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Abstract

The aim of this paper is to compare the effi-
cacy of multiple different methods of machine
translation in the French-English language pair.
There is a particular focus on Large Language
Models given they are an emerging technology
that could have a profound effect on the field of
machine translation. This study used the Euro-
pean Parliament’s parallel French-English cor-
pus, testing each method on the same section of
data, with multiple different Neural Translation,
Large Language Model and Rule-Based solu-
tions being used. The translations were then
evaluated using BLEU and METEOR scores to
gain an accurate understanding of both preci-
sion and semantic accuracy of translation. Sta-
tistical analysis was then performed to ensure
the results validity and statistical significance.
This study found that Neural Translation was
the best translation technology overall, with
Large Language Models coming second and
Rule-Based translation coming last by a signifi-
cant margin. It was also discovered that within
Large Language Model implementations that
specifically trained translation capabilities out-
performed emergent translation capabilities.

1 Introduction

This study aims to compare previous and current
methods of Machine Translation (MT) with Large
Language Models (LLMs) to gauge the effective-
ness of novel technologies in the field of MT.

The continuous improvement of technology in
the MT space often leads to older methods be-
ing left behind – especially in the modern day as
more and more companies make the pivot to LLMs.
These previous methods, such as rules-based MT,
can be effective in situations where there is a lack
of resources available to train models. Addition-
ally, LLMs trade off of accuracy for natural sound-
ing translations could cause myriad issues in areas
where accuracy is paramount such as the medical
or legal fields. This suggests that Neural Machine

Translation (NMT) is a better solution for these
contexts at the moment. The question of LLMs
in the field on MT is still in the early stages of
being researched but does have promising results
in early studies (Mujadia et al., 2023). However,
these studies are often made with comparisons to
other LLMs, giving no context as to how they per-
form against other methods of translation. Given
the intense amount of resources required to train
and run LLMs, an accurate inter-method compari-
son would allow potential users of these systems to
evaluate the pros and cons before committing the
time and resources required to use them.

This paper aims to create a clear picture on how
rules-based translation, neural translation, and large
language models and compare to each other on
translation of the same text, and how different im-
plementations of these methods can affect transla-
tion quality. This will give future research a base-
line to compare from when progressing the field.
This research is novel in that no other study has ever
compared these three methods of MT in the same
framework before. These new contributions will
provide a clear picture of the current MT landscape
giving insight as to where research should go in fu-
ture. They will also let developers planning to use
MT as part of their product to make an informed de-
cision on which method is best for them, based on
the trade-offs of each one. Within this study the ef-
ficacy of different translation approaches for LLMs
will also be investigated, allowing developers of
this technology to tailor their efforts depending on
the task.

This study is highly relevant to the automatic ex-
traction of socio-political events from text, given its
focus on automatic translation and multilinguality.
In multilingual contexts, translation methods are
often essential for enabling such extraction. The
data used in this research are drawn from the Eu-
ropean Parliament’s French–English parallel cor-
pus, which provides extensive coverage of socio-
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political events. The findings of this research offer
valuable guidance to researchers in selecting suit-
able approaches for tackling multilingual tasks of
this kind.

2 Related Work

Although significant research on each of these
methods has been done individually. And research
on comparisons between systems like RBMT, NMT
and LLMs has been done, these systems have never
all been compared together using the same corpus
with the same preprocessing on the translation re-
sults. Additionally, a majority of research only
compares two types of systems at a time, whereas
this study compares 3 types of systems with dif-
ferent implementations of those types. The rest
of this subsection will discuss prior studies done
on this topic, the limitations of that research and
the significance of the research being done in this
study.

Historical studies naturally covered RBMT and
Statistical Machine Translation (SMT) systems
such as this study by Costa-Jussà et al. (2012) com-
paring RBMT and SMT on Catalan – Spanish MT
systems across 2 domains. This research was key in
defining performance differences between systems.
Another key paper evaluating direct performance
comparisons between the two systems is the pa-
per by S and Bhattacharyya (2017) which uses the
Marathi–Hindi language pair. This is a study with
very different takeaways due to the structural differ-
ences between Marathi and Hindi, compared to the
very similar languages of Catalan and Spanish. In
more modern research NMT models have started
to be included as part of these studies with multiple
studies being published in comparing all 3 system
types by De Silva and Hansadi (2024) and Dwivedi
et al. (2025) covering this area of research. Addi-
tionally, as LLMs have started displaying more and
more translation capabilities comparison with ex-
isting NMT solutions has started to be done. Such
as a paper by Sizov et al. (2024) comparing NMT,
LLM, and human translations using human and au-
tomatic evaluation. This study sets itself apart by
comparing the translations LLMs produce to other
systems outputs, rather than focusing on the tech-
nique specifically used to get the LLMs to produce
this output. However, all of these studies have limi-
tations which will be addressed in the next section.

In studies done less recently only two different
methods were compared, not allowing a complete

and fair comparison across multiple different sys-
tems. This aspect did change with the advent of
NMT as researchers wanted to see how it would
match up with pre-existing techniques. After the in-
troduction of LLMs to the MT space this focus has
narrowed again as studies look to see how LLMs
match up against the latest and greatest technolo-
gies on offer, rather than how they fit amongst all
the available technologies. Additionally according
to a meta-analysis by Marie et al. (2021) BLEU
scores have been used ineffectively. As studies
often copied scores directly from other research
without any consideration for how the score was
calculated, rendering the comparison invalid. Ad-
ditionally, without statistical significance testing,
the difference between the two scores could be
completely coincidental, this is an important tool
that is rarely used and the usage of which has been
declining over time.

3 Methodology

This section will cover the design of the experiment
carried out, including the questions to be answered
by the experiment; the translation systems being
evaluated and any configurations required to make
them work; the corpus these translation systems
were tested on; the evaluation metrics use; their
specific implementations and the statistical analysis
methods used. The experiment protocol will then
be discussed, with an evaluation of how these pro-
tocols ensure fair comparison and an explanation
of how the scores were calculated and compared.

3.1 Corpus Selection and Preparation

The corpus used was the European Parliament’s
French-English parallel corpus (Koehn, 2005).
This was chosen as it covers a variety of domains
with discussions ranging from law to the medical
field, to nature conservation. This variety enables
an excellent insight into how MT systems perform
across multiple domains. In addition, the size of
this corpus allows for ample development and ex-
periment sets, meaning the development of the test-
ing systems can emulate the experiment itself more
closely in terms of scale, without restricting the
size of the experiment data. The first 40,000 lines
of the last 10% of the data were used as a develop-
ment set to ensure the integrity of the data, then the
next 60,000 lines made up the experiment data set.
The only preprocessing done on the data set was
to remove unreasonably long sentences that would
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exceed the token limits of the models being used.

3.2 Rule-based Model
Given the lack of freely available rule-based mod-
els, the only model evaluated in this study is Aper-
tium (Forcada et al., 2011), an open-source RBMT
toolkit. For this study version 2.9.4 of the base
Apertium model, the English Apertium version,
and the French Apertium version were installed.
Then the French English language data from the
Github was downloaded and the instructions there
were used to install and set up the pair. To access
the system the command line was used running
a shell script that would split the complete exper-
iment file into chunks. Apertium would process
each chunk then the translations would be recom-
bined in order. Apertium was chosen in this study
as it is the most accessible RBMT model and has
been used in multiple research studies previously
(Costa-Jussà et al., 2012); (Corbı́-Bellot et al.).

3.3 Neural models
Three neural models were assessed in this study to
allow different styles and implementations to be
evaluated against LLMs, enabling a better overall
picture of how they fit in the space. All models
were run locally with Huggingface’s transformers
library (Wolf et al., 2020) using the pipeline in-
terface in Python to send data to the models and
receive outputs. The largest models possible were
used, as generally the larger the model, the better it
performs. Every model was used in the default con-
figuration, with the source languages being speci-
fied as French and the target language as English.
The neural models chosen as part of this study are
the following:

The Marian NMT system is a purely NMT sys-
tem that uses the transformer architecture (Junczys-
Dowmunt et al., 2018), it was developed as an
efficient C++-only implementation of the architec-
ture detailed in the paper “Attention is All You
Need” (Vaswani et al., 2017). The particular ver-
sion used was the French-English model from Opus
MT (Tiedemann and Thottingal, 2020); (Tiede-
mann et al., 2022), which is a Marian model trained
on the Opus parallel corpus.

Meta’s M2M100 model (Fan et al., 2020) is a
multilingual translation model that supports transla-
tion across 100 different languages. It still uses the
same attention mechanism proposed by Vaswani et
al. but only requires one model to translate between
all these languages. M2M100 was created to ad-

dress the traditional “English-Centric” approach of
multilingual translators, which typically involves
translating the source language into English, then
English into the target language. The version used
in this study was the 1.2 billion parameter version
in order to enhance accuracy.

Meta’s No Language Left Behind (NLLB) model
(Team et al.) is another multilingual translation
model but it supports many more languages. NLLB
supports 200 different languages, with 150 of them
being low-resource languages. The specific model
used in this study is the 1.3 billion parameter ver-
sion, the goal was to use the 3.3 billion parameter
version but due to computing resource constraints,
this option could not be used.

3.4 Large Language Models

Two LLMs were evaluated in this study to assess
how different approaches towards translation ca-
pabilities in LLMs can change their effectiveness.
Both models were run locally using Huggingface’s
transformers library and pipeline interface. The
LLMs chosen for evaluation are the following:

Google’s Text-to-Text Transfer Transformer or
T5 (Raffel et al., 2023) is a large language model
that treats every NLP task as a text-to-text prob-
lem1. This approach means T5 can in effect switch
modes; this allows the system to approach transla-
tion as a task it was directly trained for, rather than
as an emergent capability. The uniqueness of T5’s
approach positions it in a middle ground between
NMT systems that can only translate and LLMs
that are not trained for translation whatsoever. This
technique significantly improves T5’s ability to fol-
low instructions and perform zero-shot tasks, al-
lowing T5 to perform in this study despite the con-
strained computing resources. The specific model
version was the FLAN-T5 large, an instruction-
tuned version of T5. The model was used in its
default configuration with the maximum number
of new tokens it was allowed to produce set to 256.
When translating, the model was prompted with
“Translate from French to English” followed by the
sentence to be translated.

Meta’s Large Language Model Meta AI (Llama)
(Touvron et al., 2023) is an open-source family
of LLMs that aims to democratise AI access and
enable research advancement. They are a more

1Many researchers consider T5 a Deep Learning model
not an LLM. For the purposes of this study, T5 will be classed
as an LLM due to its generation capabilities. Additionally, the
use of T5 large gives more LLM like behaviour.
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standard style of LLM being decoder only and pre-
trained on large text corpora, meaning translation
is an emergent capability. The Llama version used
in this study was Llama 3.2 instruct with 3 bil-
lion parameters (Grattafiori et al., 2024). The in-
struct version is fine-tuned on instruction following
data, this will improve the model’s adherence to
the translation request but not the translation itself.
The configuration of the model was set to a maxi-
mum of 300 new tokens the precision of the model
had to be reduced from 32-bit to 16-bit due to re-
source constraints. This causes a small reduction
in overall accuracy, particularly in more nuanced
expressions, but is necessary given the constraints
of the experiment. The model was also set to only
return the response to the prompt. To prompt the
model, lists of dictionaries with role and content
sections were used. The prompt used was “You
are a French to English Translator, translate the
input sentences and only give the output sentence”
in the system role to set up the model, then in the
user role the sentence was given to the model to be
translated.

3.5 Evaluation Metrics

Two automated evaluation metrics were used in
this study, BLEU score (Papineni et al., 2002) and
METEOR score (Banerjee and Lavie, 2005). This
approach was used as BLEU score alone can lead to
incorrect conclusions about which systems are bet-
ter according to a meta-evaluation of MT research
(Marie et al., 2021), using METEOR avoids this pit-
fall and also evaluates the systems from a semantic
perspective. The Python Natural Language ToolKit
(NLTK) (Bird et al., 2009) implementations of both
these scores were used. The reference translations
for systems to be evaluated against were taken from
the Europarl parallel corpus and no modifications
were made to the reference translations.

To calculate BLEU score for each translation,
the score for each sentence was calculated using
the sentence bleu() function in NLTK, then all the
scores were averaged to get an overall score for
the translation. Each n-gram was weighted equally,
and no smoothing function was used. Sentence
level BLEU calculation was used so that bootstrap-
ping could be performed as part of the statistical
analysis.

To calculate the METEOR score for each trans-
lation, the score for each sentence was calculated
using the single meteor score() function as there

was only one hypothesis per reference translation.
The default parameter settings for this implemen-
tation were used as they have been studied and
calibrated to align with human judgements.

3.6 Data

Figure 1: Graph of overall BLEU score for each system

Figure 2: Graph of overall METEOR score for each
system

Figure 3: Table of overall BLEU and METEOR scores
for each system

3.7 Statistical Analysis

In order for any conclusions to be made about
the results their statistical significance needs to
be evaluated to demonstrate they are not just ran-
dom chance. A meta-evaluation Marie et al. (2021)
found that only a minority of papers perform sta-
tistical significance testing on their scores. This
study addresses this methodological gap by using
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bootstrap resampling to ensure the significance of
the scores.

Bootstrap resampling was used to create 1000
samples for each system by randomly selecting
the sentence level scores from each system with
replacement. The size of each sample was 60000
scores - the same size as the original dataset for
each system. The overall average of each sample
was then recorded so that distributions of these
averages could be made and evaluated for each
system.

From these distributions, the mean, standard de-
viation, 95% confidence intervals, minimum, and
maximum were calculated for each system. The
mean is the primary performance metric and the
number that will be compared between systems.
The standard deviation shows the variability across
samples and how consistent each system’s perfor-
mance is. The 95% confidence intervals establish a
range where the true score for each system likely
exists. The minimum and maximum values show
the best and worst bootstrap samples - a small gap
between these two numbers indicates less variabil-
ity. Together, these metrics give a comprehensive
statistical profile of each system’s performance.
Excel’s standard functions were used to calculate
these metrics;

The AVERAGE() function was used to calculate
the mean of the bootstraps for each system.

STDEV.S() was used to calculate the standard
deviation.

The 95% confidence intervals were calculated us-
ing the CONFIDENCE.NORM() function, which
determines the margin of error based on standard
deviation, alpha level, and sample size. An alpha
level of 0.05 indicates a 95% confidence interval.

The MIN() and MAX() functions were used to
calculate the minimum and maximum sample val-
ues for each system.

To compare each system with every other system
meaningfully, the p-values between each system
were calculated. To calculate the p-values the offi-
cial result between two systems is compared with
every bootstrap sample to see if they match, i.e.
if in the official results one system is better; is it
better in each bootstrap sample? If less than 5% of
the bootstrap results contradict the original finding,
meaning p < 0.05, then the official result is statisti-
cally significant. Calculation of these values was
done in excel. To calculate the p-values between
systems a formula was implemented to count the

number of occurrences where the bootstrap result
matched the actual comparison result between the
two systems. A sum of these occurrences was then
done, that sum was divided by 1000 and taken away
from 1 to get the final value. The formula is as fol-
lows:
1 - SUM(IF(system 1 bootstrap values > system
2 bootstrap values, 1, 0))/1000

3.8 Apertium Translation
As Apertium cannot handle a huge number of lines
at once, the translation data was split into chunks of
150 lines with each chunk in its own file. Apertium
was then given each line from each file to translate,
every 50 sentences the translations would be writ-
ten to a file, giving 3 new translated files for every
chunk. This was done for every file, and then the
files were recombined to create a sentence-aligned
file containing every translated sentence.

3.9 Neural Translation
The neural translation was all done from within
one file, with each translator translating the source
file sequentially so each could have the maximum
compute resources available to it. Each system was
set up using Huggingface’s pipeline in translation
mode, and then a for loop iterating through each
line in the file was started, yielding each line to the
pipeline, the corresponding output was then written
to the results file in the same order as the source
file ensuring sentence alignment.

3.10 LLM Translation
The LLM translation was done from two separate
files given their need for slightly different setups
and prompt structuring. T5 was also implemented
with Huggingface’s pipeline module, it was set up
in text-to-text generate mode, with the number of
max new tokens allowed to be generated each time
set to 256 due to memory constraints. The same
for loop to iterate through each line in the source
file was used, the input to the model was “Translate
from French to English sentence to translate”. For
Llama’s implementation, an identical process was
used, however, Llama was set up with a max new
token count of 300 and 16-bit precision.

3.11 Score Calculation
To calculate the overall METEOR and BLEU
scores for each system the individual score of both
types for each sentence was calculated then an av-
erage of all these sentences was calculated to get
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the overall score for each system. To perform boot-
strapping a score was randomly selected from the
original population of the 60,000 sentence-level
scores and added to a new sample but left in the
original population. The overall average for the
sample was then calculated and added to a list of
bootstrap averages for that system.

3.12 Summary

The comprehensive, robust approach detailed in
this chapter shows that this experiment is compe-
tently able to answer the research questions posed.
With a strong framework designed to effectively
evaluate each method against the other, using mul-
tiple implementations of methods to gain a compre-
hensive understanding of the performance of each.
The use of the Europarl corpus provides a diverse
and well-established dataset for translation tasks.
The use of both BLEU and METEOR provides a
more thorough analysis of the translation quality
of each system, as one evaluates the accuracy of
the sentence and the other evaluates the seman-
tic meaning. Additionally, statistical analysis with
bootstrapping validates the significance of these
results - ensuring that conclusions drawn from this
study are reliable.

4 Discussion

This section will analyse the results presented in
the previous section and discuss their implications.

4.1 Primary Research Question 1

How do RBMT, NMT, and LLM translation ap-
proaches compare across general translation tasks
in the French-English language pair?

The initial comparison is quite clear with NMT
coming out on top with the highest performing
NMT system, Marian, having a BLEU score of
30.8% and a METEOR score of 60.59% (3), NMT
was then followed by LLMs with the highest scor-
ing LLM, T5, having a BLEU score of 24.47% and
a METEOR score of 54.97% (3). RBMT was then
last with a significantly larger gap as Apertium had
a BLEU score of 2.86% and a METEOR score
of 27.07% (3). This huge gap of nearly 28% in
BLEU and nearly 33% shows the significant ad-
vancements that have been made in the space since
the creation of Apertium. In particular, the larger
disparity in METEOR scores shows NMT’s abil-
ity to maintain semantic coherence over the whole
translation compared to RBMT. Given NMT’s dom-

inance in the study, a comparison between them
provides insight into which implementation pro-
vides the best translation. The best system was
Marian, followed by NLLB with a BLEU score of
29.8% and a METEOR score of 59.44% (3) with
M2M100 coming last in the category with a BLEU
score of 26.03% and a METEOR score of 56.49%
(3). Both systems tuned to translate multiple lan-
guages rather than just one pair performed worse
than the system only trained for the French-English
language pair, showing that even though good re-
sults can be achieved with a generalised system,
specially trained systems will outperform.

4.2 Primary Research Question 2

Are LLMs the method that will become the prevail-
ing technology in the translation space in future?

The results of this experiment indicate that
LLMs cannot quite attain the level of translation ac-
curacy of NMT models – whether they are multilin-
gual or single-language systems. With a small per-
formance difference between the lowest performing
NMT model M2M100 (BLEU: 26.03%, METEOR:
56.49%) (3) and the highest performing LLM T5
(BLEU: 24.47%, METEOR: 54.97%) (3) of around
1.5% across both scores. Despite these small dif-
ferences, the comparison is significant due to the
p-value of 0 (16,17) between these systems. When
comparing between best-performing NMT system
Marian (BLEU: 30.8%, METEOR: 60.59%) (3),
and the worst-performing LLM Llama (BLEU:
20.88%, METEOR: 52.6%), there is BLEU gap
of nearly 10% and a METEOR gap of nearly 8%.
These score differences show that different imple-
mentations of LLMs using different approaches can
drastically alter translation quality, paving the way
for new LLM approaches to be used in the future.
Consideration must also be made for LLMs’ ability
to perform general tasks beyond translation such as
text generation, these extra facilities could lead to
users taking a small hit in translation quality to have
a single solution for all their problems, rather than
dedicated systems for each task. However, LLMs
incredibly high resource costs for similar or worse
translation results limits their ability to spread as
a translation tool, as training and running them re-
quires huge time and infrastructure investments. In
time, LLMs should become the prevailing technol-
ogy as customers who already use LLMs will want
translation capabilities included. NMT and LLM
approaches may also be combined in a similar vein
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to how T5 works, allowing for the translation qual-
ity of NMT systems, alongside the other abilities
of LLMs.

4.3 Secondary Research Question
In the category of LLMs, how do the emergent
capabilities of LLMs which have not been trained
to do translation tasks compare to the capabilities
of LLMs which have explicitly been trained to do
translation tasks? Using T5 as the model explic-
itly trained for translation and Llama as the model
with emergent capabilities it is clear there is a sig-
nificant difference in translation quality between
the two. T5’s scores (BLEU: 24.47%, METEOR:
54.97%) are higher than Llama’s (BLEU: 20.88%,
METEOR: 52.6%) with the larger difference in
BLEU score of nearly 5% compared to the dif-
ference in METEOR score of just over 2%. This
gap between translation scores shows specialised
training for an LLM significantly enhances transla-
tion precision while only slightly enhancing overall
translation quality. This suggests that for situations
where accuracy of translation is paramount, specif-
ically trained LLMs are a better fit as they will
better convey the meaning of the source text.

4.4 MT in Specialised Domains
These results can be extrapolated to gain insights
into how these technologies would perform in dif-
ferent situations, such as in specific translation do-
mains like legal or medical disciplines. In these
domains translation precision and accuracy are
paramount as errors can have serious consequences,
as such the systems with the best scores overall, and
particularly higher BLEU scores, would fare best in
these domains. NMT systems, Marian in particular,
are the solution for this given their top overall per-
formance and high BLEU scores, indicating good
precision. However, in domains that require less
precision and more natural-sounding translations
such as creative content like advertising, LLMs
could play a key role. If creative companies are al-
ready using LLMs for other purposes, their ability
to provide good translations that maintain semantic
accuracy in an area where precision doesn’t mat-
ter as much provides these companies with one
technical solution for multiple areas.

4.5 Future Developments
As the MT technologies progress, it is important
to distinguish which technologies will dominate
in the near and long term. In the near term, NMT

will remain the dominant technology as its signif-
icant performance advantage over other technolo-
gies suggests it will be the default choice for the
highest-quality translation in the immediate future.
In the long term, the best of both LLM and NMT
technologies will likely converge, indicated by the
small gap between LLM and NMT performance.
This idea is also demonstrated by T5’s approach
of being trained for language translation on top
of its general LLM capabilities, incorporating the
strengths of both these technologies. As these tech-
nologies develop, the trade-off of functionality and
computing cost will be prioritised over translation
quality as it becomes less of a factor. The large
computing costs but extra functionalities of LLMs
need to be considered against NMT’s lower com-
puting costs but single functionality. Additionally,
single-language pair NMT systems will start to be
phased out as the close performance gap between
Marian and NLLB of less than 1% indicates that
multilingual NMT solutions will have equal perfor-
mance to single-pair solutions.

4.6 Limitations of Analysis
To properly contextualise the analysis made in this
section it is important to highlight the limitations
of the study that produced the results. The use of
automated evaluation metrics without any human
evaluation can potentially cause false confidence
as there is evidence to show that METEOR and
BLEU can miss essential sentiment mistakes in
translation (Saadany and Orasan, 2021). In addi-
tion, testing on a single high-resource language
pair like French-English puts corpus-based trans-
lation systems at an advantage as the resources
to train them properly, whereas RBMT systems
often perform better with low-resource languages
(Bayón and Sánchez-Gijón, 2019). The resource
constraints in this project could have hindered LLM
performance, particularly in the case of Llama, as
the precision had to be reduced to 16-bit due to
memory constraints and a model with fewer param-
eters was used. Despite these limitations, the sta-
tistical significance of the performance differences
shows that the results discussed in this chapter are
reliable. These constraints should be considered
when interpreting the results of this study and ap-
plying its findings.

4.7 Summary
The key findings from this study answer the first re-
search question, definitively showing that NMT is
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the superior technology in both semantic accuracy
and precision of translation. LLMs closely fol-
lowed with much lower precision but were closer
in semantic accuracy due to their ability to under-
stand the structures of human language with RBMT
coming last by a significant amount because of its
inability to include semantic context when translat-
ing. Despite not being the top-performing technol-
ogy the results shown by LLMs in this study were
very promising, positioning them to become the
prevailing technology in the MT field in future, es-
pecially when specially trained for translation tasks
alongside generative capabilities. Within the LLM
field, two different styles of translation were evalu-
ated, emergent translation capabilities and LLMs
trained for translation in the form of Llama and
T5. T5 had better overall translation quality with
a much bigger improvement over Llama in preci-
sion, showing that while emergent capabilities are
impressive and could be used for non-critical trans-
lation, if accurate, precise translation is needed
specially trained systems are better. These com-
parisons can be made with confidence due to the
extensive statistical significance testing performed
as part of this study, with every p-value being 0 the
comparisons between each system are extremely
statistically significant and can be evaluated as ex-
tremely valid. This study is the first to compare
these three translation technologies and as a result,
provides unique insight for users or developers con-
sidering implementing one of them.

5 Conclusion

The significance of this research is that there is a
comprehensive evaluation framework comparing
three different MT translation technologies to en-
sure the accuracy of results and comparison. These
translations are also evaluated on both a word-by-
word basis and overall semantic basis using mul-
tiple evaluation metrics, something many studies
lack. The translation task itself covers multiple do-
mains, allowing a true demonstration of each sys-
tem’s more diverse capabilities. The study also im-
plements statistical analysis suggestions by Marie
et al. in order to ensure the significance of the find-
ings, leading to confidence that these results can be
used to make informed decisions when using these
systems in future. The development of a frame-
work like this provides a consistent benchmark fu-
ture technologies can be measured against. This
paper also offers key insights into the current MT

space and its potential future trajectory. The results
of this study are directly relevant to the automatic
extraction of socio-political events in multilingual
contexts, where the use of automatic translation
methods may be necessary.

5.1 Limitations

Despite this project’s successes in creating effective
results, multiple resource constraints limited the
scope of the research. Computing restraints lead
to smaller models being used – particularly when
it came to LLMs – with Llama’s 3.3 billion pa-
rameter model having to be used, despite the avail-
ability of larger models. Llama’s precision also
had to be reduced due to memory constraints with
the hardware used. The use of the French-English
language pair also favours data-driven approaches
as it is a high-resource language pair with plenty
of data available to train systems that need it. If
this paper were to be repeated with more time allo-
cated more language pairs from different language
families would be added to assess the efficacy of
each system with different grammatical structures
and vocabularies. Statistical models would also
be assessed to provide even more context of how
different technologies perform.

5.2 Future Work

Future work directly stemming from this research
could involve creating both broader and more spe-
cific studies. Future research projects with access
to more compute or paid APIs can use larger, more
performant models such as LLMs with 100 billion
or more parameters. This allows better insight into
very current technologies in a way that is unavail-
able with open-source resources. Another avenue
of research developed from this would be repeat-
ing the same study with more RBMT systems on
low-resource languages. This reverses the dynamic
of corpus-based systems having an advantage al-
lowing RBMT to show its use in more niche sce-
narios. A final branch of study resulting from this
project would be developing and investigating hy-
brid NMT-LLM approaches to translation. These
would also have to be evaluated from an LLM per-
spective to ensure the different training method
would not affect its generative capabilities. This
research would heavily advance the field of MT
potentially removing the need for compromise.
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Figure 5: M2M100 BLEU score bootstrap distribution

Figure 6: Marian BLEU score bootstrap distribution

Figure 7: NLLB BLEU score bootstrap distribution

Figure 8: T5 BLEU score bootstrap distribution

Figure 9: Llama BLEU score bootstrap distribution

Figure 10: Apertium METEOR score bootstrap distri-
bution

Figure 11: M2M100 METEOR score bootstrap distribu-
tion

Figure 12: Marian METEOR score bootstrap distribu-
tion



50

Figure 13: NLLB METEOR score bootstrap distribution

Figure 14: T5 METEOR score bootstrap distribution

Figure 15: Llama METEOR score bootstrap distribution

Figure 16: Statistics table for BLEU bootstrap scores

Figure 17: Statistics table for METEOR bootstrap
scores



51

B Link to project github

https://github.com/boydw27/MTInTheAIEra


