Pairwise FastText Classifier for Entity Disambiguation

Cheng Yu*’, Bing Chu®, Rohit Ram", James
Aichinger®, Lizhen Qu"¢, Hanna Suominen®*
* Project Cleopatra, Canberra, Australia
® The Australian National University
°DATA 61, Australia
chenglprojectcleopatra.com.au

{ub5470909,ub5568718,u5016706,
Hanna.Suominen}@anu.edu.au

Lizhen.Qu@datao6l.csiro.au

Abstract

For the Australasian Language Technology
Association (ALTA) 2016 Shared Task, we
devised Pairwise FastText Classifier (PFC),
an efficient embedding-based text classifier,
and used it for entity disambiguation. Com-
pared with a few baseline algorithms, PFC
achieved a higher F1 score at 0.72 (under the
team name BCJR). To generalise the model,
we also created a method to bootstrap the
training set deterministically without human
labelling and at no financial cost. By releasing
PFC and the dataset augmentation software to
the public', we hope to invite more collabora-
tion.

1 Introduction

The goal of the ALTA 2016 Shared Task was to
disambiguate two person or organisation entities
(Chisholm et al., 2016). The real-world motiva-
tion for the Task includes gathering information
about potential clients, and law enforcement.

We designed a Pairwise FastText Classifier
(PFC) to disambiguate the entities (Chisholm et
al., 2016). The major source of inspiration for
PFC came from FastText * algorithm which
achieved quick and accurate text classification
(Joulin et al., 2016). We also devised a method to
augment our training examples deterministically,
and released all source code to the public.

The rest of the paper will start with PFC and a
mixture model based on PFC, and proceeds to pre-
sent our solution to augment the labelled dataset

L All source code can be downloaded from:
https://github.com/projectcleopatra/PFC

deterministically. Then we will evaluate PFC’s
performance against a few baseline methods, in-
cluding SVC’® with hand-crafted text features. Fi-
nally, we will discuss ways to improve disambig-
uation performance using PFC.

2 Pairwise Fast-Text Classifier (PFC)

Our Pairwise FastText Classifier is inspired by
the FastText. Thus this section starts with a brief
description of FastText, and proceeds to demon-
strate PFC.

2.1 FastText

FastText maps each vocabulary to a real-valued
vector, with unknown words having a special vo-
cabulary ID. A document can be represented as
the average of all these vectors. Then FastText
will train a maximum entropy multi-class classi-
fier on the vectors and the output labels. Fast Text
has been shown to train quickly and achieve pre-
diction performance comparable to Recurrent
Neural Network embedding model for text classi-
fication (Joulin et al., 2016).

2.2 PFC

PFC is similar to FastText except that PFC takes
two inputs in the form of a list of vocabulary IDs,
because disambiguation requires two URL inputs.
We specify that each of them is passed into the
same embedding matrix. If each entity is repre-
sented by a d dimensional vector, then we can
concatenate them, and represent the two entities

% The original paper of FastText used the typography
fastText

3 SVC: Support vector classification

Cheng Yu, Bing Chu, Rohit Ram, James Aichinger, Lizhen Qu and Hanna Suominen. 2016. Pairwise FastText Classifier for
Entity Disambiguation. In Proceedings of Australasian Language Technology Association Workshop, pages 176—180.

by a 2d dimensional vector. Then we train a max-
imum entropy classifier based on the concatenated
vector. The diagram of the model is in Figure 1.

)

- Binary MaxEnt
Classifier

Figure 1: PFC model. W1 and W2 are trainable
weights.

Entity 1 Text
v Vector 1

d ional Word
Embeddings W1

Entity 2 Text

0

2.3 The PFC Mixture Model

The previous section introduces word-embed-
ding-based PFC. In order to improve disambigua-
tion performance, we built a mixture model based
on various PFC sub-models: Besides word-em-
bedding-based PFC, we also trained character-
embedding-based PFC, which includes one uni-
character PFC, and one bi-character PFC. In the
following subsections, we will first briefly explain
character-embedding-based PFC, and then show
the Mixture model.

2.3.1 Character-Embedding-Based PFCs

Character-embedding-based PFC models typi-
cally have fewer parameters than word-embed-
ding-based PFC, and thus reducing the probability
of overfitting.

Uni-character embedding maps each character
in the URL and search engine snippet into a 13-
dimensional vector, take the average of an input
document, concatenate the two documents, and
then train a maximum entropy classification on
top of the concatenated vectors.

Bi-character embedding model has a moving
window of two characters and mapped every such
two characters into a 16-dimensional vector.

Our implementation of the character-embed-
ding based PFC model includes only lowercase
English letters and space. After converting all let-
ters to lowercase, other characters are simply
skipped and ignored.

2.3.2 Mixing PFC Sub-models

The mixture model has two phases. In phase one,
we train each sub-model independently. In phase
2, we train a simple binary classifier based on the
probability output of each individual PFC. The di-
agram of the PFC mixture model is shown in Fig-
ure 2.

* In the Shared Task, if a pair of URL entities refer to differ-
ent persons or organisations, the pair belongs to the negative

177

Phase 1

Entity 1 Text
Binary MaxEnt
Classifier
Entity 2 Text

Figure 2: The PFC Mixture Model.

Phase 2

Word-embedding-
based PFC

Probability
output

Uni-character- -
.y Probability

output

PFC

Probability
output

Bi-character-
embedding-based
PFC

3 Augmenting More Training Examples
Deterministically

Embedding-models tend to have a large number
of parameters. Our word-embedding matrix has
over 3700 rows, and thus it is natural to brain-
storm ways to augment the training set to prevent
overfitting.

We created a method to harvest additional
training examples deterministically without the
need for human labelling, and the data can be ac-
quired at no additional cost.

3.1 Acquiring Training Examples for the

Negative Class®

To acquire URL pairs that refer to different peo-
ple, we wrote a scraping bot that visits LinkedIn,
and grabs hyperlinks in a section called “People
that are similar to the person”, where LinkedIn
recommends professionals that have similar to the
current profile that we are browsing. LinkedIn re-
stricts the number of profiles we can browse in a
given month unless the user is a Premium user, so
we upgraded our LinkedIn account for scraping
purpose. We used the LinkedIn URLSs provided to
us in the training samples, and grabbed similar
LinkedIn profiles, which ended up with about 850
profiles, with some of the Linkedln URLs no
longer up to date.

3.2 Acquiring Training Examples for the

Positive Class

To acquire training examples of different social
media profiles that belong to the same person, we
used examples from about .me. About.me is a
platform where people could create a personal
page showing their professional portfolios and
links to various social media sites. We wrote a
scraping bot that visits about.me/discover, where
the site showcases their users, and clicks open

class. if a pair of URL entities refer to the same persons or
organisations, the pair belongs to the positive class.

each user, acquires their social media links, and
randomly selects two as a training example. For
example, for someone with 5 social media pro-
files, including Facebook, Twitter, LinkedIn, Pin-
terest, and Google+, the bot can generate (5, 2) =
10 training examples.

4 Experimental Setup

Using the training data provided by the Organ-
iser and data acquired using the method men-
tioned in Section 3, we evaluated the perfor-
mance of our PFC and PFC Mixture against a
few baseline models.

4.1 Datasets

The organiser prepared 200 labelled pairs of train-
ing samples and 200 unlabelled test samples
(Hachey, 2016). All baseline methods and PFC
methods are trained using the original 200 URL
pairs. The only exception is “PFC with augmented
dataset”, which uses the method in the previous
section to acquire 807 negative class URL pairs,
and 891 positive class URL pairs.

4.2 Pre-Processing

Text content for the PFC comes from the search
engine snippet file provided by the Organiser and
text scraped from the URLs provided by the train-
ing examples. Unknown words in the test set are
represented by a special symbol.

4.3 Baselines

The reason we choose a few baseline models is
that there is no gold-standard baseline model for
URL entity disambiguation. Baseline models are
explained as followed.

Word-Embedding with Pre-Trained Vec-
tors: The training corpus Google comes from
News Articles (Mikolov et al., 2013). For each
URL entity, we calculated the mean vector of the
search result snippet text by using pre-trained
word embedding vectors from Google. Unknown
words were ignored. Then we concatenated the
vectors and trained a maximum entropy classifier
on top of it.

SVC with Hand-Selected Text Features: Our
Support Vector Classifier is built on top of hand-
selected text features. For each pair of URLs, we

> F1 total is the simple average of F1 Public (calculated
from half of half of the test data) and F1 Private (from the
second half of the data)

178

manually selected the following text features. Ex-
planation of these features is available in Appen-
dix-A.

LSTM Word-Embedding: We passed each
document token sequentially using word embed-
ding into an LSTM layer with 50 LSTM units
(Brownlee, 2016) (Goodfellow et al., 2016), con-
catenated the two output vectors, and trained a
maximum entropy classifier on top of it. To re-
duce overfitting, we added dropout layers with the
dropout parameter set to 0.2 (Zaremba, Sutskever,
& Vinyals, 2014).

Neural Tensor Network: Inspired by Socher
et al., by passing a pair of documents represented
in vector form into a tensor, we built a relationship
classifier based on the architecture in the paper
(Socher et al., 2013). Document vectors are calcu-
lated from pre-trained Google embedding word
vectors.

5 Results and Discussion

The experimental results from the setup is sum-
marised in the table.

Method F1 F1 F1
Public Pri- To-
vate tals
PFC- | PFC with 0.75 0.64 | 0.69
based | Word-Embed-
ding
PFC Mixture 0.74 0.71] 0.72
Model
PFC with 0.65 0.69 | 0.67
augmented
dataset
Base- | Neural tensor 0.67 0.6 | 0.64
line network
SVC using 0.75 0.69 | 0.72
hand-selected
features
LSTM word- 0.51 0.53 | 0.52
embedding
Table 1: Result comparison.
5.1 Issues with Augmented Dataset

Adding more training data seems to hurt the F1
score for the Shared Task. However, if we allow
the newly acquired training examples to be part of
the validation set, the validation set accuracy
could reach 0.92. Due to time constraint, we were
only able to acquire about 1700 training examples,

with approximately equal number in each cate-
gory. Whether adding more training data can im-
prove disambiguation performance remains to be
experimented.

5.2 Improve PFC

The performance of the PFC might improve if we
use a similarity scoring function s(vq,v,) =
vIDv,, where D is a diagonal matrix. The binary
classifier becomes y = a(s(vq,v;)), while the
original PFC classifier is y = a(WT[vy,v,]) .
Both D and W are learnable weights.

5.3 Compare PFC with Baseline SVC

In our experiments, the PFC mixture model
achieves the best performance, comparable to
SVC with hand-selected features. Uni-character
model by itself tends to under fit because the train-
ing data themselves cannot be separated by the
model alone. PFC is robust because allows text
features to be learnt automatically.

6 Conclusion

We introduced Pairwise FastText Classifier to
disambiguate URL entities. It uses embedding-
based vector representation for text, can be trained
quickly, and performs better than most of the al-
ternative baseline models in our experiments. PFC
has the potential to generalise towards a wide
range of disambiguation tasks. In order to gener-
alise the application of the model, we created a
method to deterministically harvest more training
examples, which does not require manual label-
ling. By releasing all of them to the public, we
hope for the continual advancement in the field of
disambiguation, which could be applied to iden-
tity verification, anti-terrorism, and online general
knowledge-base creation.

Appendix A

Appendix A includes manually selected text features
for the SVC baseline model.

A.1 URL Features

ID Feature Name Description

1 Country code dif- If one URL has “au”
ference and another one has

“uk”, then the value is
1, otherwise 0.

2 Edit distance be- Simply the Levenshtein
tween the two distance between the
URLs string tokens of the two

URLs (Jurafsky &
Martin, 2007).

179

Below are a list of URL
features specific to one
URL.

3 isEducation(url a) If the first URL con-
tains domain names
such as “.ac.uk” or
“.edu”, then the value is
1. Otherwise 0.

4 isEntertain- If the url includes imdb,

ment(url_a) allmusic, artnet,
mtv.com, or band, it re-
turns 1. Otherwise 0.

5 isProfes- If the url contains

sional(url_a) linkedin.com or re-
searchgate.com, it re-
turns 1. Otherwise 0.

6 isNonProfitOr- If the url contains

Gov(url_a) “org” or “.gov”, then it
returns 1.

7 isSportsStar(url_a) If the url contains
“espn”, “ufc.com”, or
“sports”, then the fea-
ture is 1. Otherwise 0.

8 - Features forurl b Analogous to Feature 3

12 -7

A.2 Title Features

ID Feature Description
Name

13 Edit dis- Due to the differences of length
tance of between different titles, only
the first the first part of the titles is pre-
part of the served for calculating the Le-
title for the venshtein distance. This feature
two URLs is chosen because the first part

of the title usually contains the
first and last name of the person
or the name of the company.

14 Cosine The vector representation of the
distance of text is same as FastText except
the em- that the embedding matrix is
bedded pre-trained from Google. Any
matrices token not trained by Google

will be ignored (Weston,
Chopra, & Bordes, 2015).

A.3 Snippet Features

This refers to features made from fields “ASnip-
pet” and “BSnippet” of the search result file pro-
vided by the Organiser.

ID Feature Name Description

15 Word Mover Distance be-
tween the nouns and
named entities between
“ASnippet” and “BSnip-
pet” (Pele & Werman, A
linear time histogram
metric for improved sift

Using pre-
trained Google
word-embed-
ding vectors

matching, 2008) (Pele &
Werman, Fast and robust
earth mover’s distances,

2009).

16 Word Mover Distance be- Using the pre-
tween the nouns and trained Stanford
named entities between GloVe vectors
“ASnippet” and “BSnip- (Pennington et
pet” al., 2014).

Reference

Brownlee, J. (2016, July 26). Sequence Classification
with LSTM Recurrent Neural Networks in
Python with Keras. Retrieved from Machine
Learning Mastery:
http://machinelearningmastery.com/sequence
-classification-Istm-recurrent-neural-
networks-python-keras/

Chisholm, A., Hachey, B., & Molla, D. (2016).
Overview of the 2016 ALTA Shared Task:
Cross-KB Coreference. Proceedings of the
Australasian Language Technology
Association Workshop 2016.

Chisholm, A., Radford, W., & Hachey, B. (2016).
Discovering Entity Knowledge Bases on the
Web. Proceedings of the 5th Workshop on
Automated Knowledge Base Construction

Goodfellow, 1., Bengio, Y., & Courville, A. (2016).
Deep Learning, pages 373 - 420.

Hachey, B. (2016). How was the data obtained? -
ALTA 2016. Retrieved from Kaggle:
https://inclass.kaggle.com/c/alta-2016-
challenge/forums/t/23480/how-was-the-data-
obtained

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T.
(2016). Bag of Tricks for Efficient Text
Classification. arXiv preprint
arXiv:1607.01759.

Jurafsky, D., & Martin, J. H. (2007). Speech and
Language Processing, 3" edition [Draft].
Chapter 2.

Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013). Efficient Estimation of Word
Representations in Vector Space. arXiv
preprint arXiv:1301.3781.

Pele, O., & Werman, M. (2008). A linear time
histogram metric for improved sift matching.
Computer Vision--ECCV 2008.

Pele, O., & Werman, M. (2009). Fast and robust earth
mover’s distances. 2009 IEEE 12th
International Conference on Computer
Vision.

180

Pennington, J., Socher, R., & Manning, C. D. (2014).
GloVe: Global Vectors for Word
Representation. Empirical Methods in
Natural Language Processing, pages 1532 —
1543.

Socher, R., Chen, D., Manning, C., & Ng, A. (2013).
Completion, Reasoning With Neural Tensor
Networks for Knowledge Base. In Advances

in Neural Information Processing Systems,
2013a.

Weston, J., Chopra, S., & Bordes, A. (2015). Memory
Networks. arXiv:1410.3916.

Zaremba, W., Sutskever, 1., & Vinyals, O. (2014).
Recurrent Neural Network Regularization.
arXiv preprint arXiv:1409.2329.

