialects and idiosyncrat-

ic variations. Each individual deserves to speak 

with a voice that is not only intelligible, but uni-

quely his or her own. For those with degenerative 

diseases such as Amyotrophic Lateral Sclerosis 

(ALS), knowing they will be losing the voice that 

has become intricately associated with their identi-

ty is not only traumatic to the individual but to 

family and friends as well.  

A form of synthesis that incorporates the quali-

ties of individual voices is concatenative synthesis. 

In this type of synthesis, units of recorded speech 

are appended. By using recorded speech, many of 

the voice qualities of the person recording the 

speech remain in the resulting synthetic voice. Dif-

ferent synthesis systems append different sized 

28



segments of speech. Appending larger the units of 

speech results in smoother, more natural sounding 

synthesis, but requires many hours of recording, 

often by a trained professional. The recording 

process is usually supervised, and the recordings 

are often hand-polished. Because appending small-

er units requires less recording on the part of the 

speaker, this is the approach the ModelTalker Syn-

thesizer has taken. However using smaller units 

may result in noticeable auditory glitches at conca-

tenative junctures that are a result of variations (in 

pitch, amplitude, pronunciation, etc.) between the 

speech units being appended. Thus the speech rec-

orded must be more uniform in pitch and ampli-

tude. In addition, the units cannot be 

mispronounced because each unit is crucial to the 

resulting synthetic speech. In a smaller database 

there may not be a second example of a specific 

phoneme sequence.  

MT Voice Recorder expects that the individuals 

recording will be untrained and unsupervised, and 

may lack strength and endurance because of the 

presence of a degenerative disease. Thus the sys-

tem is user-friendly enough for untrained, unsu-

pervised individuals to record a corpus of speech. 

The system provides the user with feedback on the 

quality of each utterance they record in terms of 

pronunciation accuracy, relative uniformity of 

pitch, and relative uniformity of amplitude. Confe-

rence attendees will be able to experience this in-

terface system and test all its different features. 

1.2 Feature Demonstration 

At the conference, attendees will be able to try out 

the different features of ModelTalker Voice Re-

corder. These features include automatic micro-

phone calibration, pitch, amplitude, and 

pronunciation detection and feedback, and auto-

matic phoneme labeling of speech recordings. 

 

1.2.1 Microphone calibration 

One important new feature of the MT Voice Re-

corder is the automatic microphone calibration 

procedure. In InvTool, a predecessor software of 

MT Voice Recorder, users had to set the micro-

phone’s amplitude. The system now calibrates the 

signal to noise ratio automatically through a step-

by-step process (see Figure 1, below). 

 
 

Using the automatic calibration procedure, the 

optimal signal to noise ratio is set for the recording 

session. These measurements are retained for fu-

ture recording sessions in cases in which an indi-

29



vidual is unable to record the entire corpus in one 

sitting. 

Once the user has completed the automatic cali-

bration procedure, he will be able to start recording 

a corpus of speech. The interface has been de-

signed with the assumption that individuals will be 

recording without supervision. Thus the interface 

incorporates a number of feedback mechanisms to 

aid individuals in making a high quality corpus for 

synthesis (see Figure 2, below). 
 

1.2.2 Recording Utterances 

The corpus was carefully chosen so that all fre-

quently used phoneme combinations are included 

at least once. Thus it is critical that users pro-

nounce prompted sentences in the manner in which 

the system expects. Alterations in pronunciation as 

small as saying /i/ versus /ə/ for “the,” for example, 

can negatively affect the resulting synthetic voice. 

To reduce the incidence of alternate pronunciation, 

the user is prompted with both a text and an audito-

ry version of the utterance.  

 

1.2.3 Recording Feedback 

Once an utterance has been recorded, the user rece-

ives feedback on the overall quality of the utter-

ance. Specifically, the user receives feedback on 

the pitch, the overall amplitude, and the pronuncia-

tion of the recording. 

Pitch: The user receives feedback on whether 

the utterance’s average pitch is within range of the 

user’s base pitch determined during the calibration 

process. Collecting all recordings within a relative-

ly small pitch range minimizes concatenation costs 

during the synthesis process. MT Voice Recorder 

determines the average pitch of each utterance and 

gives the user feedback on whether the pitch is 

within an acceptable range. This feedback mechan-

ism also helps to eliminate cases in which the sys-

tem is unable to accurately track the pitch of an 

utterance. In these cases, the utterance will be 

marked unacceptable and the user should rerecord, 

hopefully yielding an utterance with more accurate 

pitch tracking. 

 
 

Figure 2: MT Voice Recorder User Interface 

30



Amplitude: The user is also given feedback on 

the overall amplitude of an utterance. If the ampli-

tude is either too low or too high, the user must 

rerecord the utterance. 

Pronunciation: Each recorded utterance is eva-

luated for pronunciation. Each utterance within the 

corpus is associated with a string of phonemes 

representing its transcription. When an utterance is 

recorded, the phoneme string associated with the 

utterance is force-aligned with the recorded 

speech. If the alignment does not fall within an 

acceptable range, the user is given feedback that 

the recording’s pronunciation may not be accepta-

ble and the user is given the option of rerecording 

the utterance. 
 

1.2.4 Automatic Phoneme Labeling  

During the process of pronunciation evaluation, an 

associated phoneme transcription is aligned with 

the utterance. This alignment is retained so that 

each utterance is automatically labeled. Once the 

entire corpus has been recorded, alignments are 

automatically refined based on specific individual 

voice characteristics. 

 

1.2.5 Other Features 

The MT Voice Recorder also allows users to add 

utterances of their choice to the corpus of speech 

for the synthetic voice. These utterances are those 

the user wants to be synthesized clearly and will 

automatically be included in their entirety in the 

speech database. These utterances are also auto-

matically labeled before being stored. 

In addition, for those with more speech and lin-

guistic experience, the system has a number of 

other features that can be explored. For example, 

the MT Voice Recorder also allows one to change 

settings so that the phoneme string, peak ampli-

tude, RMS range, average F0, F0 range, and pro-

nunciation score can be viewed. Users may use this 

information to more precisely adjust their utter-

ances. 

1.3 Synthetic Voice Demonstration 

Those attending the demonstration will also be 

able to listen to a sampling of synthetic voices 

created using the ModelTalker system. While one 

of the synthetic voices was created by a profes-

sional speaker and manually polished, all other 

voices were created by untrained individuals, most 

of whom have ALS, in an untrained setting, with 

the recordings having no manual polishing. 

2 Other Applications 

Although the MTVR was designed specifically to 

record speech for the creation of a database that 

will be used in speech synthesis, it can also be used 

as a digital audio recording tool for speech re-

search. For example, the MT Voice Recorder of-

fers useful features for language documentation. 

An immediate warning about a poor quality re-

cording will alert a researcher to rerecord the utter-

ance. MT Voice Recorder employs file formats 

that are recommended for digital language docu-

mentation (e.g., XML, WAV, and TXT) (Bird & 

Simons, 2003). The recorded files are automatical-

ly stored with broad phonetic labels. The automatic 

saving function will reduce the time of recordings 

and the potential risk for miscataloging the files. 

Currently, the automatic phonetic labeling feature 

is only available for English, but it could be appli-

cable to different languages in the future.  

For more information about the ModelTalker 

System and to experience an interactive demo as 

well as listen to sample synthetic voices,  

visit http://www.modeltalker.com.  

Acknowledgments 

This work was supported by STTR grants 

R41/R42-DC006193 from NIH/NIDCD and from 

Nemours Biomedical Research. We are especially 

indebted to the many people with ALS, the AAC 

specialists in clinics, and other interested individu-

als who have invested a great deal of time and ef-

fort into this project and have provided valuable 

feedback. 

References  

Bird, S. and Simons, G.F. (2003). Seven dimensions of 

portability for language documentation and descrip-

tion. Language, 79(3): 557-582. 

Matas, J., Mathy-Laikko, P., Beaukelman, D. and Le-

gresley. K. (1985). Identifying the nonspeaking 

population: a demographic study, Augmentative & 

Alternative Communication, 1: 17-31. 

  

31



Proceedings of the ACL-08: HLT Demo Session (Companion Volume), pages 32–35,
Columbus, June 2008. c©2008 Association for Computational Linguistics

The QuALiM Question Answering Demo:
Supplementing Answers with Paragraphs drawn from Wikipedia

Michael Kaisser
School of Informatics

University of Edinburgh
M.Kaisser@sms.ed.ac.uk

Abstract

This paper describes the online demo of the
QuALiM Question Answering system. While
the system actually gets answers from the web
by querying major search engines, during pre-
sentation answers are supplemented with rel-
evant passages from Wikipedia. We believe
that this additional information improves a
user’s search experience.

1 Introduction

This paper describes the online demo of
the QuALiM1 Question Answering system
(http://demos.inf.ed.ac.uk:8080/qualim/). We
will refrain from describing QuALiM’s answer
finding strategies–our work on QuALiM has been
described in several papers in the last few years,
especially Kaisser and Becker (2004) and Kaisser et
al. (2006) are suitable to get an overview over the
system–but concentrate on one new feature that was
developed especially for this web demo: In order
to improve user benefit, answers are supplemented
with relevant passages from the online encyclopedia
Wikipedia. We see two main benefits:

1. Users are presented with additional information
closely related to their actual information need
and thus of potential high interest.

2. The returned text passages present the answer
in context and thus help users to validate the
answer–there always will be the odd case where
a system returns a wrong result.

1for QuestionAnswering withLinguisticMethods

Historically, our system is web-based, receiving
its answers by querying major search engines and
post processing their results. In order to satisfy
TREC requirements–which require participants to
return the ID of one document from the AQUAINT
corpus that supports the answer itself (Voorhees,
2004)–we already experimented with answer projec-
tion strategies in our TREC participations in recent
years. For this web demo we use Wikipedia instead
of the AQUAINT corpus for several reasons:

1. QuALiM is an open domain Question Answer-
ing system and Wikipedia is an “open domain”
Encyclopedia; it aims to coverall areas of inter-
est as long as they are ofsomegeneral interest.

2. Wikipedia is a free online encyclopedia. Other
than the AQUAINT corpus, there are no legal
problems when using it for a public demo.

3. Wikipedia is frequently updated, whereas the
AQUAINT corpus remains static and thus con-
tains a lot of outdated information.

Another advantage of Wikipedia is that the in-
formation contained is much more structured. As
we will see, this structure can be exploited to im-
prove performance when finding answers or–as in
our case–projecting answers.

2 How Best to Present Answers?

In the fields of Question Answering and Web
Search, the issue how answers/results should be pre-
sented is a vital one. Nevertheless, as of today, the
majority of QA system–which a few notable excep-
tions, e.g. MIT’s START (Katz et al., 2002)–are

32



Figure 1: Screenshot of QuALiM’s response to the question “How many Munros are there in Scotland?” The green
bar to the left indicates that the system is confident to have found the right answer, which is shown in bold: “284”.
Furthermore, one Wikipedia paragraph which contains additional information of potential interest to the user is dis-
played. In this paragraph the sentence containing the answer is highlighted. This display of context also allows the
user to validate the answer.

still experimental and research-oriented and typi-
cally only return the answer itself. Yet it is highly
doubtful that this is the best strategy.

Lin et al. (2003) performed a study with
32 computer science students comparing four
types of answer context: exact answer, answer-
in-sentence, answer-in-paragraph, and answer-in-
document. Since they were interested in interface
design, they worked with a system that answered
all questions correctly. They found that 53% of all
participants preferred paragraph-sized chunks, 23%
preferred full documents, 20% preferred sentences,
and one participant preferred exact answer.

Web search engines typically show results as a
list of titles and short snippets that summarize how
the retrieved document is related to the query terms,
often calledquery-biased summaries(Tombros and
Sanderson, 1998). Recently, Kaisser et al. (2008)
conducted a study to test whether users would pre-
fer search engine results of different lengths (phrase,
sentence, paragraph, section or article) and whether
the optimal response length could be predicted by
human judges. They find that judges indeed pre-
fer different response lengths for different types of
queries and that these can be predicted by other
judges.

In this demo, we opted for a slightly different, yet
related approach: The system does not decide on

one answer length, but always presents a combina-
tion of three different lengths to the user (see Figure
1): The answer itself (usually aphrase), is presented
in bold. Additionally, aparagraphrelating the an-
swer to the question is shown, and in this paragraph
onesentencecontaining the answer is highlighted.
Note also, that each paragraph contains a link that
takes the user to the Wikipediaarticle, should he/she
want to know more about the subject. The intention
behind this mode of presentation is to prominently
display the piece of information the user is most in-
terested in, but also to present context information
and to furthermore provide options for the user to
find out more about the topic, should he/she want to.

3 Finding Supportive Wikipedia
Paragraphs

We use Lucene (Hatcher and Gospodnetić, 2004) to
index the publically available Wikipedia dumps (see
http://download.wikimedia.org/). The text inside the
dump is broken down into paragraphs and each para-
graph functions as a Lucenedocument. The data of
each paragraph is stored in three fields:Title, which
contains the title of the Wikipedia article the para-
graph is from,Headers, which lists the title and all
section and subsection headings indicating the posi-
tion of the paragraph in the article andText, which
stores the text of the article. An example can be seen

33



in Table 1.

Title “Tom Cruise”
Headers “Tom Cruise/Relationships and personal

life/Katie Holmes”
Text “In April 2005, Cruise began dating

Katie Holmes ... the couple married in
Bracciano, Italy on November 18, 2006.”

Table 1: Example of Lucene index fields used.

As mentioned, QuALiM finds answers by query-
ing major search engines. After post processing, a
list of answer candidates, each one associated with a
confidence value, is output. For the question “Who
is Tom Cruise married to?”, for example, we get:

81.0: "Katie Holmes"
35.0: "Nicole Kidman"

The way we find supporting paragraphs for these
answers is probably best explained by giving an
example. Figure 3 shows the Lucene query we
use for the mentioned question and answer can-
didates. (The numbers behind the terms indicate
query weights.) As can be seen, we initially build
two separate queries for theHeadersand theText
fields (compare Table 1). In a later processing step,
both queries are combined into a single query us-
ing Lucene’sMultipleFieldQueryCreator
class. Note also that both answer candidates (“Katie
Holmes” and “Nicole Kidman”) are included in this
one query. This is done because of speed issues: In
our setup, each query takes up roughly two seconds
of processing time. The complexity and length of
a query on the other hand has very little impact on
speed.

The type of question influences the query building
process in a fundamental manner. For the question
“When was Franz Kafka born?” and the correct an-
swer “July 3, 1883”, for example, it is reasonable
to search for an article with title “Franz Kafka” and
to expect the answer in the text on that page. For
the question “Who invented the automobile?” on
the other hand, it is more reasonable to search the
information on a page called “Karl Benz” (the an-
swer to the question). In order to capture this be-
haviour we developed a set of rules that for differ-
ent type of questions, increases or decreases con-
stituents’ weights in either theHeadersor theText
field.

Additionally, during question analysis, certain
question constituents are marked as eitherTopic or
Focus(see Moldovan et al., (1999)). For the earlier
example question “Tom Cruise” becomes theTopic
while “married” is markedFocus2. These also influ-
ence constituents’ weights in the different fields:

• Constituents marked asTopicare generally ex-
pected to be found in theHeadersfield. After
all, the topic markswhat the question is about.
In a similar manner, titles and subtitles help to
structure an article, assisting the user to navi-
gate to the place where the relevant informa-
tion is most likely to be found: A paragraph’s
titles and subtitles indicatewhat the paragraph
is about.

• Constituents marked asFocusare generally ex-
pected to be found in the text, especially if they
are verbs. The focus indicates what the ques-
tion asks for, and such information can usually
rather be expected in the text than in titles or
subtitles.

Figure 3 also shows that, if we recognize named
entities (especially person names) in the question or
answer strings, we once include each named entity
as a quoted string and additionally add the words
it contains separately. This is to boost documents
which contain the complete name as used in the
question or the answer, but also to allow documents
which contain variants of these names, e.g. “Thomas
Cruise Mapother IV”.

The formula to determine the exact boost factor
for each query term is complex and a matter of on-
going development. It additionally depends on the
following criteria:

• Named entities receive a higher weight.

• Capitalized words or constituents receive a
higher weight.

• The confidence value associated with the an-
swer candidate influences the boost factor.

• Whether a term originates from the question or
an answer candidate influences its weight in a
different manner for the header and text fields.

2With allowing verbs to be theFocus, we slightly depart
from the traditional definition of the term.

34



Header query:
"Tom Cruise"ˆ10 Tomˆ5 Cruiseˆ5 "Katie Holmes"ˆ5 Katieˆ2.5 Holmes2.ˆ5
"Nicole Kidman"ˆ4.3 Nicoleˆ2.2 Kidmanˆ2.2

Text query:

marriedˆ10 "Tom Cruise"ˆ1.5 Tomˆ4.5 Cruiseˆ4.5 "Katie Holmes"ˆ3 Katieˆ9 Holmesˆ9

"Nicole Kidman"ˆ2.2 Nicoleˆ6.6 Kidmanˆ6.6

Figure 2: Lucene Queries used to find supporting documents for the “Who is Tom Cruise married to?”
and the two answers “Katie Holmes” and “Nicole Kidman”. Both queries are combined using Lucene’s
MultipleFieldQueryCreator class.

4 Future Work

Although QuALiM performed well in recent TREC
evaluations, improving precision and recall will of
course always be on our agenda. Beside this we cur-
rently focus on increasing processing speed. At the
time of writing, the web demo runs on a server with
a single 3GHz Intel Pentium D dual core processor
and 2Gb SDRAM. At times, the machine is shared
with other demos and applications. This makes re-
liable figures about speed difficult to produce, but
from our log files we can see that users usually wait
between three and twelve seconds for the system’s
results. While this is okay for a research demo, it
definitely would not be fast enough for a commer-
cial product. Three factors contribute with roughly
equal weight to the speed issue:

1. Search engine’s APIs usually do not return re-
sults as fast as their web interfaces built for hu-
man use do. Google for example has a built-in
one second delay for each query asked. The
demo usually sends out between one and four
queries per question, thus getting results from
Google alone takes between one and four sec-
onds.

2. All received results need to be post-processed,
the most computing heavy step here is parsing.

3. Finally, the local (8.3 GB big) Wikipedia index
needs to be queried, which roughly takes two
seconds per query.

We are currently looking into possibilities to im-
prove all of the above issues.

Acknowledgements

This work was supported by Microsoft Research
through the European PhD Scholarship Programme.

References

Erik Hatcher and Otis Gospodnetić. 2004. Lucene in
Action. Manning Publications Co.

Michael Kaisser and Tilman Becker. 2004. Question An-
swering by Searching Large Corpora with Linguistic
Methods. InThe Proceedings of the 2004 Edition of
the Text REtrieval Conference, TREC 2004.

Michael Kaisser, Silke Scheible, and Bonnie Webber.
2006. Experiments at the University of Edinburgh for
the TREC 2006 QA track. InThe Proceedings of the
2006 Edition of the Text REtrieval Conference, TREC
2006.

Michael Kaisser, Marti Hearst, and John Lowe. 2008.
Improving Search Result Quality by Customizing
Summary Lengths. InProceedings of the 46th Annual
Meeting of the Association for Computational Linguis-
tics.

Boris Katz, Jimmy Lin, and Sue Felshin. 2002. The
START multimedia information system: Current tech-
nology and future directions. InProceedings of the In-
ternational Workshop on Multimedia Information Sys-
tems (MIS 2002).

Jimmy Lin, Dennis Quan, Vineet Sinha, Karun Bakshi,
David Huynh, Boris Katz, and David R. Karger. 2003.
What Makes a Good Answer? The Role of Context in
Question Answering. Human-Computer Interaction
(INTERACT 2003).

Dan Moldovan, Sanda Harabagiu, Marius Pasca, Rada
Mihalcea, Richard Goodrum, Roxana Girju, and
Vasile Rus. 1999. LASSO: A tool for surfing the an-
swer net. InProceedings of the Eighth Text Retrieval
Conference (TREC-8).

A. Tombros and M. Sanderson. 1998. Advantages of
query biased summaries in information retrieval.Pro-
ceedings of the 21st annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval, pages 2–10.

Ellen M. Voorhees. 2004. Overview of the TREC 2003
Question Answering Track. InThe Proceedings of the
2003 Edition of the Text REtrieval Conference, TREC
2003.

35





Author Index

Bunnell, H. Timothy, 28

Chaudhuri, Sourish, 24
Copestake, Ann, 5
Cornaglia, Allegra , 28

Eidelman, Vladimir, 9

Germann, Ulrich, 20
Gray, John, 28

Huggins-Daines, David, 17

Jern, Alan, 9
Joshi, Mahesh, 24

Kaisser, Michael, 32
Kang, Moonyoung, 24

Lilley, Jason , 28

Moschitti, Alessandro, 9

Nagao, Kyoko, 28

O’Donnell, Mick, 13

Pennington, Chris , 28
Poesio, Massimo, 9
Polikoff, James, 28
Ponzetto, Simone Paolo, 9

Rosé, Carolyn P., 24
Rudnicky, Alexander I., 17

Siddharthan, Advaith, 5
Smith, Jason , 9

Versley, Yannick, 9

Williams, Jason, 1

Yang, Xiaofeng, 9
Yarrington, Debra, 28

37


	Demonstration of a POMDP Voice Dialer
	Generating Research Websites Using Summarisation Techniques
	BART: A Modular Toolkit for Coreference Resolution
	Demonstration of the UAM CorpusTool for Text and Image Annotation
	Interactive ASR Error Correction for Touchscreen Devices
	Yawat: Yet Another Word Alignment Tool
	SIDE: The Summarization Integrated Development Environment
	ModelTalker Voice Recorder---An Interface System for Recording a Corpus of Speech for Synthesis
	The QuALiM Question Answering Demo: Supplementing Answers with Paragraphs drawn from Wikipedia

