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Abstract

We address the task of automatically detecting
toxic content in user generated texts. We fo-
cus on exploring the potential for preemptive
moderation, i.e., predicting whether a particu-
lar conversation thread will, in the future, incite
a toxic comment. Moreover, we perform pre-
liminary investigation of whether a model that
jointly considers all comments in a conversa-
tion thread outperforms a model that considers
only individual comments. Using an existing
dataset of conversations among Wikipedia con-
tributors as a starting point, we compile a new
large-scale dataset for this task consisting of
labeled comments and comments from their
conversation threads.

1 Introduction

Due to the ever-growing amount of user generated
content online, manual moderation of such content
is becoming increasingly difficult to scale up. On
the other hand, the relative anonymity and lack
of personal contact between participants of web
conversations lowers inhibitions and increases the
risk of toxic behavior, making adequate moderation
increasingly important. Consequently, automated
detection of toxic language in user generated con-
tent is an increasingly important area of research.
While automated classification models are unlikely
to ever fully replace human moderators, they can
make their task easier by suggesting which content
to prioritize for moderation.

The typical way to approach this problem is via
supervised machine learning, where an input to a
model is a user-generated text, and the output is
a classification decision (toxic or non-toxic) or a
numerical toxicity score. In this paper, we explore
two possible extensions of this approach: preemp-
tive classification and thread-level models.

While practically very useful, standard models
are only applicable in a post-hoc scenario, i.e., to
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detect a toxic comment after if has already been
posted. An alternate approach would be to have
models detect situations that are likely to lead to
toxic comments. If successful, such models would
enable moderators to preemptively focus on poten-
tially problematic discussion threads and then ei-
ther intervene and guide the discussion away from
conflict or respond in near real-time after the toxic
comment is posted. Large-scale implementation of
such near real-time moderation might be unneces-
sary and require too many moderators. However,
for limited parts of discussions that are known to
pertain to specially vulnerable social groups, this
might be a feasible approach. Our first research
question is whether such preemptive toxic com-
ment detection is viable.

The second research question pertains to the ben-
efits of including thread-level information when
detecting toxic comments. Namely, most existing
models consider every comment in isolation, there-
fore ignoring the context provided by the other
comments in the discussion. For post-hoc models,
while useful, this additional information may not
be crucial, as the main indicators of toxicity are
most present in the text of the comment being clas-
sified rather than in the rest of the thread. In the
preemptive scenario, however, the model has ac-
cess only to comments that appeared before a toxic
one. We hypothesize that considering the entire
thread of comments might be of greater importance
in this case.

The contribution of this paper is threefold. First,
using a large data set of conversations among
Wikipedia contributors, we compile and make pub-
licly available a new dataset with complete discus-
sion threads and with semi-automatically generated
toxicity labels. Secondly, we explore the viability
of models for the preemptive toxic detection task.
Third, we investigate the potential benefits of in-
cluding thread-level information into models.
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2 Related Work

Many varieties of toxic language have been con-
sidered in NLP research, including sexism, racism
(Waseem and Hovy, 2016a; Waseem, 2016), toxic-
ity (Kolhatkar et al., 2018), hatefulness (Gao and
Huang, 2017a), aggression (Kumar et al., 2018),
attack (Wulczyn et al., 2017a), obscenity, threats,
and insults. Waseem et al. (2017) proposed a sys-
tematic typology of toxic language.

Post-hoc detection of toxic text has been tackled
by traditional machine learning approaches, such
as logistic regression (Waseem and Hovy, 2016b;
Davidson et al., 2017; Wulczyn et al., 2017b), and
support vector machines (SVM) (Xu et al., 2012;
Schofield and Davidson, 2017). However, the best
performance is most often attained by deep learning
approaches, such as convolutional neural networks
(CNN) (Gambick and Sikdar, 2017; Potapova and
Gordeev, 2016; Pavlopoulos et al., 2017) and vari-
ants of recurrent neural networks (RNN) (Pavlopou-
los et al., 2017; Gao and Huang, 2017b; Pitsilis
et al., 2018; Zhang et al., 2018b). In our exper-
iments we focus mainly on deep learning-based
models.

All the above-mentioned approaches deal with
the post-hoc scenario. Other work we are aware
of that explores the preemptive scenario is that of
Zhang et al. (2018a). There, the task is to pre-
dict — given an initial courteous exchange of two
user comments — whether the third comment will
be toxic. The authors create a manually labeled
data set and perform an extensive study on which
pragmatic and rhetorical devices are indicative of
conversation toxicity. Moreover, there is the work
of (Liu et al., 2018), where a logistic regression
classifier with a rich feature set (including thread
level features) is evaluated on a data set of manually
labeled 30000 Instagram comments. In contrast,
the data set produced in our work is much bigger,
but has only silver labels.

In our work we consider the use of thread-level
information for toxic comment detection. Within
the scope of this work we limit ourselves to sim-
ple mechanisms for including this information into
deep learning models. Recently, deep learning
models have been proposed that leverage graph
structures, such as TreeLSTM (Tai et al., 2015) and
GraphSAGE (Hamilton et al., 2017), which might
be useful for modeling thread-level structure in our
task. We leave the investigation of this possibility
for future work.

3 Dataset

At the time of writing we were not aware of the data
set from (Liu et al., 2018). At first we considered
using the dataset from (Zhang et al., 2018a), but
found it rather small (~1200 examples) for deep
learning approaches. Furthermore, this dataset
was constructed using a very carefully designed
methodology for a specific experiment — detecting
whether a toxic comment will appear given a cour-
teous initial exchange of two comments. We are
interested in a more general case, where conversa-
tion threads might be longer and not necessarily
start in a courteous manner. Moreover, we aimed
at a setting which would better reflect the realistic
working conditions in which our models would be
used and allow us to measure their practical impact.
Consequently, we decided to create a new dataset
from the data collected by Hua et al. (2018). It
contains the entire conversational history of com-
ments on Wikipedia modeled as a graph of actions.
The possible actions are Creation, Addition, Modi-
fication, Deletion, and Restoration. Automatically
derived toxicity scores are also provided for each
example.

We apply the following steps to this dataset:
Step 1. Filter the data to remove all threads with
less than 2 different participants. This leaves
~8.7M threads.

Step 2. Apply all Modification actions, to update
the comments to their most recent version.

Step 3. Flag comments that were deleted. A com-
ment is considered deleted if there is a Deletion
action on it, without a subsequent Restoration ac-
tion that would undo the effect.

Step 4. Split the threads into the train (70%), dev
(15%), and test (15%) sets. The split is done across
time: the test set contains the most recent threads,
while the train set contains the least recent.

Step 5. Semi-automatically label the examples
for toxicity. An example is considered toxic if its
toxicity or severe toxicity scores are above 0.64
or 0.92, respectively. ' and it was deleted by a
person who is not the comment author. This heuris-
tic takes into account two signals: (1) the fact that
a toxic classifier has high confidence for a com-
ment and (2) the fact the comment was deleted.

"The same thresholds as those used by Hua et al. (2018)
tuned to give equal error rate on a dataset of Wikipedia com-
ments manually labeled for toxicity. The thresholds yield 86%
precision and 84% recall on the tuning data. The thresholds
differ as the number of severely toxic comments in the tuning
data was much smaller than the number of toxic comments.
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Figure 1: An illustration of examples generated for the
post-hoc (left tree) and preemptive (right tree) case. Di-
amond shaped nodes represent toxic comments while
round nodes represent non-toxic comments. Positive
examples for the classifier are denoted by + and negative
ones by —. Examples denoted by NA are not considered
by the classifier: these are the leaf nodes in the preemp-
tive scenario. The filtering from Step 7 has the effect
of ignoring all examples with an insufficient number
of preceding comments, e.g., for L,,;, = 2 all com-
ments above the dotted line would be ignored in the
rich-context setting.

Considering only deleted examples as toxic would
yield noisy labels, as comments are often deleted
for reasons other than being toxic. Manual inspec-
tion of the silver-labeled dataset reveals that the
combination of the toxicity classifier and observed
deletion is effective in identifying some of the toxic
comments. However, this approach fails to identify
those toxic comments which were not deleted or
those for which the toxicity classifier failed. The
former issue is not problematic, as it was shown by
Hua et al. (2018) that toxic comments on Wikipedia
get deleted by the community very quickly. Thus
toxic comments that are not deleted are quite rare.
The latter issue, however, represents a limitation of
our work. Our results apply only to those types of
toxic language that are detectable by current post-
hoc models. Extending this data set to account for
more complex types of toxic language would re-
quire considerable annotation effort and we leave
it as a possibility for future work.

Step 6. Generate examples from each thread in the
train/dev/test set for the (1) preemptive scenario
and (2) post-hoc scenario as shown in Figure 1.
For the post-hoc scenario, examples are generated
from all comments in the tree. Positive examples
are those comments that are labeled as toxic, while
all other comments are negative examples. In the
preemptive scenario, examples are generated from
all comments that are not leaves of the tree. Posi-
tive examples are those comments that have a toxic
child and no toxic ancestors, while all other com-
ments are negative examples. The number of pre-
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Setting Scenario train  dev  test
real-context  post-hoc 357K 47K 35K
real-context preemptive 226K 32K 25K
rich-context  post-hoc 119K 21K 15K
rich-context  preemptive 53K 11K 8K

Table 1: Statistics of the generated data set variants.

ceding comments available for each comment in
this data can vary from 0O to over 100 (median is
2). Consequently, to differentiate from the setting
in the next step, we will refer to this setting as the
real-context setting.

Step 7. While the previous setting is more real-
istic, in order to better assess their full potential,
we wished to evaluate the thread level models in
a setting where the context provided by preceding
comments is always available. To this end, we fil-
ter the examples from the previous step such that
only those are left that have at least L,,;,, = 2 com-
ments on the path to the root.> We will refer to
the datasets obtained in this step as being in the
rich-context setting.

As the label distribution of the examples ob-
tained in this way is extremely skewed (positive
examples account for 0.5 to 1 percent of the data,
depending on the setting and scenario), we under-
sample the negative class. For completeness, we
also retain the non-undersampled versions of the
dev and test sets for some of the experiments.

Lastly, to additionally evaluate the quality of
the silver labels we manually labeled 100 examples
from the balanced version of the data set. We found
that on these examples the silver labels have 0.51
precision and 1.00 recall. This yields 0.67 F1 mea-
sure and is somewhat lower than the expected 0.85
obtained for this classifier in (Hua et al., 2018). The
difference indicates that the thresholds from (Hua
et al., 2018) obtained on non-deleted comments
from Wikipedia may not perform equally well on
deleted comments. To address this and increase
the quality of the labels, more deleted comments
should be manually labeled and thresholds retuned
using, e.g., the same error rate method of (Wulczyn
et al., 2017a).

Some statistics of the finally generated data set
are given in Table 1, and some examples in Table 2.
We make the dataset and the code for generating it
available.’

Following the choice of (Zhang et al., 2018a).
‘http://takelab.fer.hr/data/pretox
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Text Toxic
Go fuck yourself. Anways. +
Lazy Bast*rd +
Superman is a total loser batman would win +
Sick of this article and the shitty writing +

When did it become an inherently evil thing
to be concerned for human welfare?
Please elaborate; this is fascinating.

Table 2: Examples of comments from the dataset.

Setting Scenario train  dev  test
real-context  post-hoc 357K 47K 35K
real-context  preemptive 226K 32K 25K
rich-context  post-hoc 119K 21K 15K
rich-context  preemptive 53K 11K 8K

Table 3: Statistics of the generated data set variants.

4 Models

We implement several baseline models to get some
preliminary results on this data.

Our simplest model is a linear support vector
machine (SVM) on TF-IDF weighted unigrams
and bigrams. We include the most frequent 10k
n-grams into the model, and tune the C hyperpa-
rameter on the dev data. This model ignores thread
context, even when it is available.

For the deep learning models we use an neural
network based encoder to derive a vector represen-
tation for each comment in our data. We denote
this encoder as encqqm,. For models that ignore pre-
ceding comments, the output of this encoder is fed
directly to linear and softmax layers and produces
a classification decision for each comment. Thus,
the output of our model for a comment c, which is
a sequence of word embeddings, could be written
as:

Ye = softmax(WTenccom(c))

For models that take preceding comments into
account, the input is not a single comment but a
sequence of comments, t = (cq,...,Cyn), Which
includes the comment to classify, ¢y, and all of its
ancestors, (C1,...,Cn—1). We first apply enccom
to each individual c;, obtaining comment repre-
sentations rj = enceom(ci). We then feed the
sequence s = (rq,...,Iy) as features into another
encoder, which we denote by encyy,.. The output
of the model for the given input is similar as before:

yg = softmax (WT encinr(s))

For implementing the encoder, we performed

preliminary experiments with convolutional neural
networks (CNN) (Krizhevsky et al., 2012), long
short-term memory networks (LSTM) (Hochreiter
and Schmidhuber, 1997), and gated recurrent units
(GRU) (Cho et al., 2014), tuning hyperparameters
on the development data. We found that, on the
development data for this task, GRU and LSTM
perform similarly and slightly better than CNN.
We also found that bidirectional recurrent mod-
els perform slightly better than standard ones. To
represent the words we use the freely available 50-
dimensional GloVE embeddings (Pennington et al.,
2014) trained on 6 billion tokens. Preliminary ex-
periments also reveal models perform better when
the embeddings are also updated during training.
For our final experiments we use two BiLSTM
models with a cell/hidden-state size of 50 to imple-
ment enceom and encyp,-. We use Adam (Kingma
and Ba, 2015) to train the models with a learning
rate of 0.001, minibatch size of 128, and early stop-
ping using the dev set. We denote the variants of the
model that are thread-agnostic and thread-aware as
BiLSTM and BiLSTM-context, respectively. All
models are implemented in PyTorch (Paszke et al.,
2017) and the code is available online.*

5 Results

The results are given in Table 4. Each column repre-
sents one dataset variant. All differences within the
same variant are statistically significant at p<<0.05
(tested used bootstrap resampling).

While differences across different dataset vari-
ants are not directly comparable, there is a tendency
for models to perform much better in the post-hoc
scenario than in the preemptive scenario, which is
expected. Preemptive models are, however, able
manually labeled to beat the random baseline and
achieve scores that are numerically similar to those
of Zhang et al. (2018a) on their data.

The BiLSTM-context model performs similarly
or worse than the BILSTM model in all cases ex-
cept the preemptive real case where context does
help, but both LSTM-based models are outper-
formed by a simple SVM. This indicates that the
additional information provided by the thread con-
text is, in this case, not very useful for determining
the correct class. Manual inspection of the data set
confirms that humans could determine the toxicity
of most comments without referring to the thread
for additional context.This intuition is invalid in

‘http://takelab.fer.hr/data/pretox
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Preemptive Post-hoc
Model Real Rich Real Rich
Random 500 500 500 .500
SVM 601 578 883  .893
BiLSTM 558 .620 901  .902
BiLSTM-context .586 .602 .904 .900

Table 4: Results in various settings and scenarios. Ran-
dom is the expected performance of choosing a random
class with uniform probability across the classes. The
numbers are F1-scores on perfectly balanced test data.

cases when the thread context for preemptive detec-
tion already contains a toxic comment. A presence
of a toxic comment in a thread is a good indicator
of a situation where more toxicity will follow. Thus
considering the entire thread leads to better perfor-
mance in such cases. This, however, is not true
preemptive detection, as toxicity already occurred
earlier in thread. Consequently, we filtered out such
cases from the data by requiring comments that are
positive examples for the preemptive case to have
no toxic ancestors (as described in Chapter 3). It
is however worth mentioning that, for this reason,
our preliminary experiments which omit this filter-
ing step indeed showed more noticeable benefits of
having the thread available in the preemptive case.

We also note that the unbalanced nature of this
data has a very negative effect on performance in
a practical setting. For example, even after tun-
ing the classification threshold to maximize F1 on
unbalanced dev data, the F1-score for the best post-
hoc model on the unbalanced test is still below 0.5.
Thus, more work is required to make models for
this task that are applicable in a real-world setting.

6 Conclusion

We compiled a large semi-automatically labeled
dataset for studying preemptive toxic language de-
tection in Wikipedia conversations. We explored
two types of deep learning models for this task:
those that only consider a single comment and
those that take into account the context by con-
sidering preceding comments in a conversation. In
our experiments, the context-sensitive models did
not significantly outperform context-agnostic ones.
While all preemptive models would beat a random
baseline, their performance is still too low for prac-
tical applications.

There are numerous possibilities for future
work. One is to employ more sophisticated graph-
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based deep learning methods such as GraphSAGE
(Hamilton et al., 2017). Another direction would
be exploring ways to better address the class unbal-
ance typical for this task. Yet another possibility
would be to enrich the input features with informa-
tion available about the user who is commenting,
e.g., whether they had toxic comments in the past,
or their personality profile derived from text us-
ing models such as that of Gjurkovié¢ and Snajder
(2018). Finally, combining deep learning with dis-
course and pragmatic features, such as those of
Zhang et al. (2018a), might be a good next step to
improve the models in the preemptive setting.
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