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Abstract

The field of machine translation faces an
under-recognized problem because of incon-
sistency in the reporting of scores from its
dominant metric. Although people refer to
“the” BLEU score, BLEU is in fact a param-
eterized metric whose values can vary wildly
with changes to these parameters. These pa-
rameters are often not reported or are hard
to find, and consequently, BLEU scores be-
tween papers cannot be directly compared. I
quantify this variation, finding differences as
high as 1.8 between commonly used configu-
rations. The main culprit is different tokeniza-
tion and normalization schemes applied to the
reference. Pointing to the success of the pars-
ing community, I suggest machine translation
researchers settle upon the BLEU scheme used
by the annual Conference on Machine Trans-
lation (WMT), which does not allow for user-
supplied reference processing, and provide a
new tool, SACREBLEU,1 to facilitate this.

1 Introduction

Science is the process of formulating hypothe-
ses, making predictions, and measuring their out-
comes. In machine translation research, the pre-
dictions are made by models whose development
is the focus of the research, and the measurement,
more often than not, is done via BLEU (Papineni
et al., 2002). BLEU’s relative language indepen-
dence, its ease of computation, and its reason-
able correlation with human judgments have led
to its adoption as the dominant metric for ma-
chine translation research. On the whole, it has
been a boon to the community, providing a fast
and cheap way for researchers to gauge the perfor-
mance of their models. Together with larger-scale
controlled manual evaluations, BLEU has shep-

1https://github.com/awslabs/sockeye/
tree/master/contrib/sacrebleu

herded the field through a decade and a half of
quality improvements (Graham et al., 2014).

This is of course not to claim there are no
problems with BLEU. Its weaknesses abound, and
much has been written about them (cf. Callison-
Burch et al. (2006); Reiter (2018)). This paper is
not, however, concerned with the shortcomings of
BLEU as a proxy for human evaluation of quality;
instead, our goal is to bring attention to the rela-
tively narrower problem of the reporting of BLEU
scores. This problem can be summarized as fol-
lows:

• BLEU is not a single metric, but requires a
number of parameters (§2.1).

• Preprocessing schemes have a large effect
on scores (§2.2). Importantly, BLEU scores
computed against differently-processed ref-
erences are not comparable.

• Papers vary in the hidden parameters and
schemes they use, yet often do not report
them (§2.3). Even when they do, it can be
hard to discover the details.

Together, these issues make it difficult to evaluate
and compare BLEU scores across papers, which
impedes comparison and replication. I quantify
these issues and show that they are serious, with
variances bigger than many reported gains. Af-
ter introducing the notion of user- versus metric-
supplied tokenization, I identify user-supplied ref-
erence tokenization as the main cause of this in-
compatibility. In response, I suggest the com-
munity use only metric-supplied reference tok-
enization when sharing scores,2 following the an-
nual Conference on Machine Translation (Bojar
et al., 2017, WMT). In support of this, I release a

2Sometimes referred to as detokenized BLEU, since it re-
quires that system output be detokenized prior to scoring.
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Python package, SACREBLEU,3 which automati-
cally downloads and stores references for common
test sets, thus introducing a “protective layer” be-
tween them and the user. It also provides a number
of other features, such as reporting a version string
which records the parameters used and which can
be included in published papers.

2 Problem Description

2.1 Problem: BLEU is underspecified
“BLEU” does not signify a single concrete
method, but a constellation of parameterized
methods. Among these parameters are:

• The number of references used;

• for multi-reference settings, the computation
of the length penalty;

• the maximum n-gram length; and

• smoothing applied to 0-count n-grams.

Many of these are not common problems in prac-
tice. Most often, there is only one reference, and
the length penalty calculation is therefore moot.
The maximum n-gram length is virtually always
set to four, and since BLEU is corpus level, it is
rare that there are any zero counts.

But it is also true that people use BLEU scores
as very rough guides to MT performance across
test sets and languages (comparing, for example,
translation performance into English from Ger-
man and Chinese). Apart from the wide intra-
language scores between test sets, the number of
references included with a test set has a large
effect that is often not given enough attention.
For example, WMT 2017 includes two references
for English–Finnish. Scoring the online-B sys-
tem with one reference produces a BLEU score of
22.04, and with two, 25.25. As another example,
the NIST OpenMT Arabic–English and Chinese–
English test sets4 provided four references and
consequently yielded BLEU scores in the high 40s
(and now, low 50s). Since these numbers are all
gathered together under the label “BLEU”, over
time, they leave an impression in people’s minds
of very high BLEU scores for some language pairs
or test sets relative to others, but without this crit-
ical distinguishing detail.

3pip3 install sacrebleu
4https://catalog.ldc.upenn.edu/

LDC2010T21

2.2 Problem: Different reference
preprocessings cannot be compared

The first problem dealt with parameters used in
BLEU scores, and was more theoretical. A second
problem, that of preprocessing, exists in practice.

Preprocessing includes input text modifications
such as normalization (e.g., collapsing punc-
tuation, removing special characters), tokeniza-
tion (e.g., splitting off punctuation), compound-
splitting, the removal of case, and so on. Its gen-
eral goal is to deliver meaningful white-space de-
limited tokens to the MT system. Of these, to-
kenization is one of the most important and cen-
tral. This is because BLEU is a precision metric,
and changing the reference processing changes the
set of n-grams against which system n-gram pre-
cision is computed. Rehbein and Genabith (2007)
showed that the analogous use in the parsing com-
munity of F1 scores as rough estimates of cross-
lingual parsing difficulty were unreliable, for this
exact reason. BLEU scores are often reported as
being tokenized or detokenized. But for comput-
ing BLEU, both the system output and reference
are always tokenized; what this distinction refers
to is whether the reference preprocessing is user-
supplied or metric-internal (i.e., handled by the
code implementing the metric), respectively. And
since BLEU scores can only be compared when
the reference processing is the same, user-supplied
preprocessing is error-prone and inadequate for
comparing across papers.

Table 1 demonstrates the effect of computing
BLEU scores with different reference tokeniza-
tions. This table presents BLEU scores where a
single WMT 2017 system (online-B) and the ref-
erence translation were both processed in the fol-
lowing ways:

• basic. User-supplied preprocessing with the
MOSES tokenizer (Koehn et al., 2007).5

• split. Splitting compounds, as in Luong et al.
(2015a):6 e.g., rich-text→ rich - text.

• unk. All word types not appearing at least
twice in the target side of the WMT training
data (with “basic” tokenization) are mapped
to UNK. This hypothetical scenario could

5Arguments -q -no-escape -protected
basic-protected-patterns -l LANG.

6Their use of compound splitting is not mentioned in
the paper, but only here: http://nlp.stanford.edu/
projects/nmt.
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English→ ? ?→English
config en-cs en-de en-fi en-lv en-ru en-tr cs-en de-en fi-en lv-en ru-en tr-en
basic 20.7 25.8 22.2 16.9 33.3 18.5 26.8 31.2 26.6 21.1 36.4 24.4
split 20.7 26.1 22.6 17.0 33.3 18.7 26.9 31.7 26.9 21.3 36.7 24.7
unk 20.9 26.5 25.4 18.7 33.8 20.6 26.9 31.4 27.6 22.7 37.5 25.2
metric 20.1 26.6 22.0 17.9 32.0 19.9 27.4 33.0 27.6 22.0 36.9 25.6
range 0.6 0.8 0.6 1.0 1.3 1.4 0.6 1.8 1.0 0.9 0.5 1.2
basiclc 21.2 26.3 22.5 17.4 33.3 18.9 27.7 32.5 27.5 22.0 37.3 25.2
splitlc 21.3 26.6 22.9 17.5 33.4 19.1 27.8 32.9 27.8 22.2 37.5 25.4
unklc 21.4 27.0 25.6 19.1 33.8 21.0 27.8 32.6 28.3 23.6 38.3 25.9
metriclc 20.6 27.2 22.4 18.5 32.8 20.4 28.4 34.2 28.5 23.0 37.8 26.4
rangelc 0.6 0.9 0.5 1.1 0.6 1.5 0.7 1.7 1.0 1.0 0.5 1.2

Table 1: BLEU score variation across WMT’17 language arcs for cased (top) and uncased (bottom) BLEU. Each
column varies the processing of the “online-B” system output and its references. basic denotes basic user-supplied
tokenization, split adds compound splitting, unk replaces words not appearing at least twice in the training data
with UNK, and metric denotes the metric-supplied tokenization used by WMT. The range row lists the difference
between the smallest and largest scores, excluding unk.

easily happen if this common user-supplied
preprocessing were inadvertently applied to
the reference.

• metric. Only the metric-internal tokeniza-
tion of the official WMT scoring script,
mteval-v13a.pl, is applied.7

The changes in each column show the effect
these different schemes have, as high as 1.8 for
one arc, and averaging around 1.0. The biggest
is the treatment of case, which is well known, yet
many papers are not clear about whether they re-
port cased or case-insensitive BLEU.

Allowing the user to handle pre-processing of
the reference has other traps. For example, many
systems (particularly before sub-word splitting
(Sennrich et al., 2016) was proposed) limited the
vocabulary in their attempt to deal with unknown
words. It’s possible that these papers applied this
same unknown-word masking to the references,
too, which would artificially inflate BLEU scores.
Such mistakes are easy to introduce in researcher
pipelines.8

2.3 Problem: Details are hard to come by
User-supplied reference processing precludes di-
rect comparison of published numbers, but if
enough detail is specified in the paper, it is at

7https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/mteval-v13a.pl

8This paper’s observations stem in part from an early ver-
sion of a research workflow I was using, which applied pre-
processing to the reference, affecting scores by half a point.

paper configuration
Chiang (2005) metriclc
Bahdanau et al. (2014) (unclear)
Luong et al. (2015b) user or metric (unclear)
Jean et al. (2015) user
Wu et al. (2016) user or userlc (unclear)
Vaswani et al. (2017) user or userlc (unclear)
Gehring et al. (2017) user, metric

Table 2: Benchmarks set by well-cited papers use dif-
ferent BLEU configurations (Table 1). Which one was
used is often difficult to determine.

least possible to reconstruct comparable numbers.
Unfortunately, this is not the trend, and even for
meticulous researchers, it is often unwieldy to in-
clude this level of technical detail. In any case,
it creates uncertainty and work for the reader. One
has to read the experiments section, scour the foot-
notes, and look for other clues which are some-
times scattered throughout the paper. Figuring out
what another team did is not easy.

The variations in Table 1 are only some of the
possible configurations, since there is no limit to
the preprocessing that a group could apply. But
assuming these represent common, concrete con-
figurations, one might wonder how easy it is to de-
termine which of them was used by a particular
paper. Table 2 presents an attempt to recover this
information from a handful of influential papers in
the literature. Not only are systems not compa-
rable due to different schemes, in many cases, no
easy determination can be made.
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Figure 1: The proper pipeline for computing reported
BLEU scores. White boxes denote user-supplied pro-
cessing, and the black box, metric-supplied. The user
should not touch the reference, while the metric applies
its own processing to the system output and reference.

2.4 Problem: Dataset specification
Other tricky details exist in the management of
datasets. It has been common over the past few
years to report results on the English→German
arc of the WMT’14 dataset. It is unfortunate,
therefore, that for this track (and this track alone),
there are actually two such datasets. One of them,
released for the evaluation, has only 2,737 sen-
tences, having removed about 10% of the origi-
nal data after problems were discovered during the
evaluation. The second, released after the evalu-
ation, restores this missing data (after correcting
the problem) and has 3,004 sentences. Many re-
searchers are unaware of this fact, and do not spec-
ify which version they use when reporting, which
itself contributes to variance.

2.5 Summary
Figure 1 depicts the ideal process for comput-
ing sharable scores. Reference tokenization must
identical in order for scores to be comparable. The
widespread use of user-supplied reference pre-
processing prevents this, needlessly complicating
comparisons. The lack of details about prepro-
cessing pipelines exacerbates this problem. This
situation should be fixed.

3 A way forward

3.1 The example of PARSEVAL
An instructive comparison comes from the eval-
uation of English parsing scores, where num-
bers have been safely compared across papers for
decades using the PARSEVAL metric (Black et al.,

1991). PARSEVAL works by taking labeled spans
of the form (N, i, j) representing a nonterminal
N spanning a constituent from word i to word
j. These are extracted from the parser output and
used to compute precision and recall against the
gold-standard set taken from the correct parse tree.
Precision and recall are then combined to compute
the F1 metric that is commonly reported and com-
pared across parsing papers.

Computing parser F1 comes with its own set
of hidden parameters and edge cases. Should
one count the TOP (ROOT) node? What about
-NONE- nodes? Punctuation? Should any la-
bels be considered equivalent? These boundary
cases are resolved by that community’s adoption
of a standard codebase, evalb,9 which included
a parameters file that answers each of these ques-
tions.10 This has facilitated almost thirty years of
comparisons on treebanks such as the Wall Street
Journal portion of the Penn Treebank (Marcus
et al., 1993).

3.2 Existing scripts
MOSES11 has a number of scoring scripts. Un-
fortunately, each of them has problems. Moses’
multi-bleu.perl cannot be used because it
requires user-supplied preprocessing. The same
is true of another evaluation framework, MultEval
(Clark et al., 2011), which explicitly advocates for
user-supplied tokenization.12 A good candidate
is Moses’ mteval-v13a.pl, which makes use
of metric-internal preprocessing and is used in the
annual WMT evaluations. However, this script in-
conveniently requires the data to be wrapped into
XML. Nematus (Sennrich et al., 2017) contains a
version (multi-bleu-detok.perl) that re-
moves the XML requirement. This is a good idea,
but it still requires the user to manually handle the
reference translations. A better approach is to keep
the reference away from the user entirely.

3.3 SACREBLEU

SACREBLEU is a Python script that aims to treat
BLEU with a bit more reverence:

• It expects detokenized outputs, applying its
own metric-internal preprocessing, and pro-
duces the same values as WMT;

9http://nlp.cs.nyu.edu/evalb/
10The configuration file, COLLINS.PRM, answers these

questions as no, no, no, and ADVP=PRT.
11http://statmt.org/moses
12https://github.com/jhclark/multeval
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• it automatically downloads and stores WMT
(2008–2018) and IWSLT 2017 (Cettolo et al.,
2017) test sets, obviating the need for the user
to handle the references at all; and

• it produces a short version string that docu-
ments the settings used.

SACREBLEU can be installed via the Python
package management system:

pip3 install sacrebleu

It can then be used to download the source
side of test sets as decoder input—all WMT test
sets are available, as well as recent IWSLT test
sets, and others are being added. After decoding
and detokenization, it can then used to produce
BLEU scores.13 The following command selects
the WMT’14 EN-DE dataset used in the official
evaluation:

cat output.detok \
| sacrebleu -t wmt14 -l en-de

(The restored version that was released after
the evaluation (§2.4) can be selected by us-
ing -t wmt14/full.) It prints out a version
string recording all the parameters as ’+’ de-
limited KEY.VALUE pairs (here shortened with
--short):

BLEU+c.mixed+l.en-de+#.1+s.exp
+t.wmt14+tok.13a+v.1.2.10

recording:

• mixed case evaluation

• on EN-DE

• with one reference

• and exponential smoothing

• on the WMT14 dataset

• using the WMT standard ’13a’ tokenization

• with SACREBLEU 1.2.10.

SACREBLEU is open source software released
under the Apache 2.0 license.

13The CHRF metric is also available via the -m flag.

4 Summary

Research in machine translation benefits from the
regular introduction of test sets for many different
language arcs, from academic, government, and
industry sources. It is a shame, therefore, that we
are in a situation where it is difficult to directly
compare scores across these test sets. One might
be tempted to shrug this off as an unimportant de-
tail, but as was shown here, these differences are in
fact quite important, resulting in large variances in
the score that are often much higher than the gains
reported by a new method.

Fixing the problem is relatively simple. Re-
search groups should only report BLEU computed
using a metric-internal tokenization and prepro-
cessing scheme for the reference, and they should
be explicit about the BLEU parameterization they
use. With this, scores can be directly compared.
For backwards compatibility with WMT results, I
recommend the processing scheme used by WMT,
and provide a new tool that makes it easy to do so.
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