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Abstract

This paper presents the LiLFeS system, an
efficient feature-structure description language
for HPSG. The core engine of LiLFeS is an
Abstract Machine for Attribute-Value Logics,
proposed by Carpenter and Qu. Basic design
policies, the current status, and performance
evaluation of the LiLFeS system are described.
The paper discusses two implementations of
the LiLFeS. The first one is based on an emu-
lator of the abstract machine, while the second
one uses a native-code compiler and therefore
is much more efficient than the first one.

1 Motivation

Inefficiency is the major reason why the HPSG
formalism (Pollard and Sag, 1993) has not been
used for practical applications. However, one
can claim that HPSG may not be so inefficient; it
is just that an efficient implementation of HPSG
has not been seriously pursued till now.

We set a goal for the performance of our HPSG
parser: 100 milliseconds of average parsing time
on a sentence in real-world corpora. If our HPSG
parser accomplished this goal, it would be capable
to parse about 1,000,000 sentences in a day, and
could be used for applications such as knowledge
acquisition from corpora.

1.1 Existing Systems for Typed Feature
Structures (TFSs)

Since Typed Feature Structures (TFSs) (Carpenter,
1992) are the basic data structures in HPSG, the
efficiency of handling TFSs has been considered
as the key to improve the efficiency of an HPSG
parser. There are two representative systems that
handle TFSs!: ALE (Carpenter and Penn, 1994), a
TFS interpreter written in Prolog, and ProFIT

* This research is partially funded by the project of Japan
Society for the Promotion of Science (JSPS-RFTF96P00502).
P LIFE (Ait-kaci et al., 1994) is also famous, but we do not
discuss it because it does not follow Carpenter’s TES defini-
tion. Moreover, our separate experiments show that LIFE is
more than 10 times slower than emulator-based LiLFeS. As
for AMALIA (Wintner, 1997), we cannot make experiments
since it is not freely distributed. His experiments in his
dissertation shows that AMALIA is 15 time faster than ALE
at maximum; it is close to emulator-based LiLFeS, and is
outperformed by native-code compiler of LiLFeS.
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(Erbach, 1995), a TFS-to-Prolog-term compiler.

However, as the comparison of these systems
with our system (Section 3.2) shows, neither of
these two systems is able to achieve the efficiency
we established as our goal. Moreover, these two
systems have serious disadvantages as a frame-
work for practical applications. The ProFIT
approach, for example, tends to consume too much
memory for execution. It is also difficult, if not
impossible, to combine them with other techniques
like parallel parsing, etc., because these two sys-
tems have been embedded in Prolog.

1.2 Our Approach

One of the promising directions of improving the

efficiency of handling TFSs while retaining a ne-

cessary amount of flexibility is to take up the idea

of AMAVL proposed in (Carpenter and Qu, 1995)

to design a general programming system based on

TES.

LiLFeS is a logic programming system thus
designed and developed by our group, based on
AMAVL implementation. LiLFeS can be char-
acterized as follows.

e Architecture based on an AMAVL implementa-
tion, which compiles a TFS into a sequence of
abstract machine instructions, and performs
unification of the TFS by emulating the execu-
tion of those instructions.  Although the pro-
posal of such an AMAVL was already made in
1995, no serious implementation has been re-
ported. We believe that LiLFeS is the first se-
rious treatment of the proposal.

¢ Rich language specification: We have adopted a
language syntax similar to Prolog. LiLFeS as a
programming language has almost the full capa-
bilities of ordinary Prolog systems. Furthermore,
we provide efficient built-in predicates that are
often required in NLP applications, such as TFS
copy, equivalence check, and associative arrays.

¢ Independent language system: In order to devel-
op an efficient and portable language system,
we chose not to develop the language depending
on an existing high-level language such as

Prolog. Instead, we programmed the LiLFeS

system from scratch. The independence also

allows us to provide various built-in predicates
in efficient ways.

1.3 Structure of This Paper
Section 2 describes LiLFeS as a programming



my list <- [bot].
e_list <- [my list].
ne_list <- [my list]
+ [FIRST\ bot, REST\ my_list].

append(e_list, X, X).
append( (FIRST\ A & REST\ X),

Yl
(FIRST\ A & REST\ Z) ) :-
append( X, Y, Z ).

Figure 2 Sample LiLFeS Program

language. Section 3 gives a brief description of
the AMAVL we implemented, the core inference
engine of the LiLFeS system. In Section 4, we
discuss the current status of the LiLFeS system
and the results of experiments on the system per-
formance. Section 5 describes a native-code
compiler we are currently developing on the LiL-
FeS system, and discusses its performance.

2 LiLFeS as a Programming Language

LiLFeS has basically the same syntax as Prolog,
except that it uses TFSs instead of terms. Types
and features must be defined before being used in
TFS terms.

Figure 2 show the definition of the predicate ap-
pendin LiLFeS. The first paragraph contains the
type definitions of my list, e list, and
ne list. The type ne list, for example, is a
subtype of the type my 1ist, and has two appro-
priate features, FIRST and REST. The value of
the feature REST is restricted to the type my list
or one of its subtypes. The type bot is the uni-
versal type that subsumes all types.

The rest of the program is definite clauses. As
one can see, the predicate append is represented
by TFSs instead of Prolog first-order terms2.

3 Abstract Machine for Attribute-

Value Logics

The Abstract Machine for Attribute-Value Logics
(AMAVL) is the unification engine of the LiLFeS
system. AMAVL provides (1) efficient represen-
tation of TFSs on the memory, and (2) compilation
of TFSs into abstract machine codes.

3.1 Representation of a TFS on the Memory

AMAVL, as does LiLFeS, requires all TFSs to be
totally well-typed3. In other words, (1) the types
and features should be explicitly declared, (2) ap-
propriateness of specifications between types and
features should be properly declared, and (3) all
TFSs should follow these appropriateness specifi-
cations. Provided these requirements are satisfied,

Z Note that LiLFeS has built-in list types as Prolog does.
This program is just an example to illustrate how a TFS is
represented in LiLFeS

3 For a more formal definition, see (Carpenter, 1992).
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Figure 1 Compiling TFS

AMAVL efficiently represents a TFS in memory.

The representation of a TFS on memory resem-
bles the graph notation of a TFS; A node is repre-
sented by n+1 continuous data cells, where n is the
number of features outgoing from the node. The
first data cell contains the type of the node, and the
rest of the data cells contain pointers to the values
of the corresponding features.

The merit of this representation is that feature
names need not be represented in the TFS repre-
sentation on memory. The requirements on a
TFS guarantee that the kinds and number of fea-
tures are statically defined and constant for a given
type, therefore we can determine the offset of the
pointer to a given feature only by referring to the
type of the given node.

3.2 TFS as an Instruction Sequence

Unification is an operation defined between two
TFSs. However, in most cases, one of the two
TFSs is known in advance at compile-time. We
can therefore compile the TFS into a sequence of
specialized codes for unification, as illustrated in
Figure 1, rather than using a general unification
routine. The compiled unification codes are
specialized for given specific TFSs and therefore
much more efficient than a general unifier. This
is because any general unifier has to traverse both
TFSs each time unification occurs at run-time.

Many studies have been reported for compiling
unification of Prolog terms (for example, WAM
(Ait-Kaci, 1991)). However, the TFS unification
is much more complex than Prolog-term unifica-
tion, because (1) unification between different
types may succeed due to the existence of a type
hierarchy, and (2) features must be merged in the
fixed-offset TFS representation on memory.

AMAVL compiles a type hierarchy and prepares
for the complex situations described above. A
TFS itself is compiled into a sequence of four
kinds of instructions: ADDNEW (the unification of
TFS types), UNIFYVAR (creation of structure-
sharing), PUSH (feature traversing) and POP (end of
PUSH block). These instructions refer to the
compiled type hierarchy, if necessary.

These operations are implemented following the



Components Lines
WAM/AMAVL Emulator 5,434
LiL.FeS-to-WAM/AMAVL Compiler 6,091
Built-in Functions 9,530
TFS Display Routine 2,320
Others (Class Library etc.) 2,374
Total 25,749

Table 1 Source Code Lines of the LiLFeS System

original proposal of AMAVL. We also added
several other instructions in our AMAVL imple-
mentation, such as initialization of instructions for
successive unifications and combined instructions
for reducing overhead.

4 LiLFeS System

The LiLFeS system is designed based on two
abstract machines: AMAVL for TFS representa-
tion and unification procedures, and Warren's
Abstract Machine (WAM) (Ait-Kaci, 1991) for
control of execution of definite clause programs.
In this section we describe the current status of the
LiLFeS system and applications running on it.
Thereafter, we discuss the performance of LiLFeS
in our experiments.

4.1 Current Status of the LiLFeS System

The LiLFeS system is developed as a combination
of AMAVL/WAM emulator, TFS compiler, and
built-in support functions. They are all written in
C++ with the source code of more than 25,000
lines (See Table 1). The source code can be
compiled by GNU C++, and we have confirmed
operation on Sun SunOS4/Solaris, DEC Digital
UNIX, and Microsoft Windows.

We have several practical applications on the
LiLFeS system. We currently have several dif-
ferent parsers for HPSG and HPSG grammars of
Japanese and English, as follows:
® A underspecified Japanese grammar developed

by our group (Mitsuisi, 1998). Lexicon con-

sists of TFSs each of which has more than 100

nodes. The grammar can produce parse trees

for 88% of the corpus of the real world texts

(EDR Japanese corpus), 60% of which are given

correct parse trees®. This grammar is used for

the experiments in the next section.
¢ XHPSG, An HPSG English grammar (Tateisi,

1997). The grammar is converted from the

XTAG grammar (XTAG group, 1995), which

has more than 300,000 lexical entries.
® A naive parser using a CYK-like algorithm.

Although using a simple algorithm, the parser

utilizes the full capabilities provided by LiLFeS,

such as built-in predicates (TFS copy, array op-

4 The grammar does not contain semantic analysis such as
coreference resolution.
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(Parsing time per sentence, Unit: seconds)

Our Goal 0.100
CYK.style 1.050
naive parser
Parser based on
. s . .350
Torisawa’s algorithm 0.35
Condition: 600 sentences from EDR Japanese corpus (average

length 21 words), Average in the parsing of successfully parsed
539 sentences
Environment: DEC Alpha 500/400MHz with 256MB memory

Table 2 Parsing Performance Evaluation
with a Practical Grammar

eration, etc.).

® A parser based on the Torisawa’s parsing algo-
rithm (Torisawa and Tsujii, 1996). This algo-
rithm compiles an HPSG grammar into 2 parts:
its CFG skeletons and a remaining part, and
parses a sentence in two phases.  Although the
parser is not a complete implementation of the
algorithm, its efficiency benefits from its 2-
phase parsing, which reduces the amount of uni-
fication.

These parsers and grammars are used for the per-

formance evaluations in the next section.

4.2 Performance Evaluation

We evaluated the performance of the LiLFeS sys-
tem over three aspects: Parsing performance of
LiLFeS, comparison to other TFS systems, and
comparison to different Prolog systems.

Table 2 shows the performance of HPSG parsers
on a real-world corpus. However, even with the
sophisticated algorithm, the parsing speed is 3.5
times slower than intended. To achieve our goal,
we need a drastic improvement of a performance.
We therefore performed the following experiments
to find out the problem.

Table 3 shows the performance comparison to
other TFS systems, ALE and ProFIT. Two
grammars are used in the experiments: “Simple” is
a small HPSG-like grammar written by our group,
while “HPSG” is the small-lexicon HPSG gram-
mar distributed with the ALE package. In the
“Simple” experiments, the LiLFeS system is far
more efficient than ALE, but is outperformed by
ProFIT. However, in the “HPSG” experiment,
which has to handle much more complex TFSs
than “Simple” experiments, LiLFeS is clearly
better than ProFIT.

On the contrary, with simple data LiLFeS is re-
latively inefficient. Experiments in Table 4,
which show comparisons to Prolog systems, show
that the performance of LiLFeS is significantly
worse than that of those Prolog systems.

To summarize, the performance of LiLFeS is far
more impressive when it has to handle complex
TESs. This fact indicates that the TFS engine in
LiLFeS is efficient but that the other parts, i.e. the



Grammar | Simple | Simple HPSG
System 1 answer 64 answers
LiLFeS system (emulator-based) 5.70 322.4 2.56"
ALE on SICStus WAM emulation | 225.60| 10560 37.71"
ALE on SICStus native-code 67.05| 3046 26.69°
ProFIT on SICStus WAM emulation 2.94 127.51| 8.08
ProFIT on SICStus native-code 1.48 64.08 | 9.78 | (Unit:seconds)

Simple: a simple HPSG-like grammar, parsed 1000 times by a bottom-up parser, 9-word sentence results in 1 parse-tree
HPSG: a toy HPSG grammar distributed with ALE, parsed by a parser distributed with ProFIT,

14-word sentence results in 134 parse-trees

*: ALE built-in parser is used instead of parser written in definite clauses
+: The parser program is translated to avoid the “call” built-in, which contains some problems in the LiLFeS implementation

(Environment: Sun UltraSparc 1/167MHz with 128MB memory)

Table 3 Performance Comparison to Other TFS Systems

parts concerning LiLFeS as a general logic pro-
gramming system, are not yet efficient enough.
This means that, in order to improve the LiLFeS
system as a whole, we have to include various
optimization techniques already encoded in recent
Prolog implementations.

Thus we decided to redesign and optimize the
whole system. The next section describes this
optimized LiLFeS.

5 LiLFeS Native-Code Compiler

We are currently developing a native-code com-
piler of LiLFeS in order to attain maximum per-
formance. This section at first describes the
design policies of the compiler, and then, describes
the current status of implementation. The results
of the performance evaluations on the native-code
compiler are also presented.

5.1 Design Policies of the LiLFeS Native-
Code Compiler

The design policies for the LiLFeS native-code

compiler are:

e Native code output. We chose native-code
compiling for optimal efficiency. Although
this costs high for development, the resulting ef-
ficiency will compensate the cost.

e Execution model close to a real machine. We
designed the execution model by referring to the
implementation of Aquarius Prolog (Van Roy,
1990), an optimizing native-code compiler for
Prolog. Aquarius Prolog adopts an execution
model with an instruction set that is fine-grained
and close to an instruction set of a real machine.
As a result, the output code can be optimized up
to the real-machine instruction level. In parti-
cular, we fully redesigned the AMAVL instruc-
tions as fine-grained instructions, which allow
extensive optimizations on compiled TFS code.

e Static code analysis. The types of variables
can be determined by analyzing the flow of data
within a program. The result of this dataflow
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(Unit: seconds)
Systom —bication| gp(go) |rev(1000
LiLLFeS (emulator-based) | 106.4 48.7
SICStus WAM emulation 5.21 4.84
SICStus native-code 1.12 2.02
Aquarius Prolog 1.27 0.953

fib(30): Naive calculation of Fibonacci(30) = 1346269
rev(1000): Naive reverse of 1000-element list
(Environment: Sun UltraSparc 1/167TMHz with 128MB memory)

Table 4 Performance Comparison to Prolog Systems

analysis will help to further optimize in the

compilation process.

These techniques are the basis of latest Prolog
systems. It is therefore expected that LiLFeS
augmented with these techniques becomes as effi-
cient as commercially available Prolog systems.

5.2 Current Status of the LilLFeS Native-
code Compiler

We are developing the LiLFeS native-code com-
piler in LiLFeS itself. This is because the best
language that manipulates TFSs is LiLFeS; low-
level languages, such as C, are not appropriate for
TFS manipulation.

Currently all of the basic components have been
implemented. We are now working on further
code optimizations and implementation of built-in
functions on the native-code compiler.

5.3 Performance Evaluation of the LiL-
FeS Native-Code Compiler

We evaluated the performance of the LiLFeS na-
tive-code compiler with the same experiments as
used in Section 4.2.  The results of the experi-
ments are shown in Table 5 and Table 6.

The results of the native-code compiler are sig-
nificantly better than those of the emulator-based
LiLFeS system. In particular, comparison to
Prolog (Table 6) shows that the LiL.FeS native-
code compiler achieves a speedup of 20 to 30
times compared to emulator-based LiLFeS, and



Grammar

Simple | Simple | HpsG

System 1 answer 64 answers
LiLFeS native-code compiler 1.46 77.51| 0.92'
LiLFeS system (WAM based) 5.70 322.4 2.561

ALE on SICStus WAM emulation

225.60| 10560 37.71°

ALE on SICStus native-code

67.05| 3046 26.69°

ProFIT on SICStus WAM emulation

2.94| 127.51| 8.08

ProFIT on SICStus native-code

1.48 64.08 | 9.78 | (Unit: seconds)

(See notes in Table 3 for environment and other notes)

Table 5 Performance Comparison of LiLFeS Native-Code Compiler to Other TFS Systems

(Some of the data is overlapped to Table 3)

approaches to the native-code compiler versions of
commercial Prolog systems. We can say that the
bottleneck of the emulator-based LiLFeS system is
effectively eliminated.

The result of the comparison to other TFS sys-
tems (Table 5) shows a speedup of 3-5 times from
the emulator-based LiLFeS. It is still slower than
ProFIT + SICStus native-code compiler in some
experiments, though the difference is very small.
We think the reason is the different traversing
order between ProFIT + SICStus (breadth-first)
and LiLFeS native-code compiler (depth-first)>.

What is notable in those experiments is that the
LiLFeS native code compiler shows a far better
performance in the “HPSG” experiment than all
other systems. Since the “HPSG” experiment
focuses on the efficiency of TFS handling, this
means that the native code compiler improves the
TFS handling capability.

We cannot yet perform the experiments on real-
world text parsing, because the implementation of
the native-code compiler is not completed. How-
ever, we can estimate the result from the experi-
ment result on emulator-based LiLLFeS (350 milli-
seconds with sophisticated algorithm) and speed
ratio between emulator-based LiLFeS and native-
code compiler (3 to 5 times speed-up). The esti-
mated parsing time is 120ms —~ 70ms per sentence;
so we can say that we will be able to achieve our
goal of 100ms in the near future.

6 Conclusion

We developed LiLFeS, a logic programming lan-
guage for TFSs. Using AMAVL emulator as a
core of the inference engine, the LiLFeS system
achieves high efficiency on complex TFSs. We
are now developing a native-code compiler ver-
sion of LiLFeS; the prototype showed a significant
speedup from the emulator-based version.

5 We confirmed in the separate experiments that execution
time of the “Simple” test varies up to 15% by changing the
traversing order.
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Application fib(30) rev(1000)

10 times

System

LiLFeS native-code compiler 2.45 2.29

LiLFeS (emulator-based) 106.4 48.7

SICStus WAM emulation 521 4.84
SICStus native-code 1.12 2.02
Aquarius Prolog 1.27 0.953

) (Unit: seconds)
(See notes in Table 4 for environment and other notes)

Table 6 Performance Comparison of LiLFeS

Native-Code Compiler to Prolog Systems
(Some of the data is overlapped to Table 4)
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