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Abstract

This study describes our submission to the
CASE 2025 shared task on multimodal hate
event detection, which focuses on hate detec-
tion, hate target identification, stance determi-
nation, and humour detection on text embedded
images as classification challenges. Our sub-
mission contains entries in all of the subtasks.
We propose FIMIF, a lightweight and efficient
classification model that leverages frozen CLIP
encoders. We utilise a feature interaction mod-
ule that allows the model to exploit multiplica-
tive interactions between features without any
manual engineering. Our results demonstrate
that the model achieves comparable or superior
performance to larger models, despite having
a significantly smaller parameter count. The
source code and model checkpoints are avail-
able at github.com/sushant-k-ray/FIMIF

1 Introduction

The landscape of digital communication has
evolved dramatically with the widespread adoption
of social media platforms, fundamentally trans-
forming how individuals express opinions and
share content. This evolution has brought signifi-
cant challenges in content moderation, particularly
in the detection of hate speech that increasingly
manifests in the form of memes, which are im-
ages with text embedded in them used to convey
a message. The CASE (Challenges and Applica-
tions of Automated Extraction of Socio-political
Events from Text) series has consistently addressed
these challenges, with recent editions expanding
from text-only analysis to encompass multimodal
content understanding (Thapa et al., 2023, 2024).
Building upon the success of previous CASE
workshops, the multimodal hate event detec-
tion task at CASE 2025 (Thapa et al., 2025a;
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Hiirriyetoglu et al., 2025) represents a natural pro-
gression toward addressing more complex multi-
modal hate speech detection scenarios.

In this paper, we introduce FIMIF (Feature In-
teraction for Multimodal Integration and Fusion),
a model conceptually similar to MemeCLIP (Shah
et al., 2024). We utilise modified residual units to
leverage the capabilities of deep neural networks
while keeping the performance stable. We intro-
duce a feature interaction module that automat-
ically learns exponential and multiplicative rela-
tionships between features, enabling the model to
capture higher-order interactions. While Meme-
CLIP is designed for general downstream tasks
on meme images, our model specifically targets
meme classification. Our approach relies on ag-
gressive compression of multimodal embeddings to
very low dimensions, followed by a multiplicative
module that allows for richer feature interactions.
We provide comprehensive experimental evaluation
demonstrating the effectiveness of our approach.

2 Related Works

Hate Speech Detection: The task of hate speech
detection has progressed from lexicon-based or
shallow machine learning approaches (Burnap and
Williams, 2015; Waseem and Hovy, 2016; David-
son et al., 2017) to deep learning models (Parihar
et al., 2021). The advent of large pre-trained lan-
guage models brought significant improvements in
hate speech detection. BERT (Devlin et al., 2019),
RoBERTza (Liu et al., 2019), and DistilBERT (Sanh
et al., 2020) introduced contextual embeddings that
improved performance on social media hate speech
detection. These models have achieved state-of-
the-art results on benchmarks such as: HateXplain
(Mathew et al., 2021), Offensive Language Identifi-
cation Dataset (OLID) (Rosenthal et al., 2021), Gab
Hate Corpus (Kennedy et al., 2022), and Storm-
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front dataset (de Gibert et al., 2018). These lan-
guage models are very efficient and powerful in
terms of language understanding.

Multimodal Tasks: As harmful content increas-
ingly appears in multimodal forms like memes, re-
search has shifted toward models that process both
text and images. Datasets such as Facebook’s Hate-
ful Memes (Kiela et al., 2020) and MMHS 150K
(Gomez et al., 2020) have been instrumental in ad-
vancing this field. Some recent multimodal hate
speech detection datasets include Harm-C (Pra-
manick et al., 2021a), Harm-P (Pramanick et al.,
2021b), DisinfoMeme (Qu et al., 2022), and Cri-
sisHateMM (Bhandari et al., 2023). Early multi-
modal systems use separate encoders (e.g., ResNet
(He et al., 2016) for images and BERT for text)
and combine features through concatenation or at-
tention. Later models rely on fusion strategies to
combine these different representations.

Vision Language Models: Vision-Language
models aim to learn joint representations of visual
and textual inputs, typically trained on large-scale
image-text pairs. These models are broadly divided
into two categories: Dual-encoder models, and Fu-
sion models.

Dual-encoder models, such as OpenAI’s CLIP
(Contrastive Language-Image Pre-training) (Rad-
ford et al., 2021) and Google’s ALIGN (Jia et al.,
2021), encode images and text separately and align
their embeddings using contrastive loss.

CLIP, in particular, has gained popularity due to
its strong zero-shot performance and generalisation
ability. Trained on 400 million internet image-text
pairs, it can embed both modalities into a shared
semantic space.

Low-Rank Multimodal Fusion: One of the key
challenges in multimodal learning is the integration
of information from multiple modalities. While
tensor based fusion methods offer powerful and ex-
pressive means of capturing interactions between
modalities, they are often computationally expen-
sive and suffer from a rapid increase in parameters,
particularly when modelling higher-order interac-
tions across multiple input sources (Zadeh et al.,
2017).

To mitigate these challenges, Low-rank Multi-
modal Fusion (LMF) (Liu et al., 2018) has emerged
as a scalable and efficient paradigm. Rather than
modelling the full tensor representation, LMF ap-
proximates it using modality specific low rank pro-

jections, which are then combined using element-
wise operations. This dramatically reduces the pa-
rameter count and computational overhead while
still retaining cross-modal interactions. LMF scales
linearly with the number of modalities, in contrast
to the exponential growth in traditional fusion ap-
proaches. We adapt a similar principle with the use
of additive and multiplicative layers.

Highway And Residual Networks: Highway
networks (Srivastava et al., 2015) and Residual net-
works (He et al., 2016) are widely used to improve
training stability and depth in deep learning mod-
els. Residual layers mitigate vanishing gradients
by adding skip connections, while highway layers
introduce trainable gates to control information pas-
sage. These ideas motivate our use of lightweight
residual projections to preserve essential features
without over-fitting.

Multiplicative Modules: The Neural Arithmetic
Logic Unit (NALU) (Trask et al., 2018) introduces
a mechanism for learning arithmetic operations in
neural networks using log-space computations to
model multiplicative relationships. Several variants
of NALU have been proposed to improve stabil-
ity and expressiveness in different settings (Schlor
et al., 2020; Madsen and Johansen, 2020; Heim
et al., 2020). We extend NALU to multimodal
classification in a residual framework to maintain
flexibility while modelling higher-order relation-
ships.

3 Dataset And Tasks

Shah et al. (2024) released a novel multimodal
dataset, PrideMM consisting of text embedded im-
ages for classification of various aspects of hate
against marginalised LGBTQ+ movement, and
community in online discourse through images,
particularly memes. The dataset is divided into
four classification tasks: hate detection, hate target
identification, stance determination, and humour
detection.

The multimodal hate task at CASE 2025 utilises
the PrideMM dataset, focusing on discrimination
and hate against the LGBTQ+ community. The
dataset is divided into an 80/10/10 train-validation-
test split. This is different from the PrideMM
dataset, where the split is 85/5/10. OCR of the
images is provided as supplementary material to
aid in the process of classification.
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The following table shows the distribution of the
training samples:

Task Label Samples %
Hate No Hate 2065 50.99%
Hate 1985 49.01%
Target Undirected 617 31.08%
Individual 199 10.03%
Community 931 46.90%
Organization 238 11.99%
Stance Neutral 1166 28.79%
Support 1527 37.70%
Oppose 1357 33.51%
Humour  No Humour 1313 32.42%
Humour 2737 67.58%

Table 1: Distribution of the training samples in the
shared task dataset.

3.1 Tasks

The PrideMM dataset focuses on following four
subtasks:

Subtask A: Hate Detection. This task aims to
identify instances of hate speech in the images.
This task focuses on identifying whether the im-
ages intentionally convey hateful sentiments. The
training data is balanced (1.04 : 1), and contains a
total of 4050 data samples.

Subtask B: Hate Target Identification. This
task focuses on identifying the targets of hate in
hateful images. There are four categories: Undi-
rected, Individual, Community, and Organization.
Images are labeled ‘Undirected’” when they tar-
get abstract topics, societal themes, or ambiguous
targets. Hateful images targeting specific people
are labeled ‘Individual’. The label ‘Community’
is used for instances of hate in images targeting
broader social, ethnic, or cultural groups. Images
targeting corporate entities, institutions, or similar
organizations are labeled ‘Organization’.

The training data is extremely imbalanced (3.1
: 1:4.7:1.2), and contains data samples for only
those images which convey hate. As a consequence,
only 1985 data samples are available for training.

Subtask C: Stance Determination. This task
aims to determine the stance that the image is try-
ing to convey towards the topic. There are three
categories: Support, Oppose, and Neutral. The
‘Support’ label is given to images that express sup-
port for the goals of the movement, agree with
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efforts to promote equal rights for LGBTQ+ indi-
viduals, or promote awareness of the movement.
The ‘Oppose’ label is given to images that express
disagreement with the goals of the movement, deny
the problems faced by individuals who identify as
LGBTQ+, or dismiss the need for equal rights and
acceptance. The ‘Neutral’ label is given to images
that are contextually relevant to the movement but
exhibit neither support nor opposition towards the
movement.

The training data is fairly well balanced (1 : 1.31
: 1.16), and contains a total of 4050 data samples.

Subtask D: Humour Detection. This task aims
to detect whether the image showcases any form of
humour, sarcasm, or satire related to the LGBTQ+
pride movement regardless of whether it presents a
light-hearted or insensitive perspective on serious
subjects.

The training data is imbalanced (1 : 2.08), and
contains a total of 4050 data samples.

4 Methodology

In this section, we describe FIMIF (Feature In-
teraction for Multimodal Integration and Fusion),
our proposed model for meme classification. We
utilise the CLIP vision-language model to extract
multimodal embeddings that effectively encode the
semantic content of memes. Figure 1 illustrates
the overall architecture of our model. Below, we
describe each component in detail.

Pre-Trained CLIP Model: Similar to Meme-
CLIP, we leverage CLIP encoders for their strong
zero-shot generalisation and effective transfer learn-
ing capabilities. The CLIP model consists of
an image encoder (E7) and a text encoder (E7).
We freeze the weights of both encoders to retain
the knowledge acquired during pre-training. We
utilise CLIP ViT-L/14 image encoder pre-trained
on 336x336 images instead of 224x224. 336x336
images can better represent high-frequency infor-
mation than their 224x224 counterparts. Figure 2
presents an example. Note that the use of 336px
variant of CLIP’s image encoder does not increase
the parameter count of the encoder. The unimodal
image and text representations X7, X7 € R768 ef-
fectively encode the semantic content of a meme
and are defined as:

X;=E[(I); Xr=Er(T) (1
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Figure 1: Architecture of our proposed model. Trapeziums are used to represent dimensionality compression.

Figure 2: Meme at various resolutions (a) Original reso-
lution (2314x1191) (b) Image downscaled to 336x336
(c) Image downscaled to 224x224. The downscaling
and upscaling method used is bicubic interpolation.

where [ is the image and 7' is its corresponding
OCR text.

4.1 Linear Residual Projection Layer

Although CLIP is trained to maximise similarity
between aligned image-text pairs, the inherently
contrastive nature of memes, where visual and lin-
guistic elements often convey conflicting messages,
calls for additional adaptation of the embedding
space. We hypothesise that only a small subset of
elements within the embeddings significantly in-
fluence the classification outcome. To capture this,
we utilise a modified residual module scheme that
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effectively compresses the embedding spaces. A
regular residual layer is defined as:

R(X)

= AX)+ X )

where A is typically a non-linear function. Our
modified residual module, although similar to the
one described above, performs better in compress-
ing high-dimensional spaces, particularly when
combined with lasso regularisation (Tibshirani,

1996). Our residual module is defined as:
R(X)

A(X) + B(X) 3)

where A is a non-linear function and B is a lin-
ear function. The domain and co-domain for both
functions are R7%® and R”, respectively, where h
is a very small number (generally 8, or 16).

)
A\

Figure 3: Our Modified Residual Module.



We use a ReLU activation function for A. We
utilise this modified residual model for both modal-
ities and combine them to extract linear relations
between image and text embeddings. These pro-
jection layers result in the bimodal projection
X € R". Such alayer allows us to leverage the
benefits of deep neural network layers while still
having the flexibility to use a shallower architecture
when required. Our final bimodal residual network
is defined as:

Xvm = Ri(Xr) + Rr(X7)
= (Ar(X1) + Br(Xy)) +
(Ar(Xr) + Br(Xr))

4)

4.2 Feature Interaction Module

Since the hidden dimension (h) of the layers is
much smaller than CLIP’s embedding dimension,
we would have difficulty fusing the text and image
representations. To capture the non-linear feature
interactions in a compact space, we require a multi-
plicative network. Conceptually, we would like to
have a following module:

Mo(X)

My (X)

FIM(X) = (5)

Mh—ul.(X)

where,

(6)

This module is very generic in nature and can
be used for automated feature selection. A mod-
ule like this, however, would suffer from unsta-
ble training due to gradient issues. We design a
multiplicative module inspired by Neural Arith-
metic Logical Unit (NALU). Rather than directly
applying exponentials, we utilise linear arithmetic
between inputs in log-space followed by exponenti-
ation. Mathematically, the multiplicative layer can
be represented by the following relation:

M(X) = B(exp(Win(ReLU(A(X))+e))) (7)

where A and B are some linear transformation
function with both, domain and co-domain, in R”.
Since logarithm of non-positive numbers is unde-
fined, we use ReLU along with some ¢ (10~° in our
case). This strictly positive condition, however, pre-
vents us from multiplying a positive and a negative
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number. While several variants of the NALU, such
as iNALU (Schlor et al., 2020) and NAU (Madsen
and Johansen, 2020), introduce complex modifica-
tions to address this, we propose a simpler alter-
native that leverages multiple multiplicative layers.
We call this the Feature Interaction Module (FIM).
Mathematically, it is defined as follows:

®)

The Feature Interaction Module is shown in the
following diagram:

FIM(X) = My(X) - My(X)

Ma

Mp

Figure 4: Feature Interaction Module.

We add a residual unit to the FIM in order to
allow the network to bypass multiplicative layers if
required. The complete residual FIM is defined as:

Fyv = FIM (X ) + A(X )

= Mo(Xnm) - Mp( X)) + A(Xnnr)
&)
where A is a linear transformation function with
domain and co-domain in R”.

4.3 Miscellaneous

Classifier: We apply layer normalisation on the
outputs of the residual FIM (F);;s) before passing
it through the classifier. The classifier is a linear
transformation function from R” to R¢, where c is
the number of categories in the given subtask. A
softmax function maps the final hidden represen-
tations to their respective class probabilities. The
predicted class corresponds to the highest probabil-
ity score.

Class Imbalance: There is a heavy class imbal-
ance in the dataset. To get around this issue, we
utilise weighted cross-entropy loss. Further, we
utilise minority-class deterministic oversampling
for subtask B, where there is an extreme class im-
balance. The intuition behind this is to expose the
model to more samples from minority classes in
order to better classify them. Compared to the high
dimensionality of the image and text embeddings



Method # of trainable Hate Target Stance Humour
Parameters | Accuracy  F1 | Accuracy =~ Fl | Accuracy  Fl | Accuracy  Fl
Gradient Boosting - 78.90 78.90 59.44 57.39 61.54 60.52 76.13 70.60
FIMIF (submission) 25k - 51k 81.85 81.85 63.05 60.57 62.92 62.91 79.68 76.83
FIMIF (best) 25k - 51k 81.85 81.85 64.66 64.61 64.89 64.32 79.68 76.83

Table 2: Classification performance of different models on shared task dataset across two evaluation metrics:
Accuracy, and F1 score. The hidden dimension of the FIMIF model for subtask A is set to 16, while a reduced

hidden size of 8 is used for all other subtasks.

Method # of trainable Hate Target Stance Humour
Parameters Acc. AUC Fl | Acc AUC Fl | Acc. AUC Fl | Acc. AUC F1

MemeCLIP 2.6M 76.06 84.52  75.09 | 66.12 81.66 58.65 | 62.00  80.11 57.98 | 80.27 8559 77.21

FIMIF (ours) 25k 78.11 83.99 76.43 | 68.42 75.97 62.63 | 63.31 79.84  59.52 | 80.47 8554  77.54

Table 3: Classification performance of different models on PrideMM dataset across three evaluation metrics:
Accuracy, AUC, and F1 score. Performance metrics for MemeCLIP is sourced from its corresponding paper. The

best performance is highlighted in bold.

from the CLIP encoders (768 dimensions each),
the size of the training set for subtask B is rela-
tively small, consisting of only 1985 samples. This
type of high-dimensional data struggles to gener-
alise. Algorithm 1 presents the pseudocode used
for upsampling the minority class.

Algorithm 1 Deterministic Class-wise Upsam-
pling.
Require: Dataset D of (z,y) pairs, number of

classes C'
. Initialise class_samples[0...C — 1] «
empty lists
for all (z,y) € D do

Append (z,y) to class_samples[y]
end for
M« maxeqo,..c-1)
class_samples|c]
upsampled_dataset < empty list
forc=0toC' — 1do

samples < class_samples|c]

n < length of samples

r < |[M/n]

fori =1tordo

Append all elements of samples to
upsampled_dataset

end for
14: end for
15: Shuffle upsampled_dataset
16: return upsampled._dataset

length of

Y % 3D

10:

12:

13:

Weight Initialisation: All weights and biases
in our model are initialised using the Kaiming-
Uniform distribution (He et al., 2015), which helps
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maintain a stable gradient flow during the initial
phases of training. However, for the weight ma-
trix W in eq. 7, we instead use the identity matrix
as the initial weights. By using this initialisation,
we ensure that the multiplicative interactions in-
troduced by the FIM initially behaves in a linear
and interpretable manner. This allows the model to
gradually learn multiplicative behaviour only when
it is beneficial, rather than being forced into a multi-
plicative domain from the beginning. This identity
initialisation improves the performance and train-
ing time by converging in the early training stages.
We use the identity and zero matrices as layer-norm
initial weights and biases, respectively.

5 Results

We provide results of our model on the test set of
the respective subtask in table 2. We use weighted
gradient boosting as a baseline for its excellent gen-
eralisation capability with high dimensional data.

Method | Acc. AUC F1

CLIP 81.62 88.87 79.89
BERT 80.43 88.08 78.90
RoBERTa 7727 87.95 75.38
DeBERTaV3 | 7945 8794 77.71

Table 4: Classification performance on subtask A
(hate) validation set with our model on CLIP’s ViT-
L/14@336px image encoder and different text encoders.

Along with our submission results, we have also
provided the best results we have encountered so
far in order to demonstrate the viability of these
very low parameter models. Table 3 compares our
results on PrideMM dataset against MemeCLIP



Method Hidden Hate Target Stance Humour
Dim. Acc. AUC Fl | Acc. AUC Fl | Acc AUC Fl | Acc AUC F1

CLIP ViT-L/14 8 7787 86.70  75.82 | 3871 6477 3627 | 6146 79.80 59.64 | 7885 8494  71.87
(Image Only 224x224) 16 79.84 8740 7840 | 55.65 68.67 48.66 | 5850  79.33 5596 | 80.04 84.78  74.82
CLIP ViT-L/14@336px 8 79.05 87.62  77.12 | 39.92 6551 3741 | 6344 81.06 6020 | 78.46  85.54  74.05
(Image Only 336x336) 16 81.03 8790  79.39 | 56.85 6931 49.16 | 61.46 81.14 59.60 | 79.64 8528  75.85
CLIP ViT-L/14@336px + 8 8320 8872 8175 | 6048 70.77 51.06 | 64.03 81.65 62.10 | 79.45 85.02 7475
OCR Text 16 81.62 8887  79.89 | 47.58 6643 4327 | 6403 8120 61.68 | 79.64 8445  74.65

Table 5: Our experiments with the use of CLIP’s image encoders on the validation set of shared task dataset. We use
three evaluation metrics: Accuracy, AUC, and F1 score. The best performance is highlighted in bold.

Method Hidden Hate Target Stance Humour
Dim. | Acc.  AUC Fl | Acc.  AUC Fl | Acc.  AUC Fl | Acc.  AUC F1
FIMIF 8 8320 8872 8175 | 6048 70.77 5106 | 6403 81.65 6210 | 73.72  84.86  70.69
16 | 81.62 8887 79.89 | 4758 6643 4327 | 6403 8120 61.68 | 81.23 8503  75.77
-FIM 8 79.05  89.18 7698 | 59.68 7076  50.28 | 62.65 8173  60.45 | 76.68 8522  73.34
16 | 8123 8951 7959 | 59.27 7043 5152 | 6344 8154 60.89 | 76.68 8501  73.03
- Upsampling 8 79.05  89.18 7698 | 5847 7116  50.84 | 63.44 8133 6091 | 7510 8507 7117
16 | 81.23  89.51 7959 | 60.48 7144 5021 | 6146 8124 5872 | 77.87 85.12  73.08
- Weighted 8 78.66  89.04 7654 | 6048 7226 51.87 | 61.66 8122 5775 | 80.63 8522  73.92
Loss 16 | 8202 8945 8025 | 58.87 7164 49.10 | 60.08 8134 57.26 | 79.64 8547 7446
Table 6: Ablation experiments performed on the validation set of given shared task dataset.
Hidden Dim. | Acc. AUC F1 Method | Acc. F1
4 81.23 88.75 79.24 MOMENTA 83.82  82.80
8 83.20 88.72 81.75 (Pramanick et al., 2021b)
16 81.62 88.87 79.89 PromptHate 84.47 -
32 7727 88.86 7541 (Cao et al., 2022)
64 81.03 89.22 79.10 Pro-Cap 85.03 -
128 80.24 88.31 78.64 (Cao et al., 2023)
256 68.77 89.11 63.14 MemeCLIP 84.72 83.74
(Shah et al., 2024)
Table 7: Classification performance on the subtask A FIMIF (ours) | 87.01 83.94

(hate) validation set across different hidden dimensions
of our model. The best performance is highlighted in
bold.

on all four subtasks. We compare CLIP’s text en-
coders with other large language models in table 4.
These models are trained in a deterministic man-
ner (having no randomness) in order to compare
different methods. CLIP’s text encoder, despite
having a shorter context length of 77 tokens, per-
forms better than BERT, RoBERTa, and DeBER-
TaV3 (He et al., 2023), each supporting a context
length of up to 512 tokens. Table 5 compares the
results of our model on CLIP ViT-L/14 224px and
336px image encoders on the validation set of the
shared task dataset. Table 7 presents a comparison
of our model across different hidden dimensions,
showing little to no improvement as the dimension
size increases, possibly due to over-fitting. Table 8
reports results on the HarMeme-C dataset (Praman-
ick et al., 2021a), where our model is compared
against several state-of-the-art approaches.
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Table 8: Performance comparison of meme classifica-
tion models on the HarMeme-C dataset (binary classifi-
cation). The best performance is highlighted in bold.

5.1 Ablation Study

We have performed our ablation study on the valida-
tion set. We compare our model with the one where
feature interaction module has been replaced with
a linear transformation layer having a non-linear
ReLU activation function. The findings in table 6
suggest that the CLIP embeddings of PrideMM
dataset is very linear in nature. Due to its residual
design, our implementation of feature interaction
module is very generic. It can perform just as well,
if not better, than a residual module even when the
data does not exhibit multiplicative relationships.
The difference between these architectures is likely
due to the overhead incurred by having a larger
number of parameters (3.5 times that of a resid-
ual module). Use of upsampling does not seem
to have a significant improvement in performance.



Our upsampling scheme should not have any effect
on subtasks A and C, where the worst class ratio
is less than 2:1. Any difference is likely due to a
different shuffling than their non-upsampling coun-
terparts. The use of weighted loss seems to degrade
the performance in tasks B and D. However, the
difference is not significant.

6 Conclusion

We present FIMIF (Feature Interaction for Mul-
timodal Integration and Fusion), a lightweight
parameter-efficient model that leverages CLIP en-
coders for multimodal meme classification on
PrideMM dataset. Our approach relies on aggres-
sive dimensionality compression. A key finding
from our ablation study is that the classification
problem becomes mostly linear in nature after this
compression, indicating that the dimensionality re-
duction itself is a critical component of our model’s
success. Our work highlights the potential of low-
dimensional fusion as a viable path toward creating
more efficient and sustainable models for complex
multimodal tasks.

7 Limitations

Dependence On OCR Quality: The textual in-
put relies heavily on the quality of the OCR. Errors
in OCR, such as misread words or missing charac-
ters, are directly passed to the text encoder without
correction or filtering. Moreover, CLIP’s text en-
coder has a maximum context length of 77 tokens.
This severely limits our model’s ability to classify
text-heavy memes. However, Table 5 indicates that
the model achieves comparable performance even
without OCR.

Lack Of Future Proofing: The world of memes
on the Internet evolves rapidly. Words, images, and
cultural references can shift in meaning over time.
Since our model heavily relies on the frozen CLIP
embeddings, it severely limits the ability of our
model to adapt to emerging slangs, visual styles,
and evolving socio-cultural contexts. This static
representation may cause the model’s performance
to degrade over time.

8 [Ethical Considerations

Environmental Impact: Training deep learning
models can have a significant environmental im-
pact, mainly due to high energy consumption and
the resulting carbon emissions. To address this,
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we designed our model with a very low parameter
count, which helps reduce the overall computa-
tional load. In practice, the most time-consuming
step is the extraction of CLIP embeddings, while
the actual training phase is relatively quick and
lightweight. Our fine-tuning approach helps the
model adapt quickly to new datasets, reducing the
need for repeated or prolonged training.

Potential For Misuse: Any technology designed
to understand and identify a specific type of content
can potentially be used for malicious purposes. A
model that learns the constituent elements of hate-
ful memes could be used to generate new, more
effective hateful content to systematically find loop-
holes in other detection systems.

Societal Impact Of Automated Moderation:
The integration of automated moderation systems
into digital platforms introduces several ethical con-
cerns with severe societal implications. While such
systems enable scalable and timely identification
of harmful content, they also risk amplifying exist-
ing biases and disproportionately impacting certain
user groups (Thapa et al., 2025b). Models trained
on imbalanced or culturally narrow datasets may in-
advertently silence marginalised communities, mis-
classify context-dependent expressions, or fail to
generalise across linguistic and cultural boundaries.
Automated moderation often lacks transparency
and interpretability, limiting users’ ability to under-
stand or contest moderation decisions. This opacity
can undermine fairness and accountability, partic-
ularly in high-stakes environments where content
removal may affect public discourse or individual
reputation.
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