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Abstract

Text-embedded images, such as memes, are
now increasingly common in social media dis-
course. These images combine visual and tex-
tual elements to convey complex attitudes and
emotions. Deciphering the intent of these im-
ages is challenging due to their multimodal and
context-dependent nature. This paper presents
our approach to the Shared Task on Multi-
modal Hate, Humor, and Stance Detection in
Marginalized Movement at CASE 2025'. The
shared task focuses on four key aspects of mul-
timodal content analysis for text-embedded im-
ages: hate speech detection, target identifica-
tion, stance classification, and humor recogni-
tion. We propose a multimodal learning frame-
work that uses both textual and visual repre-
sentations, along with cross-modal attention
mechanisms, to classify content across all tasks
effectively.

1 Introduction

The prevalent use of text-embedded images, partic-
ularly memes, in social media has raised new chal-
lenges in detecting harmful content. Traditional
text-only methods are not effective in capturing se-
mantic context when images and text work together
to convey complex negative messages. Multimodal
approaches perform better than unimodal methods
in detecting harmful content, which often relies on
the interaction between visual and textual elements
(Kiela et al., 2020).

Previous editions of the multimodal hate speech
event detection shared tasks (Thapa et al., 2024,
2023) have addressed challenges in detecting hate
speech in text-embedded images related to socio-
political events. The Shared Task on Multimodal
Hate, Humor, and Stance Detection in Marginal-
ized Movement at CASE 2025 (Thapa et al., 2025;

'nttps://codalab.lisn.upsaclay.fr/
competitions/22463
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Hiirriyetoglu et al., 2025) introduces multimodal
classification with four subtasks, each targeting a
different aspect of online discourse: (A) detection
of hate speech, (B) classification of hate speech tar-
gets, (C) stance classification toward marginalized
movements, and (D) humor recognition. This pa-
per presents our system, which uses a multimodal
architecture combining text and image encoders
with cross-modal attention mechanisms to extract
relevant features.

2 Related Work

The detection of harmful or sensitive content in
text-embedded images has gained attention with
the rise of social media. Recent work highlights the
challenges in automating hate speech detection due
to complex linguistic cues and implicit expressions
of hate. (Parihar et al., 2021). Early work on hate
speech detection focused on textual data (Davidson
et al., 2017; Waseem and Hovy, 2016). However,
text-embedded images require a multimodal anal-
ysis of both textual and visual cues to understand
implicit meanings and cultural references common
in social media discourse (Kiela et al., 2020).

Prior research in stance classification focused on
deciphering explicit stance indicators in text (Mo-
hammad et al., 2016). More recent work leverages
transformer models for text (Kiiciik and Can, 2020)
to capture contextual nuances in stance detection.
Humor recognition requires an understanding of
context, cultural nuances, and figurative language
(Annamoradnejad and Zoghi, 2020). Recent work
has explored the use of contextual embeddings
and attention mechanisms to capture the subtle lin-
guistic patterns that characterize humorous content
(Weller and Seppi, 2020)

Visual deciphering of harmful content has used
convolutional neural networks such as ResNet
(He et al., 2016) to extract features from images.
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Transformer-based models such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) have
been used to extract contextual embeddings from
text. Cross-modal attention captures fine-grained
interactions between different modalities, such as
text and images (Chen et al., 2020; Li et al., 2019).
These attention-based fusion mechanisms are es-
sential for recognizing subtle forms of harmful con-
tent, sarcasm, or humor.

Misclassifications or errors in sensitive content
can lead to serious consequences, which needs ro-
bustness in multimodal classification systems (Lar-
son, 2017). Test-time augmentation (TTA) has
shown promise in computer vision (Wang et al.,
2019) but its application in multimodal applica-
tions have been limited.

Our work addresses the CASE 2025 Shared Task
by proposing a multimodal architecture designed
for hate speech detection, target identification,
stance classification, and humor recognition. The
multimodal system integrates transformer-based
text encoders (BERT and RoBERTa) with CNN-
based image encoders (ResNet variants). It uses
a cross-modal attention fusion mechanism to cap-
ture fine-grained interactions between text and im-
age features. We incorporate TTA to enhance pre-
diction stability and reduce errors on unseen data
across all tasks.

3 Dataset & Task Description

We have used the PrideMM dataset (Shah et al.,
2024). PrideMM is a dataset containing 5,063 text-
embedded images related to the LGBTQ+ move-
ment collected from Facebook, Twitter, and Reddit.
The annotation scheme was adopted from (Bhan-
dari et al., 2023). Table 1 presents the dataset size
for training, validation and testing for each task.

Subtask | Train | Val | Test
A 4050 | 506 | 507
B 1985 | 248 | 249
C 4050 | 506 | 507
D 4050 | 506 | 507

Table 1: PrideMM dataset sizes for each task

Data pre-processing included text cleaning (e.g.,
URL removal, normalization of whitespace and
punctuation, and conversion of hashtags and men-
tions) and image normalization using ImageNet
statistics.
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3.1 Subtask A: Hate Speech Detection

Hate Speech Detection involves binary classifica-
tion to determine the presence of hate speech in
text-embedded images. Given an image paired with
a textual description, the task requires the system
to classify the content as "No Hate” or ”Hate”. The
training dataset for subtask A has a nearly balanced
class distribution with 51.0% No Hate (2065 im-
ages) and 49.0% Hate (1985 images).

3.2 Subtask B: Target Identification

Target Identification involves classifying the tar-
gets in text-embedded hate speech content. Given
an image that has already been identified as con-
taining hate speech, the task requires the system
to classify the content into one of four target cate-
gories: “Undirected,” “Individual,” ”Community,”
or ”Organization.” Undirected hate speech contains
hateful content without targeting specific entities.
The Individual, Community, and Organization cat-
egories require the system to distinguish between
personal attacks, group-targeted hate, and institu-
tional criticism, respectively. The training dataset
for subtask B contains 31.1% Undirected (617 im-
ages), 10.0% Individual (199 images), 46.9% Com-
munity (931 images) and 12.0% Organization (238
images).

3.3 Subtask C: Stance Classification

Stance Classification involves classifying stance
in text-embedded images. The task requires the
system to classify the content into three stance cat-
egories: “Neutral”, ”Support” and ”Oppose”. The
training dataset for subtask C contains 28.8% Neu-
tral (1166 images), 37.7% Support (1527 images),
and 33.5% Oppose (1357 images).

3.4 Subtask D: Humor Recognition

Humor Recognition involves binary classification
of text-embedded images to determine if the con-
tent contains humor, sarcasm, or satire. The task
requires the system to classify the content as "No
Humor” or "Humor”. The training dataset for sub-
task D contains 32.4% No Humor (1313 images)
and 67.6% Humor (2737 images).

4 Methodology

For all tasks, our multimodal architecture consists
of three main components: (1) text encoder (2) im-
age encoder and (3) cross-modal or self-attention
mechanism. We have used BERT, RoBERTa and



DialoGPT to extract text features, and ResNet to
extract image features. BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) are transformer-
based models designed to capture deep contextual
dependencies in text. DialoGPT (Zhang et al.,
2020) is a variant of GPT-2 fine-tuned on large-
scale dialogue datasets to better model conversa-
tional language. ResNet (He et al., 2016) is a deep
convolutional neural network that introduces resid-
ual connections to ease the training of very deep
models.

For Hate Speech Detection and Target Identifica-
tion, we used the RoBERTa-base model for the text,
with a maximum sequence length of 256 tokens and
the CLS token embeddings (768 dimensions) as the
primary feature representation. For the images, we
used a ResNet50 model pre-trained on ImageNet,
removing the final classification layer and extract-
ing a 2048-dimensional feature vector from the
global average pooling layer. Both text and im-
age features were projected into a 512-dimensional
space using linear transformations and then com-
bined using an 8-head multi-head attention mech-
anism. The fused features were passed through a
multilayer perceptron (MLP) classifier. The output
of Hate Speech Detection is a binary classification
of No Hate (0) or Hate (1). The output of Tar-
get Identification is Undirected (0), Individual (1),
Community (2), or Organization (3). The high-
level system design for Hate Speech Detection and
Target Identification is shown in Figure 1.

For Stance Classification, we used an ensemble
of multimodal classifiers to combine textual and
visual features. Each model in the ensemble pro-
cesses text and image modalities through separate
branches before fusing the features via a shared pro-
jection layer. For text, we use RoOBERTa-base and
BERT-base-uncased as our encoders, extracting
CLS token embeddings with a maximum sequence
length of 128 tokens. These embeddings are lin-
early projected to a 256-dimensional space for
cross-modal fusion. For images, we use ResNet18
and ResNet34 pretrained on ImageNet, from which
we extract global average pooled convolutional
features.These visual representations are projected
into the same 256-dimensional feature space. We
use a simple attention mechanism to learn dynamic
weighting between text and image features. The
fused representation is created by concatenating
the projected text and image features, followed by
classification through a fully connected layer. Fi-
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nal predictions are generated through probability
averaging. The output is Neutral (0), Support (1)
or Oppose (3). The high-level system design for
Stance Classification is shown in Figure 2.

For Humor Recognition, the text is processed
using DialoGPT-medium, chosen for its ability to
handle conversational and informal language in
social media humor. Tokenized sequences are trun-
cated or padded to a maximum of 196 tokens. From
the encoder, we extract token embeddings, apply
mean pooling over the sequence length, and project
the resulting representation into a 512-dimensional
feature vector. For images, we use the ResNet50
model. The extracted 2048-dimensional features
are projected to a 512-dimensional space for cross-
modal fusion. We applied self-attention mecha-
nisms independently on text and image features.
We then used cross-modal attention, where text fea-
tures act as the query and image features as the
key-value pairs. A gating mechanism adaptively
weights the text and image features. The final fused
representation, formed by combining gated text,
gated image, and cross-modal attention outputs (3
x 512 dimensions), is passed through a multi-layer
classifier with progressively reduced dimensions.
The output is a binary classification of No Humor
(0) or Humor (1). The high-level system design for
Humor Recognition is shown in Figure 3.

The choice of architectures for the subtasks was
guided by task-specific requirements and empiri-
cal performance. Subtasks A and B use RoOBERTa
and ResNet50 for binary and multi-class classifica-
tion. Subtask C employs an ensemble strategy to
address the severe class imbalance in stance detec-
tion. For Subtask D, DialoGPT replaced RoBERTa
to capture conversational patterns and humor cues.

5 Results & Discussion

All experiments were conducted using the Hugging
Face Transformers library for access to ROBERTa-
base, BERT-base, and DialoGPT-medium models.
The multimodal architectures were implemented
in PyTorch 1.13 with NVIDIA CUDA support. F1
score is the primary evaluation metric for all the
tasks.

5.1 Experiment Setup

For hate speech detection and target identification,
we used focal loss (v = 2.0) to focus on hard-to-
classify samples, using AdamW optimizer (learn-
ing rate of le-5, weight decay of 0.01) and a linear
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Figure 1: High-level system design for Hate Speech Detection and Target Identification. Text and image inputs are
processed through separate encoders (RoBERTa for text and and ResNet50 for images), followed by a cross-modal

fusion layer and classification.
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Figure 2: High-level system design for Stance Classification. Three base models (RoBERTa-ResNet18, RoBERTa-
ResNet34, and BERT-ResNet18) process multimodal features. Their output probability distributions are averaged to
produce the final stance prediction across the three classes: Neutral, Support, and Oppose.

warmup schedule followed by a linear decay. For
target identification, we used focal loss with class-
specific weighting to handle residual imbalance.
We trained the model for eight epochs with a batch
size of 12, applying gradient clipping (norm <
1.0) to stabilize updates. We also used a test-time
augmentation (TTA) strategy that generated five
variants of each test image (original, horizontal flip,
brightness/contrast, rotation, and color adjustment).
The softmax probabilities across all augmentations
were averaged before making a final prediction to
enhance classification.

For stance classification, we train three mod-
els. The first model uses RoBERTa-base with
ResNet18, the second model combines RoOBERTa-
base with ResNet34, and the third model uses
BERT-base with ResNetl8. These models are
trained independently with different random seeds
(42, 123, and 456) to encourage diversity within
the ensemble. We use a label-smoothing, class-
weighted cross-entropy loss to address the mod-
erate class imbalance in the dataset. The class
weights are computed inversely proportional to
class frequencies and applied during optimization.
All models are trained using the AdamW optimizer
with a learning rate of 2e-5, weight decay of 0.01,
and gradient clipping at a maximum norm of 1.0
for six epochs. To reduce overfitting, dropout is
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applied in the fusion layers (0.3) and the classifier
(0.15), while the embedding layers are partially
frozen during the initial training phases for stabil-
ity. We perform ensemble prediction by averaging
the probability outputs of the three trained models
and selecting the class with the highest probability.

For humor recognition, we used focal loss (a=1,
~v=2), which reduces the effect of class imbalance.
Optimization is performed with AdamW (learning
rate = le-5, weight decay = 0.01) and a cosine an-
nealing schedule for 15 epochs. We used a batch
size of 12 and gradient clipping (maximum norm
= 1.0) for stability. Regularization strategies in-
clude dropout (0.3 across layers), partial freezing
of DialoGPT embedding layers, and test-time aug-
mentation as described previously.

5.2 Results

Table 2 presents the evaluation results for all the
tasks on the test dataset.

Task | Recall | Precision | Fl1 Accuracy
A | 0.779 0.781 0.778 0.779
B 0.550 0.565 0.553 0.590
C 0.611 0.612 0.608 0.611
D | 0.648 0.700 | 0.658 0.733

Table 2: Evaluation results for tasks
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for image encoding, followed by cross-modal attention layers fused through a gating mechanism and fed into a

multi-layer classifier for binary humor prediction.

The hate speech detection task achieved an F1
score of 0.778, precision (0.781), recall (0.779),
and accuracy (0.779), suggesting that the multi-
modal architecture effectively captured the visual
and textual patterns. The target identification task
achieved an F1 score of 0.553, precision (0.565)
and recall (0.550). The lower F1 score may indicate
that the model struggles with certain class bound-
aries. The precision-recall gap of 0.015 suggests
conservative predictions. While our performance
falls short of recent shared task winner (Wang and
Markov, 2024) (CLTL: 87.27% and 80.05% re-
spectively) and the CLIP baseline (78.60% and
61.50%), our results demonstrate competitive per-
formance within the challenging multimodal clas-
sification domain. The performance gap highlights
the difficulty of these tasks and suggests directions
for future improvement in fusion mechanisms and
using pretraining strategies used by top-performing
systems.

The stance classification task achieved an F1
score of 0.608, with precision (0.612) and recall
(0.611), showing consistent performance across all
three stance categories (Neutral, Support, Oppose).
The low difference between precision and recall
suggests that our approach balanced the moder-
ately imbalanced class distribution (28.8% Neutral,
37.7% Support, 33.5% Oppose).

The humor detection task yielded an F1 score
of 0.658 with higher precision (0.700) than re-
call (0.648), indicating that our model is conserva-
tive in predicting humor, preferring to avoid false
positives. The accuracy of 0.733 reflects higher
classification performance, while the precision-
recall gap suggests that the focal loss strategy
and cross-modal attention mechanisms successfully
addressed the class imbalance (67.6% humor vs
32.4% no humor) by being more selective in hu-

mor predictions.

To validate our task-specific architecture
choices, we compared multiple approaches
across subtasks. For hate speech detection,
RoBERTa+ResNet50 with cross-modal attention
achieved the best performance (F1=0.778), out-
performing ensemble methods (F1=0.726). Tar-
get identification showed similar patterns with
RoBERTa+ResNet50 (F1=0.553) exceeding en-
semble approaches (F1=0.547). For stance clas-
sification, systematic comparison showed that in-
dividual models struggled: RoBERTa+ResNet50
(F1=0.559), DialoGPT+ResNet50 (F1=0.533), and
BERT-base+ResNet50 (F1=0.443). This per-
formance degradation led to adopting an en-
semble approach with simple attention, achiev-
ing F1=0.608. For humor detection Di-
aloGPT+ResNet50 (F1=0.658) outperformed both
RoBERTa+ResNet50 (F1=0.646) and ensemble
methods (F1=0.630).

5.3 Error Analysis

Figures 4-7 show the error patterns across the sub-
tasks, based on the varying complexity of each
classification challenge. Subtask A (Hate Speech
Detection) achieved 188/258 (72.9%) correct ”No
Hate” predictions and 206/249 (82.7%) correct
”Hate” predictions. The primary error pattern
shows 70 false positives, where non-hateful con-
tent was misclassified as hateful, suggesting that
the model may be sensitive to certain linguistic
patterns or visual elements associated with hate
speech. For example, ”gay marriage shouldn’t ex-
ist, it should just be considered marriage” has been
incorrectly classified as Hate.

The model for Subtask B (Target Classification)
struggles with distinctions between target cate-
gories. The “Individual” class shows the poorest
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Figure 4: Confusion Matrix for Hate Speech Detection

performance (10/25, 40% accuracy), frequently
confused with "Community” (10 misclassifica-
tions) and “Undirected” (3 misclassifications). This
suggests the model may have difficulty in distin-
guishing between personal attacks and broader
community-targeted content. The "Community”
class achieves the best performance (82/117, 70.1%
accuracy) but shows confusion with “Undirected”
(21 misclassifications), indicating challenges in de-
termining whether hate targets specific communi-
ties.

Confusion Matrix - Subtask B

o
]
o4 37 2 33 5 80
-
5 70
© 60
2. 3 10 10 2
Q35 50
S E
-
o 5‘ - 40
2 c
FZ2- 21 6 8 30
£
S -20
c
il
= -10
N 5 2 4 19
5
2
o}

Undirlected Indiv'idual ComrﬁunityOrganization
Predicted Label

Figure 5: Confusion Matrix for Target Identification

Subtask C (Stance Classification) ensemble
achieves good performance on the "Neutral” class
(101/146, 69.2% accuracy) and “Oppose” class
(118/169, 69.8% accuracy), but struggles with the
”Support” class (98/191, 51.3% accuracy). There
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are 60 instances where supportive content was in-
correctly classified as neutral. The model has dif-
ficulty in distinguishing between implicit support
and neutral stance. Support is the most challeng-
ing class, with nearly half of supportive instances
(93/191, 48.7%) being misclassified.

Confusion Matrix - Subtask C
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Figure 6: Confusion Matrix for Stance Classification

Subtask D (Humor Detection) shows a clear
class separation. The model correctly identifies
305/342 (89.2%) humorous content and 67/165
(40.6%) non-humorous content. The error pattern
reveals 98 false positives (non-humor classified
as humor), suggesting the model may detect hu-
morous elements in content intended to be serious.
For example, "LGBTQ inclusive education, what
conservatives think it is: here are 50 pronouns to
memorize” has been incorrectly classified as Hu-
mor.

5.4 Ablation Study

To evaluate the contribution of test-time augmen-
tation (TTA), we compared model performance
with and without TTA across the subtasks. Hate
speech detection showed the largest gain from
F1=0.591 without TTA to F1=0.778 with TTA,
while target identification improved from F1=0.510
to F1=0.553, and stance classification increased
from F1=0.581 to F1=0.608. These results indi-
cate that TTA provides significant performance
benefits, with the largest improvements observed
in binary classification tasks, while the more mod-
est improvements in multi-class tasks reflects the
complexity of distinguishing between fine-grained
categories.
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6 Conclusion

In this work, we introduced a multimodal frame-
work for Shared Task on Multimodal Hate, Humor,
and Stance Detection in Marginalized Movement.
We achieved F1 scores of 0.778 (hate speech de-
tection), 0.553 (target identification), 0.608 (stance
classification), and 0.658 (humor detection), which
reflects the classification challenge in each of the
subtasks. For hate speech detection and target
identification, our RoBERTa-ResNet50 architec-
ture with cross-modal attention performed better.
While stance classification with ensemble strategies
and conservative regularization, to prevent overfit-
ting, gave us better results. Humor recognition
required more advanced cross-modal attention and
gating mechanisms with DialoGPT for conversa-
tional language understanding. The application of
focal loss for class imbalance, test-time augmen-
tation for robustness contributed to reliable perfor-
mance across all tasks. Future work can explore
ablation studies to evaluate the impact of different
attention mechanisms and loss functions. Further
research will focus on exploring vision-language
transformers (e.g., CLIP), hierarchical attention
mechanisms, and semi-supervised learning on un-
labeled multimodal data.

Limitations

Some limitations emerged from our analysis that
may affect the generalizability and performance
of our system. First, the dataset ranges from
1,985—4,050 samples per task which can increase
the risk of overfitting, particularly for deeper ar-
chitectures like ResNet50 or complex attention
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mechanisms. This constraint may limit the model’s
ability to capture diverse visual and textual pat-
terns. Techniques like semi-supervised learning
could help with data scarcity. Second, annotation
of humor and stance is subjective, making perfor-
mance evaluation challenging for borderline cases.
Additionally, the computational cost of ensemble
models and cross-modal attention mechanisms re-
stricts real-time deployment. Finally, despite using
focal loss and weighted sampling, our models are
sensitive to class imbalances.
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