

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049

Luminaries@CASE 2025: Multimodal Hate Speech, Target, Stance and Humor Detection using ALBERT and Classical Models

050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099

Akshay Esackimuthu

Department of Computer Science and Engineering
Sathyabama Institute of Science And Technology
Chennai - 600119 , Tamil Nadu , India
akshayesackimuthu@gmail.com

Abstract

In recent years, the detection of harmful and socially impactful content in multimodal online data has emerged as a critical area of research, driven by the increasing prevalence of text-embedded images and memes on social media platforms. These multimodal artifacts serve as powerful vehicles for expressing solidarity, resistance, humor, and sometimes hate, especially within the context of marginalized socio-political movements. To address these challenges, this shared task introduces a comprehensive, fine-grained classification framework consisting of four subtasks: (A) detection of hate speech, (B) identification of hate speech targets, (C) classification of topical stance toward marginalized movements, and (D) detection of intended humor. By focusing on the nuanced interplay between text and image modalities, this task aims to push the boundaries of automated socio-political event understanding and moderation. Using state-of-the-art deep learning and multimodal modeling approaches, this work seeks to enable a more effective detection of complex online phenomena, thus contributing to safer and more inclusive digital environments.

1 Introduction

Hate speech detection has become an essential component in fostering a safer and more inclusive digital ecosystem. In today's highly connected world, where social media and online platforms shape public discourse, the rapid dissemination of hateful content can lead to severe social and psychological harm, particularly against marginalized communities. Effectively identifying and mitigating such content not only protects vulnerable groups but also promotes constructive dialogue and reduces the risk of conflict escalation.

Recent advancements in natural language processing (NLP) and computer vision (Parihar et al.,

2021) have significantly enhanced the capabilities of hate speech detection systems, particularly in multimodal contexts where images are embedded with textual content. By jointly analyzing both modalities, it is possible to capture subtle nuances, such as sarcasm or implied hostility, that would otherwise be missed in unimodal approaches. This is particularly critical in the context of memes and other visual artifacts commonly used to spread hateful or harmful narratives.

In line with this vision, the shared task introduced in CASE 2025 (Thapa et al., 2025) as part of workshop (Hürriyetoğlu et al., 2025) focuses on the detection of hate speech, identification of targeted entities, stance classification towards marginalized movements, and detection of humor in multimodal social media content. Building upon this framework, our study explores the integration of transformer-based models and classical machine learning techniques to tackle these challenges. This analysis has base references from (Thapa et al., 2024) and (Thapa et al., 2023).

Specifically, we employ the ALBERT base transformer model, known for its parameter efficiency and strong performance in semantic understanding tasks. In addition, we incorporate classical models such as XGBoost, LightGBM, Gradient Boosting, and MLP classifiers, which allow for diverse feature perspectives and robust ensembling strategies. Our approach combines traditional feature engineering (e.g., syntactic and TF-IDF features) with deep contextual embeddings to capture both surface-level and deep semantic cues.

Through weighted ensembling and subtask-specific optimizations, we aim to improve the fine-grained detection of hate speech and its associated attributes, ultimately contributing to more effective content moderation and fostering healthier online interactions.

2 Dataset & Task Description

2.1 Overview

In the evolving digital landscape, text-embedded images, such as memes and infographics, have emerged as powerful tools of expression, particularly in social and political discourse. These images often blend textual and visual cues, creating a complex multimodal environment that challenges traditional content moderation and hate speech detection methods. Within the context of the marginalized movement, such images can serve dual roles: amplifying voices of solidarity and simultaneously perpetuating harmful stereotypes or hostility. The nuanced interplay between humor and offense further complicates moderation efforts, as satire often straddles the delicate boundary between critique and hate.

Recognizing this complexity, the shared task CASE2025 proposes a comprehensive classification framework, focusing on four distinct yet interrelated subtasks: detection of hate speech, identification of hate speech targets, classification of stances toward marginalized movement, and humor detection. The data set used for this study consists of meticulously annotated text-embedded images for each subtask, enabling a detailed exploration of online discourse. The dataset is curated from (Shah et al., 2024) and (Bhandari et al., 2023). The features of the dataset is given in the table 1.

Table 1: Features of the dataset

Field	Description
filename	Name of the file with index value
text	Text extracted from text-embedded images
label	Ground truth label or category associated with the text/image

2.1.1 Subtask A: Detection of Hate Speech

The primary objective of this subtask is to determine whether an image contains hateful content. Images are annotated with binary labels: **Hate** and **No Hate**. This binary categorization simplifies initial screening yet serves as a critical foundation for deeper analysis in subsequent subtasks.

Label	Count
No Hate	2,065
Hate	1,985
Total	4,050

Table 2: Distribution of labels in Subtask A for binary hate speech detection.

2.1.2 Subtask B: Classification of Targets of Hate Speech

For images identified as hateful, the next step is to pinpoint the specific target of hate. The dataset categorizes targets into four classes: **Undirected**, **Individual**, **Community**, and **Organization**. This fine-grained categorization enables a better understanding of hate speech dynamics and the intended victim groups.

Label	Count
Undirected	617
Individual	199
Community	931
Organization	238
Total	1,985

Table 3: Label-wise distribution for Subtask B, focused on hateful images only.

2.1.3 Subtask C: Classification of Topical Stance

This subtask focuses on identifying the stance expressed by the image towards the marginalized movement. Stance classification is crucial for understanding the broader sentiment landscape and distinguishing supportive content from oppositional narratives. The dataset includes three stance labels: **Neutral**, **Support**, and **Oppose**.

Label	Count
Neutral	1,166
Support	1,527
Oppose	1,357
Total	4,050

Table 4: Distribution of stances towards the marginalized movement in Subtask C.

2.1.4 Subtask D: Detection of Intended Humor

The final subtask involves determining whether the image is intended to convey humor, sarcasm, or

200 satire. Humor plays a significant role in shaping
 201 public perceptions and often acts as a vehicle for
 202 veiled hostility. Detecting such elements is essen-
 203 tial for nuanced content moderation. The dataset
 204 labels images as **Humor** or **No Humor**.

Label	Count
Humor	2,737
No Humor	1,313
Total	4,050

210 Table 5: Distribution of humor-related labels in Subtask
 211 D.

213 3 Methodologies Used

214 3.1 Preprocessing

216 To ensure the textual content extracted from images
 217 is clean and analysis-ready, extensive preprocess-
 218 ing steps were implemented:

- 219 • Conversion to lowercase to normalize textual
 220 patterns.
- 222 • Removal of punctuation, stop words, URLs,
 223 emojis, and special symbols to minimize noise
 224 and irrelevant cues.
- 226 • Lemmatization using the NLTK library to re-
 227 duce words to their base forms, improving
 228 semantic understanding.
- 229 • Tokenization using built-in mechanisms in TF-
 230 IDF and transformer models to prepare the
 231 text for vector-based analysis.

232 3.2 Feature Engineering

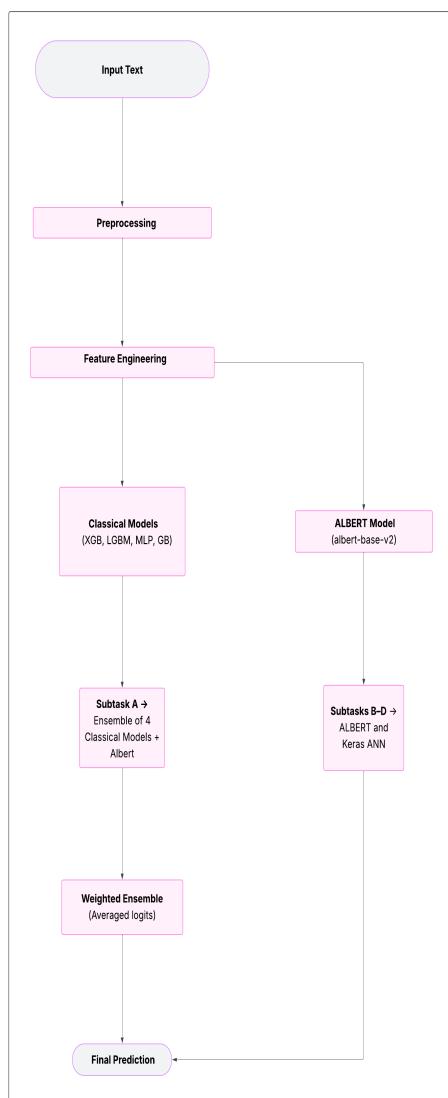
233 Several feature engineering strategies were em-
 234 ployed to enhance the representational capacity of
 235 the text:

- 236 • **TF-IDF vectors** for classical machine learn-
 237 ing models, capturing term importance and
 238 contextual relevance.
- 239 • **Syntactic features**, including:
 - 241 – Word count, which helps assess verbosity
 242 and potential aggressiveness.
 - 243 – Stopword ratio, indicating content den-
 244 sity.
 - 245 – Frequency of punctuation and uppercase
 246 letters, often correlated with emotional
 247 intensity.
 - 248 – Average word length, providing addi-
 249 tional stylistic insights.

250 3.3 Models Used

251 Transformer-Based Model: ALBERT

252 The AL-
 253 BERT (A Lite BERT) base v2 model was utilized
 254 as a primary deep learning approach due to its effi-
 255 ciency and superior performance in text classifica-
 256 tion tasks. ALBERT leverages self-attention mech-
 257 anisms to capture complex token relationships, en-
 258 abling it to understand nuanced semantic and syn-
 259 tactic patterns present in text-embedded images.
 260 It was fine-tuned on each subtask-specific labeled
 261 dataset, allowing it to adapt to different classifica-
 262 tion objectives. The flow of the process is shown in
 263 Figure 1



294 Figure 1: Text-embedded image

295 4 Results & Discussion

296 This section presents the implementation details
 297 and comprehensive analysis of the results obtained

300 for each subtask of the CASE2025 Multimodal
301 Hate Speech Detection Shared Task. The evalua-
302 tion was carried out using standard metrics such as
303 accuracy, precision, recall, and F1-score, and the
304 results are discussed in depth below.

305 4.1 Subtask A: Hate Speech Detection

307 For the primary subtask of determining whether
308 a given text contains hate speech, a combination
309 of transformer-based and classical machine learn-
310 ing models was explored. The ALBERT (albert-
311 base-v2) model was fine-tuned using the simple-
312 transformers library, while classical models includ-
313 ing XGBoost, LightGBM, GradientBoostingClassi-
314 fier, and MLPClassifier were trained using TF-IDF
315 and syntactic features. A weighted ensembling ap-
316 proach was adopted to integrate predictions from
317 these models.

318 The model ensemble achieved an F1-score of
319 **0.7234**, with a recall of **0.7225**, precision of **0.7217**,
320 and accuracy of **0.7219**, securing a competitive
321 rank (14th) on the leaderboard. The results demon-
322 strate that leveraging ensemble strategies can effec-
323 tively balance the strengths of transformer-based
324 deep representations with classical feature-driven
325 approaches. However, the slight margin for im-
326 provement suggests potential benefits from further
327 fine-tuning ensemble weights and incorporating
328 additional linguistic features.

Metric	Score
Recall	0.7225
Precision	0.7217
F1-Score	0.7234
Accuracy	0.7219

334 Table 6: Subtask A: Hate Speech Detection

335 4.2 Subtask B: Hate Speech Target 336 Identification

337 In this subtask, the goal was to classify the target of
338 hate speech into four categories: undirected, indi-
339 vidual, community, or organization. The ALBERT
340 model was fine-tuned for multiclass classification,
341 and a separate feedforward ANN was developed
342 using Keras Sequential API.

343 The ALBERT model achieved an F1-score of
344 **0.4984**, with a recall of **0.4869**, precision of **0.5289**,
345 and accuracy of **0.5542**, ranking 6th. These re-
346 sults highlight the inherent challenge of accu-
347 rately distinguishing nuanced targets within hate

348 speech. While the transformer model effectively
349 captured contextual dependencies, the relatively
350 lower scores compared to subtask A suggest that
351 future work could incorporate more sophisticated
352 target-specific features or additional multimodal
353 cues.

Metric	Score
Recall	0.4869
Precision	0.5289
F1-Score	0.4984
Accuracy	0.5542

356 Table 7: Subtask B: Target Identification

362 4.3 Subtask C: Stance Classification

363 The task of stance classification involved cate-
364 gorizing posts as hate-supporting, neutral, or counter-
365 hate. The ALBERT model and a Keras-based ANN
366 were trained independently without ensembling.

367 The ALBERT model yielded an F1-score of
368 **0.5305**, with a recall of **0.5355**, precision of **0.5434**,
369 and an accuracy of **0.5523**, placing 9th overall.
370 These moderate scores indicate the complexity of
371 stance interpretation, which often depends on sub-
372 tle linguistic cues and contextual nuances. Integrat-
373 ing additional context-aware features or user-level
374 metadata could potentially enhance performance in
375 future iterations.

Metric	Score
Recall	0.5355
Precision	0.5434
F1-Score	0.5305
Accuracy	0.5523

379 Table 8: Subtask C: Stance Classification

385 4.4 Subtask D: Humor Detection

386 In the humor detection subtask, the aim was to de-
387 termine whether a hateful post contained humorous
388 or sarcastic elements. The ALBERT model and
389 ANN were both trained separately for this binary
390 classification task.

391 The ALBERT model achieved an F1-score of
392 **0.6070**, recall of **0.6030**, precision of **0.6274**, and
393 accuracy of **0.6844**, resulting in a 15th place rank-
394 ing. These results underscore the challenge of de-
395 tecting humor, which is often subjective and cultur-
396 ally dependent. Despite reasonable performance,

400 further improvement could be obtained by integrating multimodal features such as emoji usage,
401 stylistic patterns, or contextual image data.
402
403

Metric	Score
Recall	0.6030
Precision	0.6274
F1-Score	0.6070
Accuracy	0.6844

404 Table 9: Subtask D: Humor Detection
405
406
407
408

412 4.5 Comparative Analysis

413 Across all subtasks, the ALBERT (albert-base-v2)
414 model consistently outperformed the ANN-based
415 approaches, demonstrating the strong contextual
416 learning capabilities of transformer architectures.
417 While classical models and ANN methods showed
418 promising trends in certain tasks, they generally
419 lagged behind the fine-tuned transformer in overall
420 performance.

421 The application of preprocessing techniques
422 such as lemmatization, stopword removal, and syntactic
423 feature engineering contributed significantly
424 to model robustness. Furthermore, the ensembling
425 strategy employed in subtask A highlighted the
426 effectiveness of combining diverse models to im-
427 prove predictive performance.

428 5 Conclusion

430 Our approach to the CASE 2025 shared task com-
431 bined the interpretability of classical machine learn-
432 ing models with the representational power of trans-
433 formers. Ensembling methods improved perfor-
434 mance in hate speech detection (Subtask A), and
435 even single-model approaches worked effectively
436 for the remaining subtasks. Future work includes
437 integrating image features and extending ensemble
438 methods to all subtasks.

439 5 Limitations

- 441 • We did not incorporate the image modality or
442 multimodal fusion
- 443 • Our ensemble approach was limited to Sub-
444 task A due to time and resource constraints.
- 445 • We did not explore data augmentation or ad-
446 vanced fusion techniques.

450 6 References

451 Aashish Bhandari, Siddhant B Shah, Surendrabikram
452 Thapa, Usman Naseem, and Mehwish Nasim. 2023.
453 Crisishatemm: Multimodal analysis of directed and
454 undirected hate speech in text-embedded images
455 from russia-ukraine conflict. In *Proceedings of the
456 IEEE/CVF Conference on Computer Vision and Pat-
457 tern Recognition*, pages 1994–2003.

458 Ali Hürriyetoğlu, Surendrabikram Thapa, and Hristo
459 and Tanev. 2025. Findings and insights from
460 the 8th workshop on challenges and applications
461 of automated extraction of socio-political events
462 from text. In *Proceedings of the 8th Workshop
463 on Challenges and Applications of Automated
464 Extraction of Socio-political Events from Text (CASE
465 2025)*.

466 Anil Singh Parihar, Surendrabikram Thapa, and Sushruti
467 Mishra. 2021. Hate speech detection using natural
468 language processing: Applications and challenges.
469 In *2021 5th International Conference on Trends in
470 Electronics and Informatics (ICOEI)*, pages 1302–
471 1308. IEEE.

472 Siddhant Bikram Shah, Shuvam Shiwakoti, Maheep
473 Chaudhary, and Haohan Wang. 2024. [Meme-clip: Leveraging clip representations for multimodal
474 meme classification](#). pages 17320–17332.

475 Surendrabikram Thapa, Farhan Ahmad Jafri, Ali
476 Hürriyetoğlu, Francielle Vargas, Roy Ka Wei Lee,
477 and Usman Naseem. 2023. Multimodal hate speech
478 event detection-shared task 4. In *CASE 2023-
479 Proceedings of the 6th Workshop on Challenges
480 and Applications of Automated Extraction of Socio-
481 Political Events from Text, associated with 14th Inter-
482 national Conference on Recent Advances in Natural
483 Language Processing, RANLP 2023*, pages 151–159.
484 Association for Computational Linguistics.

485 Surendrabikram Thapa, Kritesh Rauniyar, Farhan Ah-
486 mad Jafri, Hariram Veeramani, Raghav Jain, Sandesh
487 Jain, Francielle Vargas, Ali Hürriyetoğlu, and Usman
488 Naseem. 2024. Extended multimodal hate speech
489 event detection during russia-ukraine crisis-shared
490 task at case 2024. In *7th Workshop on Challenges
491 and Applications of Automated Extraction of Socio-
492 Political Events from Text, CASE 2024*, pages 221–
493 228. Association for Computational Linguistics.

494 Surendrabikram Thapa, Siddhant Bikram Shah, Kritesh
495 Rauniyar, Shuvam Shiwakoti, Surabhi Adhikari,
496 Hariram Veeramani, Kristina T. Johnson, Ali
497 Hürriyetoğlu, Hristo Tanev, and Usman Naseem.
498 2025. Multimodal hate, humor, and stance event
499 detection in marginalized sociopolitical movements.
500 In *Proceedings of the 8th Workshop on Challenges
501 and Applications of Automated Extraction of Socio-
502 political Events from Text (CASE 2025)*.