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Message from the CASE 2025 Organizing Committee

Continuing its tradition, CASE brings together researchers from computational and social sciences to
explore the evolving landscape of event extraction. Alongside text-based approaches, the workshop also
highlights the growing interest in multimodal event extraction, addressing complex real-world scenarios
across diverse modalities.

This 8th edition of the workshop underlines the increasing importance of the LLM and the deep learning
architectures. With a keynote speech on LLLMs and a shared task on multimodal hate, humor, and stance
detection, this year workshop successfully charts the future directions in the challenging area of event
detection and extraction!
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Abstract

This paper presents an overview of the 8th
Workshop on Challenges and Applications of
Automated Extraction of Socio-political Events
from Text (CASE), held in conjunction with
RANLP 2025. The workshop featured a range
of contributions, including regular research pa-
pers, system descriptions from shared task par-
ticipants, and an overview paper on shared
task outcomes. Continuing its tradition, CASE
brings together researchers from computational
and social sciences to explore the evolving land-
scape of event extraction. With the rapid ad-
vancement of large language models (LLMs),
this year’s edition placed particular emphasis
on their application to socio-political event ex-
traction. Alongside text-based approaches, the
workshop also highlighted the growing inter-
est in multimodal event extraction, addressing
complex real-world scenarios across diverse
modalities.

1 Introduction

In an increasingly interconnected and digitized
world, the vast availability of textual and multi-
modal data related to socio-political, economic,
environmental, and humanitarian events presents
unprecedented opportunities for data-driven anal-
ysis across the social sciences and humanities
(Hiirriyetoglu et al., 2024, 2021a; Chen et al., 2023).
Governments, international organizations, journal-
ists, and civil society actors increasingly rely on
such data to gain timely, granular, and actionable in-
sights into events such as protests, conflicts, public
health emergencies, migration patterns, and pol-
icy shifts (Shu and Ye, 2023; Hiirriyetoglu et al.,
2021c).

Recent years have seen a dramatic shift in the
landscape of event extraction due to the rapid
advancement of large language models (LLMs)
(Thapa et al., 2025c; Hou and Huang, 2025). These
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models, capable of understanding, generating, and
reasoning over text with minimal supervision, have
opened new avenues for tackling long-standing
challenges in socio-political event extraction such
as low-resource languages, implicit events, cross-
document reasoning, and multilingual understand-
ing (Ziems et al., 2024; Anthis et al.; Shen et al.,
2023). Techniques such as prompt-based learn-
ing, instruction tuning, and alignment have en-
abled more adaptive and generalizable extraction
pipelines, reducing dependence on handcrafted fea-
tures and rigid annotation schemas (Hou et al.,
2024; Kirk et al., 2024; Khan et al., 2025).

Beyond text, the field is increasingly moving to-
ward multimodal event extraction, integrating infor-
mation from images, videos, and social media meta-
data (Thapa et al., 2025d). This trend is especially
relevant in crisis monitoring, misinformation detec-
tion, and humanitarian response, where visual and
textual signals must be jointly interpreted. At the
same time, emerging agentic Al frameworks that
combine LLMs with external tools and structured
reasoning offer a promising direction for building
systems that can autonomously collect, verify, and
contextualize event data in dynamic environments
(Raheem and Hossain, 2025; Hughes et al., 2025).

In this context, the 8th Workshop on Chal-
lenges and Applications of Automated Extraction
of Socio-political Events from Text (CASE), held
at RANLP 2025, continues to serve as a critical
platform for advancing interdisciplinary research
at the intersection of computational methods and
socio-political analysis. Building on the momen-
tum of previous editions (Hiirriyetoglu et al., 2020,
2021b, 2022, 2023, 2024), CASE 2025 highlights
innovative approaches for extracting, representing,
and interpreting event information spanning tradi-
tional NLP pipelines, LLM-centric methods, and
multimodal frameworks.

This edition of the workshop features regular

Proceedings of the 8th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Texts associated with RANLP 2025,

pages 1-5, Varna, Bulgaria, Sep 13, 2025.
https://doi.org/10.26615/978-954-452-099-1-001


https://doi.org/10.26615/978-954-452-099-1-001

research papers, system descriptions from shared
task participants, and keynote talks from experts
across disciplines. It also includes a shared task
designed to benchmark the capabilities of current
systems on complex event extraction problems in
multimodal scenarios. This paper provides a brief
overview of the CASE 2025 workshop, outlining its
themes, activities, and contributions to the broader
research community.

2 Accepted Papers

This year, 4 regular papers were accepted. Below,
we provide brief descriptions of accepted papers:

* Nadeem et al. (2025) investigate political bias
in large language models (LLMs) with a focus
on multilingual contexts, particularly across
Pakistani languages. Building on the Political
Compass Test (PCT), they develop a frame-
work that extracts hidden layer activations
from decoder-based models such as Mistral
and DeepSeek to identify ideological leanings
along economic and social axes. The authors
introduce Steering Vector Ensembles (SVE),
a representation-level debiasing method that
aggregates layer-specific vectors derived from
contrastive prompts, enabling inference-time
mitigation without fine-tuning. Their exper-
iments show that LL.Ms encode systematic
political bias in internal representations, but
SVE effectively reduces this bias, especially
in socially framed prompts while preserving
fluency and coherence.

* Thapa et al. (2025a) present an extensive sur-
vey on socio-political event extraction (SPE),
analyzing how advances in natural language
processing, machine learning, and LLMs are
reshaping the field. The paper systematically
reviews datasets, annotation frameworks, ex-
traction methods, and evaluation strategies,
highlighting both the progress and persistent
challenges in capturing complex, real-world
events. The authors emphasize the impor-
tance of multilingual and low-resource set-
tings, given the global nature of socio-political
events, and point to issues of reproducibility,
bias, and ethical concerns in applying SPE sys-
tems at scale. They also propose future direc-
tions, including leveraging multimodal data,
improving temporal and causal reasoning, and
aligning event extraction systems with policy

and humanitarian needs.

* De Longueville (2025) provides a reflective
commentary on the rise of LLMs and their
implications for NLP, particularly in the do-
main of automated socio-political event ex-
traction. They argue that while conversa-
tional Al like ChatGPT represents both a rev-
olution and an epiphenomenon for NLP, its
significance should be contextualized within
decades of technological progress, notably the
advent of the Transformer architecture. The
paper highlights LLMs’ unprecedented zero-
shot capabilities and versatility but cautions
against overreliance, noting limitations such
as high computational cost, hallucinations,
sycophancy, and the opacity of LLM-as-a-
service deployments. De Longueville (2025)
emphasizes that despite the hype, core NLP
practices such as precision/recall evaluation,
gold-standard datasets, and error analysis re-
main essential. Ultimately, they conclude that
LLMs reshape the landscape of NLP without
rendering it obsolete, instead calling for a bal-
anced integration of LL.Ms with established
methodologies and domain-specific knowl-
edge systems.

* Boyd and Mitkov (2025) present a compara-
tive evaluation of rule-based machine trans-
lation (RBMT), neural machine translation
(NMT), and LLMs for French-English trans-
lation using the Europarl corpus. The study
employs BLEU and METEOR scores with
bootstrap statistical testing, finding NMT, par-
ticularly Marian NMT, consistently outper-
forms LLMs and RBMT in both precision and
semantic accuracy, while LLLMs trained ex-
plicitly for translation (e.g., T5) surpass those
with only emergent translation abilities (e.g.,
LLaMA). RBMT lags far behind in perfor-
mance, though each approach shows domain-
dependent strengths, with NMT best for high-
precision needs and LLMs offering versatility
for broader, creative applications.

3 Shared Task on Multimodal Content
Analysis on Marginalized Sociopolitical
Movements

This year’s shared task explored multimodal socio-
political discourse by focusing on memes, which
are an increasingly popular medium for expressing



opinion, humor, and hate online. With the growing
role of social media in shaping public perception,
this task aims to evaluate systems’ abilities to in-
terpret stance, hate, and humor in text-embedded
images. The shared task used the PrideMM dataset
proposed by Shah et al. (2024). The dataset em-
ploys arigorous annotation schema (Bhandari et al.,
2023), consistent with that used in our previous
shared tasks (Thapa et al., 2023, 2024) on multi-
modal content moderation. The task is divided into
four subtasks:

e Subtask A on Hate Speech Detection: Bi-
nary classification of memes as containing
Hate Speech or No Hate Speech, using both
text and image modalities.

* Subtask B on Targets of Hate Speech De-
tection: Identifies the target of hateful content
as Individual, Community, Organization, or
Undirected.

* Subtask C on Topical Stance Detection: De-
termines whether the meme Supports, Op-
poses, or is Neutral toward a marginalized
movement.

* Subtask D on Intended Humor Detection:
Binary classification of memes based on the
presence or absence of Intended Humor.

This shared task advances multimodal under-
standing of contentious online discourse and offers
new benchmarks for evaluating models in com-
plex socio-political contexts. Thapa et al. (2025b)
provide a detailed overview of the shared task, in-
cluding participant methods, the task timeline, and
a discussion of the key findings. A total of 89
participants took part in the shared task, reflecting
strong engagement from the research community.
We accepted 13 shared task description papers.

4 Future Direction

As the field of socio-political event extraction con-
tinues to evolve, future iterations of the CASE
workshop aim to further broaden the scope and
impact of the research community. One key di-
rection is the continued exploration of multilin-
gual and multimodal event extraction, recognizing
the global and diverse nature of socio-political dis-
course. Understanding how events manifest across
languages and modalities like text, image, video,
and audio remains a critical challenge, particularly

in crisis monitoring and cross-cultural analysis. We
aim to encourage contributions that advance the
robustness, adaptability, and inclusivity of event
extraction systems in these contexts.

Another important focus will be the integration
of alignment techniques in LL.M-based event ex-
traction pipelines. As large language models be-
come increasingly central to the field, understand-
ing how to align them with domain-specific ontolo-
gies, human feedback, and real-world utility will be
crucial. We are particularly interested in prompting
strategies, instruction tuning, fine-grained evalu-
ation frameworks, and the use of LLMs within
agentic systems that can reason, validate, and act
based on extracted event information.

In future editions, we also plan to organize more
innovative and task-oriented shared tasks that re-
flect real-world complexities such as low-resource
event extraction, multi-hop event reasoning, and
cross-modal fusion. These shared tasks will con-
tinue to serve as benchmarks while also driving the
development of practical solutions deployable in
high-stakes environments. To support and grow the
community, we are also looking to introduce men-
torship opportunities for early-career researchers
and students, especially those from underrepre-
sented regions or working with low-resource lan-
guages. We plan to host dedicated mentorship ses-
sions, community-building events, and tutorials to
promote inclusion, collaboration, and knowledge
transfer across domains.

5 Conclusion

The 8th edition of the CASE workshop highlighted
significant progress in socio-political event extrac-
tion, with contributions spanning multimodal anal-
ysis, large language model applications, and fine-
grained stance and hate speech detection. This
year’s shared task emphasized the growing impor-
tance of understanding text-embedded images, re-
flecting the need to address evolving forms of on-
line discourse. The workshop brought together
researchers from diverse disciplines to tackle real-
world challenges such as misinformation, polariza-
tion, and marginalization through computational
methods. Looking ahead, CASE aims to remain an
inclusive and interdisciplinary platform that fosters
collaboration, supports innovative shared tasks, and
promotes research that meaningfully contributes to
the understanding of complex socio-political phe-
nomena.
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Broader Impact

The CASE workshop has a far-reaching impact
by promoting interdisciplinary research at the in-
tersection of computational methods and socio-
political analysis, encouraging the development
of tools and models that can interpret complex so-
cietal discourse at scale. By addressing real-world
challenges such as hate speech, misinformation, po-
litical polarization, and public sentiment, the work-
shop supports the creation of socially responsible
technologies that inform policy, empower marginal-
ized voices, and enhance crisis response. Through
shared tasks and diverse participation, CASE pro-
motes equitable access to research opportunities
and drives forward the responsible use of NLP for
social good.
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Abstract

Socio-political event extraction (SPE) enables
automated identification of critical events such
as protests, conflicts, and policy shifts from
unstructured text. As a foundational tool for
journalism, social science research, and crisis
response, SPE plays a key role in understanding
complex global dynamics. The emergence of
large language models (LLMs) like GPT-4 and
LLaMA offers new opportunities for flexible,
multilingual, and zero-shot SPE. However, ap-
plying LLMs to this domain introduces signifi-
cant risks, including hallucinated outputs, lack
of transparency, geopolitical bias, and potential
misuse in surveillance or censorship. This posi-
tion paper critically examines the promises and
pitfalls of LLM-driven SPE, drawing on recent
datasets and benchmarks. We argue that SPE
is a high-stakes application requiring rigorous
ethical scrutiny, interdisciplinary collaboration,
and transparent design practices. We propose
a research agenda focused on reproducibility,
participatory development, and building sys-
tems that align with democratic values and the
rights of affected communities.

1 Introduction

Socio-political events (SPEs) are occurrences in-
volving political or social actors that have signif-
icance for societies or governance. Protests, con-
flicts, elections, policy changes, and diplomatic
interactions are examples of SPEs. In computa-
tional terms, an SPE can be represented as a struc-
tured record of who did what to whom, when and
where, extracted from text (Cai and O’Connor,
2023). Event extraction systems seek to transform
unstructured data (e.g. news articles, social media
posts) into structured event representations (often
as tuples like source—action—target with time and
location) (Hu et al., 2024). Such structured event
databases enable large-scale analysis of political
dynamics and serve as inputs for monitoring con-
flict, tracking trends, and forecasting crises (Hu
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et al., 2024). In both academic research and real-
world decision-making, having timely and accurate
event data is crucial. Analysts use these databases
to understand patterns of violence, policymakers
use them for early warnings, and humanitarian or-
ganizations for situational awareness.

Automated SPE extraction has grown in impor-
tance as the volume of text data (news, social me-
dia) explodes beyond human coding capacity. Tra-
ditional rule-based or supervised systems have been
used to populate global event databases (e.g. ex-
tracting ‘who attacked whom’) for decades. Re-
cently, large language models (LLMs) have begun
to play a transformative role in this space. LLMs
like GPT-3.5 and GPT-4 can, in principle, read and
interpret complex texts to identify events with mini-
mal task-specific training. Early experiments show
that advanced LLMs (e.g. GPT-4) significantly
outperform previous models in zero-shot political
event coding, handling nuanced distinctions better
and generalizing with fewer examples (Hu et al.,
2024). The success of GPT-4 in following event
coding guidelines highlights the vast potential of
LLMs for this task (Hu et al., 2024). At the same
time, LLMs introduce new challenges (like hallu-
cination and transparency issues, discussed later)
that must be managed. This position paper takes
a hybrid technical and policy-oriented view of au-
tomated socio-political event extraction in the era
of LLMs, examining not only the algorithmic and
data-centric hurdles but also the ethical, legal, and
societal implications of these technologies.

2 Technical Challenges in SPE

Despite progress, automated SPE extraction faces
numerous technical challenges.

2.1 Ambiguity and Coreference

Language describing socio-political events is often
ambiguous. A single phrase can imply different
event types depending on context (e.g. “sanction”
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could mean an economic sanction or simply ap-
proval) (Cai and O’Connor, 2023; Hiirriyetoglu
et al., 2022a; Danilova and Popova, 2014). Identi-
fying whether an event actually occurred or is hy-
pothetical (modality) also requires understanding
subtle cues (did a politician promise an action or ac-
tually do it?). Moreover, the information about one
real-world event may be scattered across multiple
sentences or reports. Systems must perform coref-
erence resolution to merge mentions referring to
the same event. For example, in the text ‘A protest
broke out in CityX... The demonstration contin-
ued into the night’, linking ‘protest’ and ‘demon-
stration’ is non-trivial. Recent efforts have been
made to explicitly evaluate event coreference link-
ing across sentences (Hiirriyetoglu et al., 2022b).
However, ambiguity and cross-sentence reference
remain open problems. Without resolving these, an
automated system might count one event multiple
times or miss it entirely.

2.2 Temporal and Spatial Grounding

Every event entry needs a when and where (Abra-
ham et al., 2018; Westin, 2025). Extracting accu-
rate temporal and geospatial information is chal-
lenging. News text may describe an event with rela-
tive times (‘earlier today’, ‘last week’) that require
context (e.g., publication date) to resolve. Loca-
tions can be mentioned at various granularities (a
city, a region, a country), and many event coders
need coordinates, which requires mapping place
names to a gazetteer (Hiirriyetoglu et al., 2024).
Ensuring that each event is anchored to the correct
date and place is vital for analysis (e.g., distin-
guishing two protests on different days). Temporal
ordering (figuring out the sequence of events) is
also difficult when texts jump around chronologi-
cally. Techniques from temporal IE and geographic
entity resolution are needed as part of any robust
SPE pipeline. These tasks remain hard, especially
in noisy or terse text (like social media), where
time/place might not be explicitly stated.

2.3 Multilinguality and Low-Resource
Languages

Socio-political events occur worldwide, and being
able to extract events from multiple languages is
essential for global coverage. Many high-profile
event extraction systems have focused on English
(or a few major languages) due to data availabil-
ity. However, relying only on English sources cre-
ates a biased pictures (Claro et al., 2019; Miok

et al., 2024). The challenge is that NLP resources
(annotated data, pretrained models) for many low-
resource languages are limited. Progress is being
made (Hiirriyetoglu et al., 2022b). Still, perfor-
mance typically drops for truly low-resource lan-
guages (with different scripts or limited data).

2.4 Dataset Quality and Reproducibility

High-quality training and evaluation data are ex-
pensive to create (Thapa et al., 2023). Annotating
event mentions in text (especially with detailed
role labeling or fine-grained event types) is time-
consuming and often requires expert knowledge of
political contexts (Olsen et al., 2024; Cardie and
Wilkerson, 2008). As a result, existing datasets
may be small, sparse, or inconsistently annotated.
Many academic event extraction datasets (e.g. ACE
2005, TAC KBP event tracks) focus on a limited
ontology and are not perfectly aligned with the
needs of socio-political analysis (Doddington et al.,
2004; Mitamura et al., 2015). On the other hand,
political science event datasets (like ICEWS or
ACLED) contain high-level coded events but are
not released with their source texts (often due to
copyright), making it hard to use them for super-
vised learning or to reproduce results (Raleigh et al.,
2010; O’brien, 2010). This raises a reproducibility
challenge. A research group may train a model on
proprietary news data and output a set of events,
but without public text data, others cannot repli-
cate the extraction process. Furthermore, different
datasets use different schemas, making it hard to
compare systems. Annotation consistency is also
an issue, as complex events can suffer from low
inter-annotator agreement if guidelines are vague.

2.5 Event Schema and Ontology Design

What counts as an “event” and how it is categorized
can vary greatly. Designing an ontology (schema)
for events is a foundational challenge that affects
extraction (Danilova and Popova, 2014; Xiang and
Wang, 2019). SPE extraction has been guided by
schemas like CAMEO (Conflict and Mediation
Event Observations) which defines a hierarchy of
around 20 top-level event classes and over 200 sub-
types for political interactions (from cooperative
acts like appeals or meetings to conflictual ones like
protests, attacks) (Parolin et al., 2019; Gerner et al.,
2002). Other ontologies exist (ACE’s schema for
general events, custom schemas for cybersecurity
events, etc.), and social science projects have pro-
posed new ones (e.g., PLOVER, a recent political



violence ontology aligning with CAMEO) (Halter-
man et al., 2023). The schema design problem has
two elements: (1) deciding on the categories and
their granularity (balancing detail with annotator
reliability), and (2) ensuring models can general-
ize across schema changes. A rigid ontology may
become outdated as new event types emerge (for
example, “COVID lockdown protest” might not fit
neatly into older categories). On the other hand,
very broad definitions reduce analytical usefulness.

3 Applications and Use Cases of LLMs

3.1 Conflict Early Warning and Crisis
Forecasting

One of the original motivations for machine-coded
event data was to feed conflict early warning sys-
tems (Hegre et al., 2019). Projects like the Inte-
grated Crisis Early Warning System (ICEWS) have
used continuous streams of coded events (protests,
violence, cooperation events, etc.) to predict insta-
bility and conflict outbreaks. By analyzing trends
e.g. a spike in protests or escalating repressive
events, these systems aim to forecast the risk of
civil war, mass atrocities, or other crises, enabling
preventative action. Automated event extraction
greatly speeds up the data pipeline for such systems,
which need near-real-time updates from daily news.
LLMs could enhance early warning by improving
the recall of relevant events (catching subtle precur-
sors in text) and by summarizing situational reports
(Foisy et al., 2025; Baek et al., 2023). For example,
an LLM might synthesize disparate reports into a
narrative of escalating tension.

3.2 Use by Governments and International
Organizations

Governments and intergovernmental organizations
(IGOs) are heavy users of event data (Ngai et al.,
2025). Intelligence and defense agencies use event
extraction to monitor global security like identify-
ing terror attacks, troop movements, or diplomatic
gestures in open sources. The U.S. government’s
ICEWS program is one example where automated
event data directly supports analysts. Diplomatic
services might track protest movements or election-
related unrest in real time to inform embassy staff.
At the IGO level, organizations like the United Na-
tions or regional bodies (African Union, EU) may
utilize event data for peacekeeping and policy de-
cisions (Nohuddin and Zainol, 2020; Amicarelli
and Di Salvatore, 2021). The U.N.’s crisis map-

ping initiatives and the World Bank’s political risk
assessments rely on understanding the event land-
scape. Here, comprehensiveness and reliability of
event extraction are key. An LLM-powered sys-
tem might help by reading situation reports or local
news in various languages and highlighting events
of concern, thus augmenting human analysts.

3.3 NGOs and Humanitarian Monitoring

Non-governmental organizations (NGOs), espe-
cially in the human rights and conflict prevention
space, have been both producers and consumers
of event data (Alhelbawy et al., 2020). A notable
example is ACLED (Armed Conflict Location &
Event Data Project), an NGO-driven effort that
manually curates conflict and protest events across
the world. ACLED (Raleigh et al., 2010) and oth-
ers (e.g. Crisis Group, Human Rights Watch’s
data teams) might use automated extraction to ex-
tend their reach, scanning local media or social
platforms for reports of violence that their human
coders can then verify and add. Humanitarian or-
ganizations can benefit from real-time event feeds
to coordinate responses. For instance, knowing
about protests turning violent could help the Red
Cross prepare, or detecting displacement events
could trigger UNHCR action. LLLMs could assist
these NGOs by quickly summarizing large volumes
of community radio transcripts or Facebook posts
from affected communities, pulling out events like
“village attacked by armed group” or “aid convoy
blocked by protesters.”

3.4 Event Databases and Knowledge Graphs

In academia and policy research, curated event
databases are valuable for studying patterns of con-
flict, cooperation, and social movements (Zhao
etal., 2024). Automated extraction is used to popu-
late and update these databases continuously (Deng
et al., 2024; Gottschalk and Demidova, 2018). For
example, the GDELT project has attempted to au-
tomatically ingest global news and output coded
events for every day. While impressive in scale,
such efforts sometimes sacrificed precision for
breadth. With LLMs, there is potential to improve
the quality of automated event databases. An LLM
can consider subtler contexts than keyword-based
systems, thereby potentially reducing false posi-
tives. Moreover, LLMs can help unify or recon-
cile events. If multiple news reports describe the
same protest from different angles, an LLM might
consolidate them into one entry with a more com-



plete description (this borders on automatic sum-
marization of events). Knowledge graphs are an-
other use where events can be nodes linking actors,
places, and dates in a graph database. Querying
such graphs can answer complex questions (e.g.
“find all confrontations between government forces
and tribe X in the past year”). Automated SPE ex-
traction is what supplies the raw material for these
knowledge bases. LLMs could be used to populate
new types of relations in graphs, like sentiment or
causal links (e.g. “protest led to policy change”).
There is active research on using LLMs to enrich
knowledge graphs with event information extracted
from text (Deng et al., 2024).

3.5 Analytical Tools and Summarization

Finally, a growing application is the use of LLMs
for higher-level analysis of event data. Rather
than just populating a database, an LLM can help
analysts make sense of the data (Kumar et al.,
2024). For instance, given a chronology of ex-
tracted events, an LLM could produce a narrative
report or timeline summary (“In June, a series of
protests in X province escalated into clashes by Au-
gust, prompting government crackdown in Septem-
ber...”). This moves into the realm of report gen-
eration and explanatory analysis. Automating such
analytical tasks has policy value as busy decision-
makers may not have time to read dozens of inci-
dent reports, but a well-crafted summary or even an
on-demand Q&A powered by an LLM (e.g. “Has
violence against civilians increased this month com-
pared to last?””) could be immensely helpful. Some
prototypes in media monitoring have used LLMs to
summarize global news on a topic across countries.
For example, summarizing how different countries’
press are reacting to a conflict. Those same ca-
pabilities can be tuned to summarizing event data.
Additionally, interactive exploration via natural lan-
guage questions is an exciting use case. For exam-
ple, an analyst could ask the system (which has
ingested an event database) questions in English
and get answers or charts, without needing to write
code or SQL. LLMs can serve as an interface be-
tween humans and complex event data, broadening
access to insights. Caution is warranted to keep the
LLM “grounded” in actual data (so it doesn’t fabri-
cate answers). Combining retrieval methods with
LLMs (so the model bases answers on retrieved
event records) is one technique being explored for
this purpose (Arslan et al., 2024).

4 Limitations of LLMs, Multilingual and
Global Considerations

4.1 Technical Limitations

Introducing LLMs into the pipeline brings its own
set of technical caveats (Thapa et al., 2025). By
design, generative LL.Ms will fill in gaps and pro-
duce plausible text even when the input is uncertain.
This can lead to hallucinated events, i.e. the model
might assert that an event occurred that isn’t actu-
ally supported by the source (Zhang et al., 2025;
Ji et al., 2023; Shiri et al., 2024; Liu et al., 2025).
For example, if given a vaguely worded report, an
LLM might “assume” a protest happened when in
reality the text was speculating. Ensuring faith-
ful extraction requires grounding the LLM to the
source text. Relatedly, LLM outputs can be in-
consistent; the same prompt might yield slightly
different extractions on different runs (due to sam-
pling variability), which is problematic for a de-
terministic database update. Stability and calibra-
tion of confidence in extracted facts are therefore
technical issues to solve. Another limitation is in-
terpretability as deep learning models, especially
large generative ones, are often black boxes. Un-
derstanding why a model classified something as,
say, an “attack” versus an “arrest” can be difficult,
hindering our ability to trust and refine the system.
LLMs also have practical limitations like they may
struggle with very long documents (context length
limits), or with remembering a long list of ontology
definitions without confusion.

4.2 Non-Western Contexts and Local Nuance

Many event extraction tools and models have been
developed primarily on Western news sources and
in languages like English, Spanish, or French
(Aliyu et al., 2024; Kulkarni and Dogra, 2024).
Applying these to events in, say, rural Africa or
Central Asia can pose problems. The way events
are reported, the cultural context, and the actors
involved may differ greatly (Hiirriyetoglu et al.,
2022b). For example, a “protest” in one coun-
try might be described very differently in another
country’s media (or might not be reported openly
at all). Local idioms or euphemisms (e.g., refer-
ring to rebel militants as “our boys” in some con-
text) might mask what an event is about. Also, the
salience of event types can differ. Events like tribal
clashes, land disputes, election violence, etc., each
have unique markers. An extraction system needs
to be tuned into these nuances. This often requires



involving regional experts in the loop, or at least
using region-specific data to fine-tune models. One
promising avenue is to engage local journalists or
organizations to help create training data (perhaps
via annotation or feedback) for their context, cre-
ating a more inclusive global system. LLMs, with
their ability to absorb vast multi-domain text, might
already know some culturally specific references,
but careful prompt engineering is needed to make
them work for less-covered contexts.

4.3 Cross-Lingual and Low-Resource
Techniques

As mentioned, multilingual capability is crucial.
There are a few approaches to handle it (Jafri et al.,
2024; Alghamdi et al., 2024). One is machine
translation (MT), i.e., translate all foreign texts to
a pivot language (e.g. English) and then run an En-
glish event extractor (Chew et al., 2025; Cabrera,
2024). This was a common strategy in earlier sys-
tems, but MT errors can lead to missed or wrong
events (especially if translation alters proper names
or event verbs). Another approach is using multilin-
gual models like multilingual BERT or XLLM (Pires
et al., 2019; Conneau et al., 2020), which have
some cross-lingual transfer ability. Such models
can sometimes be trained on a high-resource lan-
guage and still be applied to a related low-resource
language. Few-shot learning with LLMs could
shine where one could prompt an LLM in a target
language with a few examples of event annotations
in that language (or even in English, relying on its
cross-lingual knowledge) and get results. There
is early research on prompt-based cross-lingual 1E
which is encouraging. Additionally, active learning
could be employed i.e., the system asks humans to
translate or verify a few critical pieces to improve
itself iteratively.

4.4 Multimodal Event Extraction

Socio-political events are not only described in text;
they may be captured in images, videos, or even
satellite data (Bhandari et al., 2023; Thapa et al.,
2024). A protest might be live-streamed, a damage
assessment might come from satellite imagery, a so-
cial media image might show evidence of an attack.
Multimodal event extraction seeks to combine text
with other data sources to improve event detection
and validation. For instance, an automated sys-
tem could corroborate a reported protest (text) with
social media images geotagged in that city show-
ing crowds. LLMs are expanding into multimodal
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models (e.g. vision-language models like GPT-4’s
multi-modality or others that can process images)
(Thapa et al., 2025; Fei et al., 2024). A future SPE
pipeline might take a news article and also any at-
tached photo or video transcript, and use both to
decide what happened. Multimodal analysis can
improve recall (catch events that text missed but
image shows) and precision (disambiguate events
by seeing visuals). It also helps in contexts where
text might be propagandistic and images can some-
times cut through biases (though they have their
own issues of authenticity).

4.5 Bias and Representation in Global Data

Global event extraction must grapple with bias in
sources (Xiang and Wang, 2019; Spiliopoulou et al.,
2020; Dev et al., 2021). Many regions lack indepen-
dent media, or any media coverage at all of certain
event types (e.g. state repression might be hidden).
As a result, automated systems might reflect state
narratives or international media agendas. Being
aware of these gaps is part of a global perspec-
tive. There are efforts to include non-traditional
sources. For instance, using reports from NGOs
or crowdsourced data to complement news. A bal-
anced approach might merge information from lo-
cal citizen reports with mainstream media, with
the Al model reconciling them. Bias mitigation
techniques can be applied, such as calibration (if
a known bias exists, adjust the data distribution)
(Garrido-Muiioz et al., 2021; Sun et al., 2019). Ul-
timately, a global system may need regional tuning,
as what works well for event extraction in Europe
might need rethinking for Central Africa. Com-
munity evaluations and workshops (like regional
“data challenges™) could help identify where cur-
rent models fall short. Inclusivity in the develop-
ment process (having NLP researchers and social
scientists from diverse regions) is also vital to en-
sure the tools are attuned to global realities and not
just Western media patterns.

5 Policy and Ethical Challenges

5.1 Surveillance and Authoritarian Misuse

A powerful SPE extraction system can turn into a
double-edged sword. On one hand, it can provide
transparency and early warnings about crises; on
the other, it could enable authoritarian surveillance
at an unprecedented scale (Yabanci, 2025; Roberts
and Oosterom, 2024). Repressive regimes might
use automated event detection to track dissident



activities or protests in real-time, flagging leaders
and participants for reprisal. Unfortunately, this is
not just hypothetical. Al-driven surveillance and
policing systems are already used by authoritarian
governments and have been found effective in sup-
pressing political unrest and entrenching regimes.
If an event extraction tool can scrape social me-
dia and news to pinpoint every protest or strike
as it begins, authorities could quickly crack down,
undermining civil liberties. Even in democratic so-
cieties, law enforcement has shown interest in such
tools. This kind of proactive surveillance blurs the
line between public safety and infringement of the
right to assemble.

5.2 Privacy and Human Rights

Related to the above, the privacy implications of
large-scale event monitoring are significant (Bal-
dassarre et al., 2024). Socio-political events often
involve individuals like protesters, activists, and
even victims of violence. If an automated system
is parsing social media for events, it might inciden-
tally capture personal data like names of organizers,
eyewitness accounts, etc. Even news articles can
contain personal identifying information in event
descriptions. Using Al to aggregate and analyze
this at scale can amplify privacy risks. For instance,
extracting a “protest event” from a Facebook post
could reveal the poster’s political participation with-
out their consent. Furthermore, in conflict zones or
authoritarian contexts, being identified in an event
report (e.g., as attending a demonstration) could
endanger one’s safety. Human rights organizations
worry that indiscriminate use of such technology
could lead to abuses such as compiling watchlists
of protesters or surveilling minority communities
under the guise of event detection.

5.3

Automated event extraction systems could inadver-
tently become conduits for misinformation or pro-
paganda if not carefully managed. These systems
rely on source data which may be inaccurate or
biased. For example, state-controlled media might
report a fabricated event (e.g. a false “terror plot
foiled”) or exaggerate an incident for propaganda.
If an automated pipeline naively extracts that into
the event database, it lends credence to the false
narrative and propagates it to any downstream users
(analysts, alert systems, etc.). There is a real risk of
false positives where an SPE system could report
an event that never actually happened, due to either
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misinterpretation or malicious input. In the context
of political events, such an error can have serious
consequences (imagine a system that mistakenly
alerts to a “coup attempt” that was just a rumor, and
governments could react harshly). Systems should
thus cross-validate events with multiple sources or
official reports when possible.

5.4 Bias, Fairness, and Data Provenance

Automated SPE extraction inherits and can even
amplify biases present in source data (Huang et al.,
2024; Kumari et al., 2024). Media reporting bias
is well documented. For instance, studies find that
international media severely underreport violence
in certain regions compared to others. If an event
extraction system relies on those media, the re-
sulting database will systematically undercount or
underplay conflicts in those underreported regions.
This raises fairness concerns around analyses using
the data might over-focus on areas that the media
highlight and neglect others. Bias can also creep
in through the algorithms. If an ML model were
trained mostly on, say, Western news text, it might
not recognize event triggers in the rhetoric of other
cultures or might misclassify events that don’t fit its
learned patterns. Furthermore, LLMs themselves
carry biases from their training data; they might be
more likely to extract events that sound “newswor-
thy” in a Western sense, for example.

6 Recommendations and Guidelines

6.1 Robust Dataset Creation and Sharing

The community should establish best practices for
creating and sharing event data. This includes clear
documentation of inclusion criteria, coding method-
ologies, and known limitations of any event dataset.
Data collectors (whether researchers or organiza-
tions) have a responsibility to explicitly state what
sources they use, what counts as an event, and what
biases might result. When possible, datasets should
be shared in a form that supports reproducibility.
For example, reference URLs or source snippets
for each coded event (within copyright constraints)
should be provided. Creative solutions like releas-
ing machine-readable summaries or embeddings
of text can be explored to respect copyright while
still enabling method comparison. The community
could benefit from an open repository of annotated
texts for events (perhaps using texts that are in the
public domain or licensed for research) to serve as
a benchmark. Moreover, any new event ontology



or schema should ideally be published openly, with
rationales for design, to encourage standardization
or at least interoperability between projects.

6.2 Integration of LLMs with Human
Oversight (“Human-in-the-Loop’’)

To harness LLM power while safeguarding against
errors, a human-in-the-loop approach is highly rec-
ommended (Amirizaniani et al., 2024; Cohn et al.,
2024). LLMs can be used to draft event annotations
or suggest events, but human analysts or annota-
tors should verify critical details, especially for
high-impact events. For instance, an LLM might
summarize a complex report into a tentative event
entry; a human can then check the source, correct
any misinterpretation, and approve it. This not
only prevents spurious data from entering official
records but also allows humans to catch subtle bi-
ases the Al might introduce. Output validation is
crucial and automated confidence scores from mod-
els can guide which events need human review (low
confidence or novel event types get flagged). Addi-
tionally, employing multiple systems (e.g., an LLM
and a rule-based checker) in parallel and compar-
ing outputs where disagreements can be routed to
humans can be useful. This kind of cross-validation
workflow ensures that LLMs augment rather than
replace expert judgment in sensitive applications.

6.3 Transparent Model Use & Explainability

Any use of LLMs or Al for SPE extraction in pol-
icy or public-facing contexts should be transparent
(Foisy et al., 2025). Stakeholders (from end-users
of an event dataset to citizens potentially affected
by its use) deserve to know if an event was identi-
fied by a human, a classical algorithm, or an LLM,
and what the reliability might be. We recommend
developing explainability tools specific to event ex-
traction. For example, if an LLM classifies some-
thing as an “armed attack” event, the system should
ideally provide a rationale or highlight the evidence
in text that led to this classification. Techniques
such as step-by-step reasoning prompts or modu-
lar pipelines can help with interpretability. At the
very least, event records generated or assisted by
Al could carry a tag or confidence level. In high-
stakes use (e.g. legal accountability for conflict
incidents), one might decide that no event enters
the official record without either two independent
sources or human verification similar to journalistic
standards. Transparency reports on system perfor-
mance, biases found, and corrections made would
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also build trust in the technology.

6.4 Ethical Guidelines and “Do No Harm”
Policies

It is imperative to establish and follow ethical
guidelines for deploying SPE extraction, partic-
ularly in volatile and sensitive regions. Drawing
on principles from humanitarian and human rights
domains, developers should adopt a “Do No Harm”
mentality by anticipating how the technology could
cause harm and work to mitigate it. For example,
if deploying a system to monitor protests in an op-
pressive regime, measures should be taken so the
data is not easily accessible to the regime to target
individuals (perhaps aggregating or anonymizing
certain elements). Collaboration with ethics boards
or oversight committees can provide external re-
view of such deployments. Access control might
be one guideline. For example, sensitive event data
(like locations of protest organizers) might only be
shared with vetted parties like NGOs, not made
fully public. The community could formulate a
code of conduct or ethics checklist for SPE projects,
including considerations like ‘have we accounted
for bias?’, ‘are the communities being monitored
aware or have a say?’, ‘is there a risk of misuse
and how are we preventing it?” For LLM-specific
issues, guidelines should stress not to over-rely on
Al without verification, and to always have a hu-
man accountability in the loop for decisions made
from event data. When working in conflict zones,
respecting local laws and norms, and protecting
sources (e.g. journalists or informants who are
reporting events) is also part of ethical use.

6.5 Bias Awareness and Correction

To address fairness, we recommend that any large-
scale SPE extraction effort include an explicit bias
assessment phase. This might involve comparing
the Al-extracted data with known baselines (per-
haps human-curated datasets like ACLED in some
regions) to see where discrepancies lie. If certain
event types or areas are consistently under-detected,
the model or pipeline should be adjusted (addi-
tional training data for those cases, or lowering
thresholds). Bias correction techniques such as re-
weighting events from underrepresented regions
can be applied to the output data. Another best
practice is involving local stakeholders in evaluat-
ing the system’s output, like having experts from
different regions review the events detected in their
region for completeness and accuracy. Not only



does this catch biases, but it also builds a more
inclusive system. Data provenance, as mentioned,
should be maintained. Each event record ideally
links to its source material, which allows users to
judge source reliability and bias. If an event comes
only from a single source with a strong slant, per-
haps the system can flag that (like “source is state
media”). Users of the data should be educated on
these provenance flags. In essence, continuous au-
diting for bias and an openness about the system’s
limits will improve fairness and trustworthiness.

6.6 Collaboration Among Stakeholders

Finally, we urge a strong collaboration between the
technical developers (NLP researchers, scientists)
and the policy community (political scientists, ethi-
cists, legal experts, and practitioners on the ground).
This cross-domain dialogue can ensure that the
tools developed address real needs and align with
norms. For example, engaging with human rights
organizations might highlight the need for certain
event categories (like “internet shutdown event”)
that technologists hadn’t considered. Policymakers,
on the other hand, should stay informed about the
capabilities and limits of the latest tech, avoiding
both unrealistic expectations and ungrounded fears.
Joint workshops or working groups can produce
normative guidelines that marry technical possibil-
ities with ethical guardrails. We recommend for-
mulating clear use policies for different scenarios,
e.g., guidelines for using event extraction in elec-
tion monitoring versus in conflict zones (the latter
might require more restraint). By working together
on scenario planning, the community can preemp-
tively set standards for responsible use (similar to
how bioethics guides biomedical innovations).

7 Future Directions

7.1 Hybrid Extraction Models

Future research will likely explore hybrid models
that combine the strengths of LLMs with struc-
tured symbolic knowledge (He et al., 2025; Shaik
and Doboli, 2025). For example, an LLM could
be used to interpret text and draft possible events,
but a symbolic reasoner or knowledge graph en-
sures consistency with known facts (preventing ob-
vious contradictions or impossibilities). Integrating
expert-defined rules (from event coding manuals)
into LLM prompts or architectures could yield sys-
tems that are both flexible and precise. One con-
crete direction is leveraging existing political on-
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tologies and knowledge bases to guide LLMs, e.g.,
providing a model with a library of event type defi-
nitions and historical examples to reduce ambiguity.
This addresses the question posed by researchers
like ‘can we use expert knowledge to enhance ef-
ficiency without extensive new data?’. Progress
in prompt engineering and fine-tuning will make
LLM outputs more controllable, which is crucial
for complex event schemas.

7.2 Adaptive and Continual Learning

Socio-political realities evolve, and so must our
extraction systems. A promising avenue is contin-
ual learning (Wang et al., 2024) for LLM-based
extractors, i.e., the ability to update the model as
new event types emerge or new slang/terms en-
ter the lexicon, without forgetting past knowledge.
This could involve periodic fine-tuning on newly
annotated events or streaming adaptation where the
model’s prompts are adjusted based on feedback.
One challenge is avoiding “catastrophic forgetting”
when adapting to new domains (Kirkpatrick et al.,
2017). Research into LLMs that can plugin new
information (modular learning or using external
memory) will benefit SPE greatly, as it means,
for example, the system that was never trained on
“COVID-19 lockdown protest” could learn that cat-
egory on the fly. Additionally, ontology evolution
should be handled, as event schemas are revised
(which happens in social science as new patterns
like cyber warfare become relevant), systems need
to incorporate those changes.

7.3

Building on current trends, the future will likely
see fully multimodal event extraction in practice.
This means models that simultaneously process
text, images, video, and maybe audio to detect and
validate events. A protest event, for instance, could
be confirmed by both a news text and a tweet with
a photo. Research into multimodal transformers
and alignment techniques (like aligning image de-
tection of violence with text reports) is burgeoning.
By 2025 and beyond, we anticipate systems that
can, say, take a live social media feed (text + im-
ages) and output structured events to dashboards
for crisis responders. On the multilingual front,
future work may achieve more universal models
that work across dozens of languages via a com-
bination of improved training data and leveraging
LLM’s polyglot capabilities. There is also room for
transfer learning between languages and modalities.

Multimodal and Multilingual Fusion



For example, an event described in French text and
an Arabic tweet might be linked as the same event
through a shared embedding space.

7.4 Narrative Construction & Causal Analysis

Moving up the value chain, an exciting research
frontier is automated narrative and causality extrac-
tion. It’s not just about listing events, but under-
standing how they connect. Future LLM-driven
systems could attempt to identify causal or tem-
poral relationships. For example, protest A led to
government response B, which triggered conflict C.
Some early studies are looking at event chains and
temporal reasoning with LLMs. If successful, this
could produce draft analytical reports or help popu-
late causal graphs of events, which are immensely
useful for political analysis (like understanding es-
calation paths or conflict dynamics). There is also
potential for what-if analysis. With generative mod-
els, one could simulate how a sequence of events
might unfold under different scenarios, giving poli-
cymakers a tool to explore consequences (though
this enters speculative territory and would need ro-
bust grounding in data). Additionally, as LL.Ms
become more explainable, we might use them to
interrogate event data like “Why did violence in-
crease in region X?” and the system might high-
light a series of coded events (e.g. arrests, then
protests, then clashes) as an explanation. Achiev-
ing this level of reliable narrative construction will
require advances in discourse understanding and
knowledge integration for LLMs.

7.5 Data Responsibility and Ethics

On the policy side, a major future direction is es-
tablishing international norms or agreements on
the responsible use of Al for social data analysis.
Just as there are treaties and agreements on the use
of certain surveillance (for instance, UN discus-
sions on digital privacy), we may see efforts to set
guidelines for technologies like event extraction,
especially as they get more powerful with LLMs.
Researchers and practitioners should collaborate in
forums to develop a code of ethics specific to com-
putational event monitoring. This could encom-
pass agreements on not facilitating human rights
abuses, ensuring data sharing for humanitarian pur-
poses, and perhaps even certification of systems
(an independent audit to say an event extraction
system meets certain bias and transparency stan-
dards). Work in this direction will involve not just
technical people, but also lawyers, ethicists, and
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the communities being monitored. Another aspect
is education and literacy. Future efforts should in-
clude training for policymakers and journalists on
how to interpret Al-generated event data, to avoid
misuse or misinterpretation.

7.6 Open Research and Collaboration

Finally, a future direction that underpins all oth-
ers is maintaining an open and interdisciplinary
research environment. The challenges at this socio-
technical junction are complex; solving them will
require insights from NLP, machine learning, po-
litical science, conflict studies, ethics, and more.
We envision more joint research endeavors like po-
litical scientists formulating problems that NLP
folks can help solve, and NLP advances (like new
LLM capabilities) being rapidly tested on social sci-
ence use cases. There is also likely to be increased
benchmarking and evaluation efforts specific to
SPE, creating shared tasks that evaluate not just ex-
traction accuracy but also bias, fairness, and utility
in downstream analysis. A “roadmap” paper from
a multi-disciplinary team could periodically assess
where we stand and recalibrate goals (for exam-
ple, setting a goal to achieve a certain reliability in
low-resource languages by year X). As foundation
models evolve (e.g., new versions of GPT or open-
source LLLMs with tens of billions of parameters),
continually applying them and assessing their fit
for event extraction tasks will be an ongoing pro-
cess. Keeping this work open (publishing results,
sharing models) will ensure broad access and avoid
a scenario where only a few large players domi-
nate the technology (which could be risky if their
interests don’t align with public interest).

8 Conclusion

In conclusion, automated socio-political event ex-
traction sits at a pivotal point with the rise of LLMs.
The coming years will likely bring substantial im-
provements in capability with support for more lan-
guages, more nuanced detection, and richer outputs.
At the same time, ensuring these advancements are
applied responsibly and benefit the global com-
munity is a collective task for researchers, prac-
titioners, and policymakers. By recognizing the
challenges and actively working on both technical
solutions and ethical safeguards, we can harness
LLMs to better understand and respond to the socio-
political events that shape our world.
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A Appendix
A.1 Related Works

Systematic political event data collection dates
back to the Cold War era. In the 1960s and 70s,
political scientists began manual coding of interna-
tional events from news reports to enable quantita-
tive analysis (Olsen et al., 2024). Influential early
datasets like WEIS (World Events Interaction Sur-
vey) and COPDAB (Conflict and Peace Data Bank)
catalogued interstate events (e.g. protests, conflicts,
diplomatic acts) by human annotation of news
archives (McClelland, 1978; Olsen et al., 2024,
Azar, 1980). These pioneering efforts demon-
strated the value of structured event data but were
labor-intensive and limited in scope (covering only
certain actors or regions). By the late 1980s, re-
searchers recognized that much of this coding could
be automated by text processing. The Kansas Event
Data System (KEDS) in the early 1990s was a sem-
inal rule-based system that used dictionaries and
patterns to code events from newswire feeds (like
Reuters) (Schrodt et al., 1994). KEDS (and its
successor TABARI) could scan sentences for key-
words indicating actions (e.g. ‘attack’, ‘meet’) and
map them to predefined event types, initiating the
era of machine-coded event databases (Schrodt,
2001). These early systems were capable of coding
thousands of articles, paralleling developments in
the NLP field of information extraction.

In the 1990s and 2000s, the NLP community’s
work on event extraction evolved in parallel. Early
information extraction (IE) tasks in NLP, such as
the MUC competitions and later ACE, involved
identifying event “triggers” and participants in text
(for example, extracting a terrorist bombing event
with its perpetrator, target, date, etc.) (Grishman
and Sundheim, 1996; Doddington et al., 2004).
While political scientists’ event databases aimed
at capturing abstract real-world events (often ag-
gregating information across sources), NLP tasks
focused on text-bound events with token-level an-
notations (Olsen et al., 2024). This led to a diver-
gence. Socio-political event databases prioritized
what actually happened in the world (even if details
were spread across multiple documents), whereas
NLP event annotations captured what was explic-
itly mentioned in a single text. Nonetheless, by
the 2010s there was convergence in methodology.
Statistical and ML-based approaches emerged for
event extraction. For example, supervised clas-
sifiers to detect if a sentence describes a protest,



or sequence labeling models to mark event trig-
gers and arguments. Researchers began applying
emerging deep learning techniques to event extrac-
tion, achieving improvements over brittle pattern-
matchers (Olsen et al., 2024). However, these su-
pervised models required substantial annotated data
(which was scarce for fine-grained socio-political
events) and often struggled to adapt when event
schemas or ontologies changed.

The late 2010s and early 2020s saw the advent
of large pretrained language models, culminating
in today’s LLMs (Thapa et al., 2025; Naveed et al.,
2023). Initially, these models were used as contex-
tual encoders in neural event extraction pipelines
(Hu et al., 2024; Ma et al., 2021; Ding et al., 2023).
For example, BERT-based classifiers for protest
detection or relational models for ‘who did what to
whom’ (Liu et al., 2021). More recently, prompt-
based extraction and in-context learning have be-
come feasible. Given a prompt describing event
categories or a few examples, an LLM can attempt
to parse new texts into structured event records
without explicit retraining. This zero-shot or few-
shot capacity is attractive for socio-political events,
which often require flexibility to new event types or
languages. Early studies are mixed but promising.
For instance, one study found GPT-4 could achieve
nearly the performance of a supervised classifier
in coding political event types, and even exceeded
some rule-based systems in recall (Hu et al., 2024).
At the same time, prompting LL.Ms for complex,
fine-grained event coding exposes issues (mem-
ory limits for long ontology descriptions, prompt
sensitivity, etc.), indicating that LLMs are not a
silver bullet (Thapa et al., 2025; Li et al., 2024;
Ziems et al., 2024). The field has now reached a
point where hybrid approaches are being explored
like combining LLMs with knowledge bases, us-
ing retrieval-augmented generation (RAG) for fac-
tual grounding, and integrating human feedback
for higher fidelity. This sets the stage for under-
standing the technical challenges that persist and
the new considerations that arise in the LLM era.
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Abstract

This paper presents the Shared Task on Multi-
modal Detection of Hate Speech, Humor, and
Stance in Marginalized Socio-Political Move-
ment Discourse, hosted at CASE 2025. The
task is built on the PrideMM dataset, a curated
collection of 5,063 text-embedded images re-
lated to the LGBTQ+ pride movement, anno-
tated for four interrelated subtasks: (A) Hate
Speech Detection, (B) Hate Target Classifica-
tion, (C) Topical Stance Classification, and (D)
Intended Humor Detection. Eighty-nine teams
registered, with competitive submissions across
all subtasks. The results show that multimodal
approaches consistently outperform unimodal
baselines, particularly for hate speech detec-
tion, while fine-grained tasks such as target
identification and stance classification remain
challenging due to label imbalance, multimodal
ambiguity, and implicit or culturally specific
content. CLIP-based models and parameter-
efficient fusion architectures achieved strong
performance, showing promising directions for
low-resource and efficient multimodal systems.

1 Introduction

In the ever-evolving digital landscape, social media
has become a pivotal arena for discourse, particu-
larly for marginalized socio-political movements
(Bhandari et al., 2023; Shiwakoti et al., 2024).
Within these online spaces, text-embedded images,
like memes, have emerged as a powerful and preva-
lent medium of communication. They serve as
potent vehicles for expressing solidarity, fostering
resistance, and shaping attitudes and perceptions
both within and beyond these communities. The
multimodal nature of memes, combining imagery
and text, presents a formidable challenge for ma-
chine learning systems, which must move beyond
simplistic analyses to grasp the multifaceted ex-
pressions conveyed (Pramanick et al., 2021b). As
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platforms increasingly grapple with content mod-
eration challenges, the ambiguity between satire
and offense in such imagery underscores a critical
gap in computational analysis: multimodal under-
standing must disentangle layered communicative
intents to mitigate harm while preserving cultural
context (Scott, 2021).

The discourse surrounding marginalized com-
munities is often complex and multifaceted, where
the lines between humor, satire, and genuine harm
are frequently blurred (Klassen and Fiesler, 2022).
Memes, in this context, can simultaneously be in-
struments of empowerment and weapons of oppres-
sion, making the task of content moderation excep-
tionally difficult. A single label often fails to cap-
ture the layered meanings embedded within these
images. Consequently, there is a pressing need
for a more nuanced, multi-aspect understanding of
such content to develop more effective Al systems
(Pramanick et al., 2021a). The PrideMM dataset
epitomizes this complexity, centering on discourse
surrounding the LGBTQ+ movement where memes
frequently blur the lines between humor and harm
(Shah et al., 2024).

To address this critical research gap, building on
our previous shared tasks at CASE 2024 (Thapa
et al., 2024b; Hiirriyetoglu et al., 2024) and CASE
2023 (Thapa et al., 2023a; Hiirriyetoglu et al.,
2023) we present the Shared Task on Multimodal
Detection of Hate Speech, Humor, and Stance in
Marginalized Socio-Political Movement Discourse
at CASE 2025 (Hiirriyetoglu et al., 2025). This task
utilizes the PrideMM dataset, a curated collection
of memes related to the LGBTQ+ pride movement.
The shared task is designed to spur the development
of models that can analyze text-embedded images
from four distinct yet interconnected perspectives:
1) Detection of Hate Speech, 2) Classifying the
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Targets of Hate Speech, 3) Classification of Topical
Stance, and 4) Detection of Intended Humor. We
frame these subtasks together to encourage holistic
approaches that can capture the entangled social,
cultural, and affective dimensions of online con-
tent.

This paper provides a comprehensive overview
of the shared task, including a description of
the dataset, the evaluation metrics for each sub-
task, a summary of the participating teams and
their methodologies, and an analysis of the results.
Through this shared task, we aim to foster innova-
tion in multimodal analysis and contribute to the
development of more sophisticated and context-
aware models for understanding online discourse.

2 Dataset

For our shared task, we utilize the PridleMM
dataset, as shown in Table 1, introduced by Shah
et al. (2024), which comprises a total of 5,063 text-
embedded images (memes, posters, and infograph-
ics) related to the LGBTQ+ Pride movement. This
multimodal dataset addresses the need for more
inclusive and nuanced resources in the meme anal-
ysis space by encompassing four distinct yet related
tasks: (A) Hate Speech Detection, (B) Hate Target
Classification, (C) Topical Stance Classification,
and (D) Humor Detection. The dataset spans con-
tent from 2020 to 2024, collected from Twitter,
Facebook, and Reddit using targeted queries and
community-specific groups. To ensure high-quality
and diverse samples, redundant images were fil-
tered using deduplication tools, and OCR was ap-
plied to extract and clean embedded text. Each
image in the dataset was independently annotated
by five trained annotators through a rigorous three-
phase annotation protocol to enhance label con-
sistency. The annotators labeled every image for
hate presence, stance, and humor, and for hateful
images, also annotated the target (undirected, indi-
vidual, community, or organization).

3 Shared Task Description

Social media platforms amplify controversial con-
tent and quickly disseminate conflict. Meanwhile,
humorous content, especially memes, has become
more popular as a tool for digital community in-
volvement and influence (Pramanick et al., 2021a).
As people become more outspoken about their opin-
ions, stance identification is essential when analyz-
ing public opinion (AlDayel and Magdy, 2021).
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Subtask Classes Train Eval Test Total
Subtask A Hate 1,985 248 249 2,482
No-Hate 2,065 258 258 2,581

Subtask B Undirected 617 77 77 771
Individual 199 25 25 249

Community 931 116 117 1,164

Organization 238 30 30 298

Subtask C Neutral 1,166 146 146 1,458
Support 1,527 191 191 1,909

Oppose 1,357 169 170 1,696

Subtask D No Humor 1,313 164 165 1,642
Humor 2,737 342 342 3421

Table 1: Statistics of the dataset provided to the partici-
pants as part of the shared task.

This shared task focuses on investigating the poten-
tial of different multimodal models and the identifi-
cation of four unique tasks related to socio-political
discourse. Further details on subtasks can be found
below:

3.1 Subtask A: Hate Speech Detection

The primary objective of this subtask is to identify
the presence of hate speech in the text-embedded
images. This is a binary classification task, where
each sample is annotated with one of two possi-
ble labels: Hate Speech or No Hate Speech. The
dataset used for this task primarily concentrates
on visuals in which text is important to express-
ing meaning, facilitating a more nuanced analysis
of harmful or offensive content. Using both tex-
tual and visual, the dataset offers clear separation
between the two categories.

3.2 Subtask B: Targets of Hate Speech
Detection

For content identified as hateful, this subtask re-
quires a more granular analysis to determine the
target of the hate speech in the images. The image
contains hateful text, with the determined target cat-
egories as Individual, Community, Organization, or
Undirected. This subtask focuses on four specific
categories within the text-embedded images, which
help to identify and understand the type of hateful
content.

3.3 Subtask C: Topical Stance Detection

This subtask aims to classify the stance of the
meme towards the marginalized movement itself,
with possible labels of Support, Oppose, or Neutral.
This subtask involves classifying and understand-
ing the stance of the meme images, with a focus
on understanding the type of stance that facilitates



grasping the categories of stance.

3.4 Subtask D: Intended Humor Detection

Recognizing the prevalence of satire and humor in
this domain, this subtask challenges participants to
identify whether a meme is intended to be humor-
ous, using Humor or No Humor labels.

4 Participants’ Methods

4.1 Overview

Of the 89 registered participants, 21 submitted re-
sults for Subtask A, 14 for Subtask B, 13 for Sub-
task C, and 16 for Subtask D. The leaderboards
for these subtasks are presented in Table 2, table 3,
table 4 and table 5.

4.2 Methods

The following section presents brief overviews of
the participating teams’ approaches, based on the
methodologies outlined in their system description
papers.

4.2.1 Subtask A: Hate Speech Detection

TSR (Ray et al., 2025) presented FIMIF (Feature
Interaction for Multi-Modal Integration and
Fusion), a lightweight multimodal framework
that relies on frozen CLIP ViT-L/14 encoders for
extracting text and image embeddings. These em-
beddings were compressed into low-dimensional
spaces using residual projection layers before
being passed to a multiplicative feature interaction
module designed to capture higher-order cross-
modal relationships. Their approach emphasizes
efficiency, with only 25k—51k trainable parameters,
yet it achieved an F1-score of 81.85% and accuracy
of 81.85% in hate speech detection. This demon-
strates that dimensionality compression coupled
with multiplicative fusion can yield competitive
results on multimodal hate classification.

PhantomTroupe (Amin et al., 2025) experimented
with multiple approach, including unimodal and
multimodal, where the fine-tuned Qwen2.5-VL-
7B-Instruct- bnb-4bit using the unsloth framework
outperformed acheiving the F1-score of 80.86%.
Both approaches followed a transformer-based
model, placing the team in 5th position.

MemeMasters (Shakya and Gurung, 2025)
utilized a fine-tuned CLIP model as their primary

22

architecture. Their approach involved concatenat-
ing the visual and textual embeddings from the
CLIP model and feeding them into a lightweight
classification head. Using their standard con-
figuration without task-specific modifications,
the system achieved a macro Fl1-score of 80%,
showing consistent and balanced performance
across both the ”Hate” and "Non-Hate” classes.

Multimodal Kathmandu (Maharjan et al., 2025)
employed a Co-Attention Ensemble architecture
built upon frozen CLIP-ViT features. Text and
image embeddings were concatenated and passed
through multi-layer Transformer encoders, with
predictions averaged across five ensemble mem-
bers to reduce variance. This approach achieved an
F1-score of 79.29% and an accuracy of 79.29%,
highlighting the robustness of variance-reduction
strategies for multimodal hate speech detection.

MLInitiative (Acharya et al., 2025) investigated
two multimodal architectures, a ResNet-18 with
BERT model and a SigL.IP2 model, for hate speech
detection. Their fine-tuned SigLIP2 model outper-
formed the ResNet-18+BERT baseline, achieving
an Fl-score of 79.27%. This performance placed
their system 9th on the final leaderboard for the
subtask.

ID4Fusion (Rashfi et al., 2025) utilized
transformer-based models, RoBERTa and
HateBERT were fine-tuned for text analysis, while
EfficientNet-B7 and Vision Transformer (ViT)
were utilized for images. The predictions from
these models were integrated using a late-fusion
ensemble approach, providing more weight to
textual features compared to visual features. In the
leaderboard, they secured 10th position.

Silver (Mainali et al., 2025) evaluated a range
of unimodal and multimodal models, including
transformer-based text models like BERT and
ROBERTa, CNN-based vision models like
DenseNet and EfficientNet, and fusion methods
like CLIP. Their results demonstrated that multi-
modal systems performed better than unimodal
baselines, with a CLIP-based model achieving the
top macro F1-score of 78.28%. The authors noted
that models often misclassified sarcastic or ironic
content where hate was conveyed visually rather
than through explicit text.



Rank Team Name Codalab Username Fl-score (%) Accuracy (%) Precision (%) Recall (%)
1 TJU-MI wangxiuxian 84.22 84.22 84.22 84.22
2 - Ryuan 82.84 82.84 8291 82.88
3 IMU-L jiaranDiana 82.05 82.05 82.17 82.11
4 TSR (Ray et al., 2025) ray-sushant 81.85 81.85 81.91 81.89
5 Phantom Troupe (Amin et al., 2025) Neuron-Force 80.86 80.87 80.86 80.86
6 MemeMasters (Shakya and Gurung, 2025) shrutigurung 80.05 80.08 80.12 80.04
7 Multimodal Kathmandu (Maharjan et al., 2025) Sujal_Maharjan 79.29 79.29 79.33 79.32
8 - NextTry 79.28 79.29 79.28 79.28
9 MLInitiative (Acharya et al., 2025) ankitbk07 79.27 79.29 79.30 79.27
10 ID4Fusion (Rashfi et al., 2025) Rashfi 78.68 78.70 78.70 78.68
11 Silver (Mainali et al., 2025) rohanmainali 78.28 78.30 78.33 78.27
12 MMFusion (Rane, 2025) prerana3 77.89 77.91 78.14 77.99
13 CUET NOOB (Joy et al., 2025) TomalJoy 74.16 74.16 74.16 74.17
14 - Tanvir_77 74.02 74.16 74.47 74.05
15 Overfitters (Bhattarai et al., 2025) bidhancb 73.77 73.77 73.82 73.80
16 - AkshYat 73.37 73.37 73.47 73.42
17 Luminaries (Esackimuthu, 2025) akshayy22 7217 72.19 72.34 72.25
18 YS ysb 69.23 69.23 69.27 69.26
19 MLP (Verma and Kumar, 2025) Durgeshverma24iitram 66.02 66.27 66.54 66.14
20 wangkongqiang (Kongqiang and Peng, 2025) wangkongqgiang 62.09 63.31 65.91 63.65
21 Musafir MDSagorChowdhury 58.28 62.33 68.62 61.79

Table 2: Sub-task A (Hate Speech Classification) Leaderboard, Ranked by Macro F1-score. All scores are presented
as percentages (%). It is to be noted that this leaderboard contains the score till the test deadline and does not
consider further runs done by participants as a part of the system description paper.

MMFusion (Rane, 2025) implemented a mul-
timodal architecture using RoBERTa-base for
textual analysis and a ResNet50 model for visual
feature extraction. These features were projected
into a shared dimensional space and combined
using an 8-head multi-head attention mechanism
to capture cross-modal interactions. The team also
employed focal loss to concentrate on difficult
samples and used a test-time augmentation
(TTA) strategy to improve robustness, ultimately
achieving an F1-score of 77.8%.

CUET NOOB (Joy et al., 2025) used the mul-
timodal attention-based late fusion approach to
capture cross-modal interactions. The model
achieved an F1-score of 74.16%, ranking 13th
overall. The authors also experimented with
unimodal models like DistilBERT for text and ViT
for images.

Overfitters (Bhattarai et al., 2025) utilized a
multimodal fusion model named BERTRES for
hate speech detection, combining textual features
from a BERT-base model with visual embeddings
from a ResNet-50 model. The concatenated
feature vector was processed through a classifier
with separate heads for each task. This approach
achieved an Fl-score of 73.77%, placing them
15th in the task. The paper suggests the model’s
performance was limited by the difficulty of
capturing subtle, implied hate and sarcasm in
memes.
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Luminaries (Esackimuthu, 2025) explored a
hybrid modeling approach by combining the
ALBERT-base v2 transformer with classical
machine learning models such as XGBoost,
LightGBM, Gradient Boosting, and MLP classi-
fiers. Predictions from these systems, trained on
TF-IDF and syntactic features alongside contextual
embeddings, were integrated through a weighted
ensembling strategy. This ensemble achieved an
Fl1-score of 72.17%, ranking 17th overall. The
authors note that ensembling effectively leveraged
complementary strengths across models, though
additional linguistic features and further tuning of
ensemble weights could yield improvements.

MLP (Verma and Kumar, 2025) developed mul-
timodal frameworks that fused XLM-RoBERTa
and ViT embeddings with attention-based fusion,
as well as alternative combinations with CLIP
and BERT encoders. Their best-performing
configuration achieved an F1-score of 66.02% and
an accuracy of 66.27%. The system demonstrated
the effectiveness of early fusion and cross-modal
attention in detecting hate content from memes.

wangkongqgiang (Konggiang and Peng, 2025) em-
ployed different approaches, including an ensemble
model integrating text and image features (utilizing
BERT, XLNet, and InceptionNet), a K-max pooling
neural network utilizing pre-trained GloVe embed-
dings and cyclic learning rate scheduling, and a
multinomial naive Bayes (MNB) model. The MNB
achieved an Fl-score of 62.09%, which placed
them in 20th position.



Rank Team Name Codalab Username Fl-score (%) Accuracy (%) Precision (%) Recall (%)
1 TIU-MI wangxiuxian 65.30 64.26 67.59 63.83
2 - Ryuan 63.35 64.26 65.56 62.04
3 TSR (Ray et al., 2025) ray-sushant 60.57 63.05 61.69 60.21
4 IMU-L jiaranDiana 60.15 63.05 62.30 60.38
5 Multimodal Kathmandu (Maharjan et al., 2025) Sujal_Maharjan 57.77 58.23 56.66 59.22
6 Overfitters (Bhattarai et al., 2025) bidhancb 56.28 57.03 54.07 60.32
7 MMFusion (Rane, 2025) prerana3 55.39 59.04 56.53 55.04
8 MLInitiative (Acharya et al., 2025) ankitbk07 54.86 58.23 60.44 52.49
9 MemeMasters (Shakya and Gurung, 2025) shrutigurung 51.50 53.82 54.27 50.59
10 Silver (Mainali et al., 2025) rohanmainali 50.18 51.81 50.92 54.22
11 Luminaries (Esackimuthu, 2025) akshayy22 49.84 55.42 52.89 48.69
12 Musafir MDSagorChowdhury 37.93 44.18 40.08 41.43
13 wangkonggiang (Konggiang and Peng, 2025) wangkonggiang 34.53 47.79 55.52 33.22
14 MLP (Verma and Kumar, 2025) Durgeshverma24iitram 27.39 40.96 31.58 27.57

Table 3: Sub-task B (Target Identification for Hate Speech) Leaderboard, Ranked by Macro F1-score. All scores are
presented as percentages (%). It is to be noted that this leaderboard contains the score till the test deadline and does
not consider further runs done by participants as a part of the system description paper.

4.2.2 Subtask B: Targets of Hate Speech
Detection

TSR (Ray et al., 2025) adapted their FIMIF
pipeline by addressing the severe class imbalance
in the dataset. They incorporated weighted
cross-entropy loss and deterministic oversampling
of minority classes to stabilize learning across
the four target categories (Undirected, Individual,
Community, Organization). The system combined
CLIP-based representations through residual and
multiplicative modules, reaching an Fl-score of
60.57% and accuracy of 63.05%. The results
indicate that their compact architecture could
model nuanced target categories effectively despite
relying on a parameter-efficient design.

Multimodal Kathmandu (Maharjan et al., 2025)
designed a Hierarchical Cross-Attention Trans-
former that allowed textual tokens to query visual
regions directly. This task-specific architecture
reached an F1-score of 57.77% with an accuracy
of 58.23%, ranking 5th on the leaderboard. The
results underscore the value of explicit cross-modal
grounding for distinguishing between Community,
Individual, Organization, and Undirected targets.

Overfitters (Bhattarai et al., 2025) applied their
BERTRES architecture, which fuses features from
BERT and ResNet-50. A key part of their method-
ology was the use of a class-weighted cross-entropy
loss to mitigate the skewed label distribution
present in the dataset for this subtask. This strategy
contributed to their strongest performance, se-
curing the 6th position with an F1-score of 56.28%.

MMPFusion (Rane, 2025) utilized their RoOBERTa-
ResNet50 architecture with cross-modal attention
for the target identification task. To address the
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significant class imbalance in this subtask, they
used a focal loss function with class-specific
weighting in addition to a test-time augmentation
strategy. The model struggled to differentiate
between certain categories, particularly confusing
“Individual” targets with “Community” targets,
and achieved a final F1-score of 55.3%.

MLInitiative (Acharya et al., 2025) applied two
multimodal systems: a combined ResNet-18 and
BERT architecture and a SigL.IP2 model. The
SigLIP2 model proved to be superior, securing
an Fl-score of 54.86% and ranking 8th on the
leaderboard. The authors note that both models
performed relatively poorly on this task, attributing
the difficulty to the imbalanced nature of the
associated dataset.

MemeMasters (Shakya and Gurung, 2025)
adapted their fine-tuned CLIP model for the target
classification task by applying over-sampling to
mitigate the severe class imbalance present in the
dataset. The model struggled with the fine-grained
nature of this task, showing the lowest recall for
the ”Individual” class and frequent confusion
between the “Undirected” and ~Community”
targets. This resulted in a macro F1-score of 52%.

Silver (Mainali et al., 2025) addressed the target
classification task, noting it was particularly
challenging due to the highly uneven distribution
of classes and the subjective nature of defining
a target. Comparing various unimodal and
multimodal systems, their CLIP-based model
again achieved the best performance with a macro
Fl-score of 56.30%. This score represented
a considerable performance decline compared
to other subtasks, with the paper highlighting



Rank Team Name Codalab Username Fl-score (%) Accuracy (%) Precision (%) Recall (%)
1 TIJU-MI wangxiuxian 63.70 64.89 64.59 63.68
2 TSR (Ray et al., 2025) ray-sushant 62.91 62.92 64.22 63.07
3 Ryuan 62.80 62.72 64.50 63.10
4 IMU-L jiaranDiana 61.76 62.13 62.54 61.58
5 MMFusion (Rane, 2025) prerana3 60.86 61.14 61.23 61.14
6 Multimodal Kathmandu (Maharjan et al., 2025) Sujal_Maharjan 60.70 61.14 61.18 61.25
7 MLInitiative (Acharya et al., 2025) ankitbk07 60.59 61.14 60.64 60.59
8 MemeMasters (Shakya and Gurung, 2025) shrutigurung 60.23 59.96 63.09 60.56
9 Overfitters (Bhattarai et al., 2025) bidhancb 60.15 60.55 60.27 60.17
10 Silver (Mainali et al., 2025) rohanmainali 59.30 59.57 59.53 59.47
11 Musafir MDSagorChowdhury 54.29 54.24 55.55 54.83
12 Luminaries (Esackimuthu, 2025) akshayyy22 53.05 55.23 54.34 53.55
13 MLP (Verma and Kumar, 2025) Durgeshverma24iitram 46.74 46.94 49.05 47.23

Table 4: Sub-task C (Classification of Topical Stance) Leaderboard, Ranked by Macro Fl-score. All scores are
presented as percentages (%). It is to be noted that this leaderboard contains the score till the test deadline and does
not consider further runs done by participants as a part of the system description paper.

major confusion between the ’Community’ and
’Undirected’ classes as a key issue.

Luminaries (Esackimuthu, 2025)fine-tuned
ALBERT for multiclass classification and also
trained a feedforward ANN. Their ALBERT model
achieved an F1-score of 0.4984 and an accuracy
of 55.42%, placing 11th on the leaderboard.
While the model effectively captured contextual
dependencies, the system struggled to distinguish
between fine-grained target categories.

wangkongqgiang (Kongqiang and Peng, 2025)
performed four different benchmarks in different
models, where the multinomial naive bayes
classification model showed the best, achieving an
F1-score of 34.53% and holding 13th position in
the leaderboard.

MLP (Verma and Kumar, 2025) employed XLM-
RoBERTa + ViT with attention-based fusion. The
system achieved an F1-score of 40.96% and an
accuracy of 42.17%. Despite leveraging bidirec-
tional cross-modal attention and multiple fusion
strategies, the model struggled with fine-grained
classification of targets within memes.

4.2.3 Subtask C: Topical Stance Detection

TSR (Ray et al., 2025) applied the FIMIF
architecture with low-rank multimodal fusion of
compressed text and image embeddings. The
model obtained an Fl-score of 62.91% and
accuracy of 62.92%. The architecture leveraged
CLIP embeddings alongside residual layers
that emphasized linear relationships, with the
multiplicative module capturing more complex
feature interactions when beneficial. These results
highlight the model’s ability to distinguish Support,
Oppose, and Neutral stances in multimodal memes
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with relatively few parameters.

MMFusion (Rane, 2025) adopted an ensemble
approach, combining the outputs of three separate
multimodal models via probability averaging.
The ensemble consisted of a RoOBERTa-base with
ResNet18, a RoBERTa-base with ResNet34, and
a BERT-base with ResNet18, each trained with
different random seeds to ensure diversity. This
method, which performed better than their initial
single-model attempts, used a simple attention
mechanism for feature fusion and yielded an
F1-score of 60.8%.

Multimodal Kathmandu(Maharjan et al., 2025)
introduced a Two-Stage Multiplicative Fusion
framework, where CLIP features were projected
into higher dimensions, refined through lightweight
adapters, and combined via element-wise mul-
tiplication. A two-stage fine-tuning procedure
stabilized training and improved convergence.
Their model achieved an F1-score of 60.70% and
accuracy of 61.14%, placing 6th overall.

MLInitiative (Acharya et al., 2025) compared
their ResNet-18+BERT and SiglL.IP2 multimodal
models. The SigLIP2 model, which processes
image-text pairs in a joint embedding space using
a sigmoid-based contrastive loss, obtained better
performance. It achieved an F1-score of 60.59%,
which resulted in a 7th place ranking on the task
leaderboard.

MemeMasters (Shakya and Gurung, 2025) modi-
fied their CLIP-based framework by employing a
deeper 3-layer classifier head and using a cosine
learning rate scheduler. The model found it
difficult to distinguish between subtle stance dif-



Rank Team Name Codalab Username F1-score (%) Accuracy (%) Precision (%) Recall (%)
1 TJU-MI wangxiuxian 78.01 81.07 77.50 78.65
2 TSR (Ray et al., 2025) ray-sushant 76.83 79.68 76.79 76.87
3 Multimodal Kathmandu (Maharjan et al., 2025) Sujal_Maharjan 75.29 7791 75.78 7491
4 - paiisfunny 75.16 78.50 74.81 75.57
5 - Ryuan 74.80 78.30 74.35 75.37
6 MemeMasters (Shakya and Gurung, 2025) shrutigurung 73.13 75.74 73.86 72.66
7 MLInitiative (Acharya et al., 2025) ankitbk07 72.88 77.71 71.72 75.26
8 Silver (Mainali et al., 2025) rohanmainali 72.68 75.94 72.75 72.61
9 - olivialiudama 71.41 75.35 71.06 71.86
10 - AkshYat 71.13 73.18 72.75 70.67
11 IMU-L jiaranDiana 70.31 72.98 71.19 69.85
12 MMFusion (Rane, 2025) prerana3 65.85 73.37 64.89 70.05
13 MLP (Verma and Kumar, 2025) Durgeshverma24iitram 65.64 70.02 65.54 65.75
14 Overfitters (Bhattarai et al., 2025) bidhancb 65.33 72.78 64.46 69.06
15 Musafir MDSagorChowdhury 62.68 66.07 63.25 62.44
16 Luminaries (Esackimuthu, 2025) akshayyy22 60.70 68.44 60.30 62.74

Table 5: Sub-task D (Classification of Intended Humor) Leaderboard, Ranked by Macro F1-score. All scores are
presented as percentages (%). It is to be noted that this leaderboard contains the score till the test deadline and does
not consider further runs done by participants as a part of the system description paper.

ferences, leading to significant misclassifications
where both ‘Support’ and ‘Oppose’ instances were
incorrectly labeled as ‘Neutral’. This approach
achieved a macro F1-score of 60%.

Overfitters (Bhattarai et al., 2025) implemented
their BERTRES model, which leverages a com-
bination of BERT and ResNet-50 embeddings.
The system struggled with the complexities of this
task, particularly in cases that involved satire or
ambiguous sentiment. The model also demon-
strated overfitting, which the authors attribute to
the imbalanced and sparse label distribution for
this specific subtask. Ultimately, the system ranked
9th with an F1-score of 60.15%.

Silver (Mainali et al., 2025) employed their com-
parative framework of unimodal and multimodal
models. Their best system was a CLIP-based
model, which achieved a macro Fl-score of
59.30%. Even with this top-performing model,
the authors reported that it struggled to correctly
classify memes containing irony or ambiguous
tone. The *Neutral’ class was the most likely to be
miscategorized as either supportive or opposing.

Luminaries (Esackimuthu, 2025) trained AL-
BERT and a feedforward ANN independently for
stance classification without ensembling. The
ALBERT model achieved an F1-score of 53.05%,
ranking 12th overall. The system faced difficulty
in interpreting ambiguous or ironic stances, which
often rely on subtle linguistic cues.

MLP (Verma and Kumar, 2025) applied their
multimodal attention-based fusion models. The
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best-performing system achieved an Fl-score of
46.74% with an accuracy of 46.94%. While the
approach captured some multimodal interactions,
performance remained limited on subtle stance
distinctions.

4.2.4 Subtask D: Intended Humor Detection

TSR (Ray et al., 2025) achieved their strongest
results, reporting an Fl-score of 76.83% and
accuracy of 79.68%. The FIMIF model effectively
integrated textual sarcasm with visual cues
through its multiplicative fusion layer, enabling the
detection of humor and satire in memes. Despite
its small size compared to transformer-based
multimodal systems, the architecture maintained
competitive performance, underscoring the
value of low-dimensional fusion for subjective
classification tasks.

Multimodal Kathmandu(Mabharjan et al., 2025)
applied the same Two-Stage Multiplicative Fusion
framework, augmented with semantic-aware
initialization that seeded classifier weights using
CLIP embeddings of descriptive prompts. This
system delivered one of the strongest results
in the task, achieving an Fl-score of 75.29%
and accuracy of 77.91%, securing 3rd place overall.

MemeMasters (Shakya and Gurung, 2025)
adjusted their CLIP model by incorporating a
higher dropout rate and using a class-weighted
loss to handle the imbalanced data, which was
skewed towards humorous content. The model
was conservative in its predictions, often mis-
classifying humorous content as non-humorous
due to the context-dependent nature of online hu-



mor. This system yielded a macro F1-score of 73%.

MLInitiative (Acharya et al., 2025) addressed
humor detection using a ResNet-18+BERT fusion
model and a more advanced SigL.IP2 model. Their
results showed that the Sigl.IP2 architecture was
more effective for the task, achieving an F1-score
of 72.88%. This performance earned their system
the 7th position on the subtask’s final leaderboard.

Silver (Mainali et al., 2025) found that multimodal
models outperformed unimodal approaches, as
visual cues were often critical for contextualizing
humor in memes. A CLIP-based model proved to
be the most effective, delivering a macro F1-score
of 72.68%. Despite this success, the system was
prone to making false predictions on content that
involved sarcasm or culturally specific jokes that
were not conveyed through text.

MMPFusion (Rane, 2025) developed a distinct
multimodal architecture using DialoGPT-medium
for text and ResNet50 for images, choosing
DialoGPT for its proficiency with informal,
conversational language. Their system applied
self-attention to each modality independently
before using cross-modal attention and a final
gating mechanism to adaptively weight and
combine the features. This approach resulted in an
F1-score of 65.8%.

MLP (Verma and Kumar, 2025) reported stronger
results relative to stance and target identification.
Their multimodal architecture reached an F1-score
of 65.64% and an accuracy of 70.02%. This indi-
cates that their system was able to capture explicit
humorous cues in memes using cross-modal fusion
of textual and visual features.

Overfitters (Bhattarai et al., 2025) addressed the
humor detection challenge with their BERTRES
multimodal fusion model. The model, which
integrates text embeddings from BERT and visual
features from ResNet-50, found this task to be
particularly difficult due to the subjective and
culturally specific nature of humor in memes,
which made it hard for the model to generalize.
Their system achieved an Fl-score of 65.33%,
resulting in a 14th-place ranking.

Luminaries (Esackimuthu, 2025) utilized AL-
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BERT and an ANN, treating this as a binary clas-
sification task. Their fine-tuned ALBERT model
achieved an F1-score of 60.70%, ranking 16th over-
all. Performance was constrained by the subjective
and culturally dependent nature of humor, with
frequent misclassification of sarcastic or context-
heavy instances.

5 Discussion

The results across the four subtasks show the com-
plexities of multimodal analysis of socio-political
memes, where humor, satire, and harmful speech
often intersect. While multimodal models gener-
ally outperformed unimodal baselines, the extent of
improvement varied by task, reflecting differences
in difficulty, class imbalance, and the interplay of
textual and visual cues. Hate Speech Detection
(Subtask A) achieved the highest scores, with sev-
eral teams surpassing an F1-score of 80%, indicat-
ing that binary classification of explicit or strongly
implied hate is relatively well-handled by current
models. In contrast, Target Identification (Subtask
B) proved most challenging, with substantial per-
formance drops due to fine-grained labels, skewed
class distributions, and frequent overlap between
categories such as Community and Undirected.

Stance Detection (Subtask C) showed moder-
ate performance, with top scores in the low 60s,
hindered by the difficulty of interpreting sarcasm,
irony, and ambiguous sentiment. Humor Detection
(Subtask D) fared slightly better, with top teams
exceeding 76% F1, suggesting that visual tropes
and textual patterns characteristic of humor are
more consistently captured by multimodal fusion
methods. CLIP-based approaches dominated many
leaderboards, while compact, parameter-efficient
architectures like TSR’s FIMIF (Ray et al., 2025)
demonstrated that strong results are achievable with
minimal trainable parameters. Attention-based
and gating fusion mechanisms yielded mixed ben-
efits, with improvements often dependent on task-
specific dynamics.

Persistent challenges include handling subtle,
culturally dependent cues, mitigating severe class
imbalance, particularly in Subtask B, and resolving
multimodal ambiguity when text and image sig-
nals conflict or provide weak cues. Future progress
will require better handling of fine-grained cate-
gories, integration of external knowledge to inter-
pret implicit references, improved balancing strate-
gies, and hybrid architectures that combine precise



language understanding with strong cross-modal
alignment. Overall, while current models show
promise in detecting overt hate and humor, captur-
ing nuanced communicative intent in marginalized
community discourse remains an open challenge.

6 Conclusion

In this paper, we presented the Shared Task on
Multimodal Detection of Hate Speech, Humor, and
Stance in Marginalized Socio-Political Movement
Discourse at CASE 2025 (co-located with RANLP
2025), leveraging the PrideMM dataset, a curated
collection of memes related to the LGBTQ+ pride
movement. The task was designed to encourage the
development of models capable of jointly address-
ing four interconnected challenges: (i) detecting
hate speech, (ii) identifying its targets, (iii) classi-
fying topical stance, and (iv) recognizing intended
humor. With participation from 89 registered teams
and competitive submissions across all subtasks,
the results demonstrated the clear advantage of mul-
timodal approaches over unimodal baselines, while
also revealing substantial variation in task difficulty
and persistent challenges in handling subtle, im-
plicit, or culturally dependent content. The insights
from this shared task provide a valuable bench-
mark for future research, suggesting the need for
methods that combine robust cross-modal integra-
tion with cultural and contextual awareness. We
hope this work will stimulate continued innovation
in multimodal content moderation, contributing to
safer and more inclusive online spaces.
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Broader Impact

This shared task aims to advance multimodal con-
tent moderation in contexts involving marginal-
ized socio-political movements, focusing on the
LGBTQ+ pride movement. By targeting nuanced,
culturally embedded, and often ambiguous con-
tent, it encourages the development of fairer, more
context-aware Al systems that can mitigate harm
while preserving legitimate expression. However,
automated moderation must be applied cautiously,
as misclassification can silence marginalized voices
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or misinterpret culturally specific discourse. The
PrideMM dataset was curated with rigorous anno-
tation to promote inclusivity and reduce bias, but
real-world use should involve human oversight and
community input. Beyond moderation, the work
offers value for social science, media studies, and
policy, supporting safer and more inclusive online
spaces while respecting expressive diversity.
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A Related Work

As memes become a popular way to express opin-
ions on social and political issues, researchers are
paying more attention to analyzing both their text
and images to detect hate, humor, and ideologi-
cally charged content. The Hateful Memes Chal-
lenge (Kiela et al., 2020) introduced one of the



earliest benchmark datasets containing synthetic
memes with contrastive image-text signals target-
ing protected categories such as race, religion, and
gender. Subsequent datasets like Harm-C and
Harm-P (Pramanick et al., 2021a,b) captured real-
world political and COVID-related memes, anno-
tated across varying degrees of harmfulness and
target categories. CrisisHateMM (Bhandari et al.,
2023) similarly focused on memes related to the
Russia-Ukraine conflict and included hate speech
target classification. Beyond hate detection, other
efforts have targeted different aspects of meme
communication: Suryawanshi et al. (2020) intro-
duced MultiOFF for offensive meme detection us-
ing data from Reddit and Instagram; Tanaka et al.
(2022) proposed a humor detection dataset by ex-
tracting memes without interpersonal bias; and Dis-
infoMeme (Qu et al., 2022) focused on disinforma-
tion, annotating memes from movements like BLM
and Veganism. Parallel efforts have explored multi-
aspect datasets capturing a wider spectrum of lin-
guistic phenomena, Gautam et al. (2020) annotated
the MeToo movement-related tweets across dia-
logue acts, sarcasm, stance, and hate; Dacon et al.
(2022) labeled LGBTQ-related Reddit comments
for toxicity and identity attacks; and Ousidhoum
et al. (2019) provided a multilingual corpus anno-
tated for hate, offensiveness, stance, and sentiment.
Recent shared tasks have explored these challenges
further: the CASE 2024 Climate Activism task
(Thapa et al., 2024a) annotated tweets for stance,
hate speech, and humor; the NAET dataset (Rauni-
yar et al., 2023) collected Nepali anti-establishment
tweets with multi-aspect labels including satire,
hate, and hope speech; and NEHATE (Thapa et al.,
2023b) focused on identifying hate speech and its
targets in Nepali election discourse. Similarly, the
GameTox dataset (Naseem et al., 2025) introduced
token-level and intent-level annotations for toxicity
in gaming chats. While most prior work focuses on
single aspects or monolingual textual analysis, our
task offers a multimodal and multi-aspect bench-
mark covering hate, stance, humor, and targeted
hate enabling richer exploration of social discourse
through memes.

B Evaluation and Competition

This section outlines the overall framework of our
shared task, the evaluation methodology, competi-
tion structure, and key logistical information.
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B.1 Evaluation Metrics

We employed a suite of standard classification met-
rics to evaluate performance: accuracy, precision,
recall, and the macro F1-score. The official ranking
of the participating teams on the final leaderboard
was determined based on their macro F1-score.

B.2 Competititon Setup

The shared task was hosted on the Codal.ab plat-
form!, which provided a standardized environment
for all participants. The competition was structured
into two primary phases: a development phase and
a final testing phase, followed by a peer-reviewed
paper submission process.

Registration. A total of 89 participants regis-
tered for the shared task, which shows strong in-
terest from individuals across diverse professional
backgrounds. Geographic diversity was also no-
table, as indicated by the wide range of email do-
main affiliations. Of the registered participants, 21
teams submitted their final prediction outputs.
Competition Timelines. The competition offi-
cially commenced on April 8, 2025, with the re-
lease of the training and evaluation datasets. This
initial phase allowed participants a full month to
familiarize themselves with the data, develop their
models, and perform internal validation.

The final testing phase began on May 8§, 2025,
with the release of the test set, for which the ground
truth labels were withheld. Participants had over
two months to apply their systems to the test data,
with the testing period concluding on July 12, 2025.

Following the completion of the testing phase,
teams were invited to document their methodolo-
gies in a system description paper, with submis-
sions due by Aug 4, 2025. These papers underwent
a formal review process, and notifications were sent
to authors on August 17, 2025. Authors of condi-
tionally accepted papers were given until August
24,2025, to submit their revised versions, with final
notifications sent on August 25, 2025. The camera-
ready versions of all accepted papers were due on
August 30, 2025. The shared task will culminate
with presentations at the CASE Workshop from
September 11-13, 2025. This structured timeline,
coupled with continuous support for any technical
issues, was designed to facilitate a productive and
engaging research environment for all participants.

"https://codalab.lisn.upsaclay.fr/competitions/22463
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Abstract

As practitioners in the field of Natural Lan-
guage Processing (NLP), we have had the
unique vantage point of witnessing the evo-
lutionary strides leading to the emergence
of Large Language Models (LLMs) over
the past decades. This perspective allows us
to contextualise the current enthusiasm sur-
rounding LLMs, especially following the
introduction of "General Purpose" Lan-
guage Models and the widespread adoption
of conversational chatbots built on their
frameworks. At the same time, we have ob-
served the remarkable capabilities of zero-
shot systems powered by LLMs in extract-
ing structured information from text, out-
performing previous iterations of language
models.

In this paper, we contend that that the hype
around “conversational AI” is both a revo-
lution and an epiphenomenon for NLP, par-
ticularly in the domain of information ex-
traction from text. By adopting a measured
approach to the recent technological ad-
vancements in Artificial Intelligence that
are reshaping NLP, and by utilising Auto-
mated Socio-Political Event Extraction
from text as a case study, this commentary
seeks to offer insights into the ongoing
trends and future directions in the field.

WHAT - the significance of the
“ChatGPT revolution” on NLP

To start this commentary in the context of a re-
nowned workshop on Automatic Event Extraction
from Text, let’s ask ourselves a rather philosophical
question: what distinguishes a socio-political event
of rather anecdotic importance (e.g. “Donald
Trump tweeted he is unhappy about XYZ”) from
an event that is most likely to mark history (e.g.
“WHO Declares COVID-19 a Pandemic and calls
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to act in consequence”)? Natural Language Pro-
cessing (NLP), our area of research, is unlikely to
provide a scientific answer to this question, so |
would rather propose an empirical one, a twofold
method for measuring the historical significance of
a socio-political event. Firstly, it is interesting to
observe that individual people witnessing events
that make history have very accurate personal
memories of what they were doing when it hap-
pened. For example, people born in the 1950°s or
earlier, when being asked what asked they did on
20 July 1969, when Apollo 11 landed on the moon,
often provide a precise narrative about their activi-
ties, even decades after the fact. There is a second
method to recognise key events: they render obso-
lete almost immediately common beliefs and
thoughts that held authority before them. For ex-
ample, the permanence of USSR as a political en-
tity could have been considered as obvious for most
of its citizens ... until the collapse of the Berlin
Wall, and subsequently of the PCUS regime a cou-
ple of years later.

I am always reluctant to use the expression
“ChatGPT revolution” to designate the hype that
followed, in the fall/winter 2022-2023, the launch
of OpenAl’s conversational Al Chatbot powered
by the GPT3.5 Large Language Model. After all,
Generative Pretrained Transformer (GPT) Models
are the fruit of a decades-long continuum of tech-
nical evolution, from Support Vector Machines to
Deep Learning, from early efforts to perform sta-
tistical machine translation to massive training of
general-purpose language models (Johri et al.,
2021). If we look at the performance of NLP appli-
cations we, experts, must acknowledge that the
turning point has probably occurred several years
earlier, with the discovery of the Transformer ar-
chitecture, unlocking the efficiency of machine
learning models for natural language understand-
ing, thanks to the mechanism of attention (Vaswani
et al,, 2017). But for the general public, the
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“revolution” has happened when such transformers
became conversational. I must admit that when I
saw GPT 2.0 generating fake research paper re-
views (or even fake papers) (Bartoli & Medvet,
2020), I was not overly impressed. In my view, nat-
ural language understanding was where societally
relevant use cases resided, not in the generation of
ersatz human texts.

I dismissed generative LLMs, seeing them as use-

less stochastic parrots (Bender et al., 2021)... and

the entire world proved me wrong. Of course, it is

the nature of a hype is to feed itself. And the im-

pressive uptake of ChatGPT! can be explained by

cultural factors, rather than by its technical inno-

vation: the myth of the talking machine, from Me-

dieval tales of the Brazen Head to “2001: a space

Odyssey” ... But this is not my point. Let’s simply

take note that the advent of LLMs matches our

twofold criteria and therefore qualifies as a “sig-

nificant” historical event. Firstly because, if you

ask colleagues and friends, most will be able to tell

how they encountered for the first time an LLM-

powered Chatbot (often, without knowing it was

LLM-powered). Personally, I recall precisely the

circumstances in which my hierarchical superior

explained me (gently, but firmly) that, as the Head

of a Text Mining Competence Centre, I could not

ignore the advent of conversational Al, “as a mat-

ter of existential threat to my research team”. And

secondly because it made obsolete many wide-

spread claims about Al and Language Technolo-

gies. Take for example the widely cited and semi-

nal paper in our area of interest, from 2016 and ti-

tled “Growing pains for global monitoring of soci-

etal events” (Wang et al., 2016) : it claims — right-

fully, then — “the text-processing systems used in

event coding are still similar to ones developed

more than 20 years ago”. Could we say this about

our event extraction systems in 2025? I do not

think so.

2 SO WHAT - LLMs as “game chang-
ers” for NLP

In this context, we may wonder: are LLMs truly
game changers for Natural Language Processing in
general, and for Automated Event Extraction from
text in particular? An abundant literature suggests
so, which corroborates the intuitions shared in the
previous section (Cronin, 2024; Toérnberg, 2023;

1 ChatGPT reached 100 million users in two month, while it
took Instagram two years to reach this symbolic step (Deng
etal., 2023)
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Yang et al., 2024). Let’s reflect further, from an
NLP practitioner’s perspective, on the implications
of General-Purpose LLMs for Automated Event
Extraction.

At first glance, one may claim we are reaching “the
end of history” (Chernyavskiy et al., 2021) for
NLP... after all, LLMs act as remarkably versatile
zero-shot machine learning models, being able to
extract almost any relevant information from a
piece of text, relying on almost human-level of text
understanding in hundreds of natural languages,
and on a “world model” derived from their training
on a significant share of all human knowledge ever
produced (in the form of millions of books, ency-
clopaedias, scientific articles, websites, conversa-
tions, blogs, etc.). So, “game over” for NLP scien-
tists, let’s all retrain as “prompt engineers” by prac-
ticing the art of asking the right question to General
Purpose LLMs/oracles...

Well, it’s not that simple.

First of all, let’s not forget the inference cost as-
pects. In Socio-Political Event Extraction, real-life
use cases often require the processing of vast
amounts of raw text (typically, news articles or
field reports), so the computing power to process
them in near-real time can become a significant
bottleneck. Based on my own experience, I would
say there is a ratio of about 1 to 50, or even 100, in
terms of computing power required to run a “good
old” BERT-like model compared to state-of-the-art
LLAMA 4 or Mistral 3.1 open weights models.
Moreover, the latest models require costly and
powerful GPU hardware cards that are on high de-
mand, while BERT-like models run on older hard-
ware that is likely to be already amortised in terms
of cost, and more easily available for purchase. Lit-
erature shows that properly fine-tuned models of
the BERT generation perform at very high levels
for specialised tasks such as geocoding(Tanev &
De Longueville, 2023), sentiment analysis (Di
Nuovo et al., 2024), discourse analysis (Stefanov-
itch, De Longueville, et al., 2023), or topic mining
(Stefanovitch, Jacquet, et al., 2023), which are all
relevant for Automated Event Analysis purposes.
So one may wonder: why would we need to invest
in a Ferrari when we have a highly adaptable fleet
of Land Cruisers at hand?

There is another reason why LLMs are not “the end
of history” for NLP. If LLMs can provide an



answer to virtually any question, it is never guaran-
teed that such an answer — although remarkably
crafted from a linguistic point of view — is factually
correct. The problem of hallucinations is well
known and widely discussed (Huang et al., 2025),
but interestingly, the root causes of such behaviour
are often overlooked. One of these reasons is syc-
ophancy? (Malmqvist, 2024). The need to provide
an answer at any cost, in order to please the inter-
locutor is deeply embedded in the LLM’s training
process, as their reward function includes some
form of “‘user satisfaction”. For this reason, even
the best prompt in the world cannot completely
avoid sycophantic behaviour and hallucinations.
So when facts matter, like in NLP and a fortiori in
its Automated Event Extraction use cases, LLMs
can never be blindly trusted.

Another trustworthiness issue with LLMs is linked
to their “knowledge” component: because they are
so eloquent, and because they have been trained on
much more information than we could possibly
read in our entire lives, we assume they are almost
omniscient. But in fact, the world knowledge they
seem to feature is more a by-product of their next-
word-prediction ability than the result of an accu-
rate and fit-for-purpose world model. LLMs talk,
they know and they even reason... but not in the
exact same way we do (De Longueville et al.,
2025). It is easy to arrive at a misunderstanding sit-
uation with LLMs; in brainstorming or creative use
cases, that can even be an advantage. But in NLP,
where the goal is precisely to extract accurate in-
formation from inherently ambiguous natural lan-
guage, misuse of LLM:s abilities can lead to disap-
pointment.

To overcome the “knowledge” ambiguity of
LLM’s behaviours, the best solution resides in the
engineer ever more complex systems that feed
them with the right contextual knowledge, in a pro-
cess called Retrieval Augmented Generation
(Lewis et al., 2020). In the context of event extrac-
tion, a RAG pipeline can for example include some
Gazetteer lookup to improve geocoding (Tanev &
De Longueville, 2023).

But if LLMs “know”, they also “reason”: imagine
a sentence like “the political meeting will take
place in Zoom”. A RAG-enabled Al system, de-
signed to rigorously lookup places in a comprehen-
sive gazetteer would probably geocode such an

2 According to the Cambridge Dictionary, sycophancy is de-
fined as the “behavior in which someone praises powerful
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event in Zoom, a Village in Soreng Tehsil in West
District  of  Sikkim  State, India (lat
27.144465910353176, long 88.26329879818186),
while we, humans, would rather infer “Zoom” des-
ignates an online video-conferencing platform?®.
This example shows that the “reasoning” compo-
nent of LLMs cannot be blindly trusted either, even
when LLMs are fed with the best data and follow
the best-crafted prompt instructions. It is important
to have that concept in mind, as NLP experts, since
with the advent of Agentic Al systems (Chawla et
al., 2024), we will increasingly rely on LLM’s abil-
ity to reason.

Based on the above, one may conclude that since
LLMs are not magically addressing any possible is-
sue, then they are junk... Since we cannot trust
100% for a task, then we cannot trust them for any
task — including our preferred one: extraction of
spatiotemporal information patters from text. This
would not be a rational approach to the promises of
LLMs. As scientists, we should wonder: if I cannot
trust 100% my LLM system for this task, then to
what percent can I trust it? And there, we start
thinking in terms of precision and recall ... There
we go again!

3  NOW WHAT —the new NLP that looks
like the good old one

Everything changes, but nothing changes: on the
one hand LLMs can act as prodigious zero-shot in-
formation extraction machines that open new per-
spectives for NLP applications, but on the other
hand, their precision and recall need to be accu-
rately measured. ..

Evaluating the performance of NLP software mod-
ules to perform specific tasks, like automatically
extracting information about socio-political events
from text is a classic activity for NLP scientists. It
requires the creation and curation of “gold stand-
ard” corpora, where the expected outcome of a
large number of instances of the same task is en-
coded (usually, by human annotators), and on
which variants of the software module are tested,
until the highest possible F-score (Derczynski,
2016) is reached, expressing the best possible com-
promise between precision and recall.

So, really, nothing new under the sun for NLP prac-
titioners.

or rich people in a way that is not sincere, usually in order
to get some advantage from them”.
3 This is not a fictitious case: | saw it happening.



However, understanding the underlying reasons
for LLMs successes and failures to provide results
corresponding to gold standards opens new re-
search perspectives. For example, there is a need to
better understand and assess spatiotemporal rea-
soning abilities of Al systems based on LLMs, and
how formal ontologies (like gazetteers for place
names, or named entities databases) can comple-
ment LLM’s internal (and perfectible) world model
for tackling hallucinations and supporting entities
disambiguation. In other words, there is a need to
further explore hybrid approaches aiming at devel-
oping NLP processing pipelines that involve
LLMs, advanced Retrieval-Augmented Generation
technique and more deterministic approaches like
rule-based on symbolic Al components. Interesting
developments have been recently published that go
in that direction for geoparsing (Halterman, 2023)
or epidemic events detection (Consoli et al., 2024).
These are examples to follow while exploring other
epistemic tasks related to event extraction..

Also, while the founding principles of NLP task-
specific evaluations remain valid, the scientific
methods to measure the efficiency of non-deter-
ministic Al pipelines executing complex event-ex-
traction processes remain to be studied, thus paving
the way for next-generation socio-political event
extraction research. Inspiration could come from
similar — but distinct — language technology re-
search areas. For example, studying how to im-
prove the knowledge extraction component of an
LLM pipeline with a carefully engineered RAG
component (Ceresa et al., 2025), or by developing
integrated “software + datasets” bundles to well
targeted task evaluation of specialised NLP soft-
ware packages (Bassani & Sanchez, 2024).

To achieve scientifically reproducible results in this
novel area of research for LLM-ready NLP, it is es-
sential that academic organisations have the ability
to run their own LLM inference systems. With the
trend of ever larger LLMs”, and given the IT infra-
structures constraints described above, there is an
increasing trend to rely on LLM-as-service pro-
vided through Application Programming Inter-
faces. This creates an additional difficulty for sci-
entists, as such models, often provided commer-
cially, do not fully disclose their detailed systems
specifications (e.g. input filters, output filters or

4 Although this trend is perceived as plateauing already
(Villalobos et al., 2024), the size of current top-performing
models (which is only based on assumptions for
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system prompts which have a proven strong impact
on an Al service behaviour (De Longueville et al.,
2025), and may change without prior notice, mak-
ing previous NLP task evaluations obsolete. As a
consequence, LLM-as-service is even more a black
box than any Deep Learning model, as the LLM
itself is surrounded with undisclosed technical
components that influence its output.

It is thus a matter of independent science — and ul-
timately of Sovereignty — that Academic organisa-
tions remain capable of fully controlling the execu-
tion environment of the LLMs they base their re-
search on. The availability of state-of-the-art open
weight LLMs is therefore crucial for academia, and
will become of paramount importance as the ad-
vent of Agentic Al will introduce novel paradigms
for knowledge workers, and among them scientists
especially, for interacting with data and infor-
mation, using Al systems as “mediators” (e.g.
when using an LLM-powered tool to perform sys-
tematic literature reviews).

In the light of the above, we may draw this oxymo-
ronic conclusion: for NLP, the advent of general
purpose LLMs is both a revolution and an epiphe-
nomenon.

Been there, seen that: as a geospatial scientist, [ saw
in the early 2000’s the combination of cheaper GPS
devices, pervasive Internet connections and web
2.0 technologies like AJAX lead to a paradigm shift
in my research area (De Longueville et al., 2010).
The release of the Google Earth to the wide public
in 2005 embodied this revolution for the general
public and created a hype similar to the one around
ChatGPT nowadays. Faced with such technologies
enabling interoperable analysis and visualisation of
geospatial data on a smooth Digital Earth interface,
some may have wondered: is it the end of history
for geospatial sciences? Yet, this research area re-
mains vibrant 20 years later, increasing our Earth
Observations capabilities and refining our common
understanding of complex planetary phenomena.
Will the same happen to NLP with the advent of
LLMs and Agentic Systems in the 2020°s? In other
words, dear NLP scientists, are you ready to cope
with the rollout at large scale of “GPS and Digital
Earth, but for the knowledge”? Your answers to
these questions will shape the future of NLP in the
next decades.

commercial, non-open-source models) already exceeds the
IT infrastructure capacity of most Universities and Research
Centres for running them at large scale for inference.
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Abstract

The aim of this paper is to compare the effi-
cacy of multiple different methods of machine
translation in the French-English language pair.
There is a particular focus on Large Language
Models given they are an emerging technology
that could have a profound effect on the field of
machine translation. This study used the Euro-
pean Parliament’s parallel French-English cor-
pus, testing each method on the same section of
data, with multiple different Neural Translation,
Large Language Model and Rule-Based solu-
tions being used. The translations were then
evaluated using BLEU and METEOR scores to
gain an accurate understanding of both preci-
sion and semantic accuracy of translation. Sta-
tistical analysis was then performed to ensure
the results validity and statistical significance.
This study found that Neural Translation was
the best translation technology overall, with
Large Language Models coming second and
Rule-Based translation coming last by a signifi-
cant margin. It was also discovered that within
Large Language Model implementations that
specifically trained translation capabilities out-
performed emergent translation capabilities.

1 Introduction

This study aims to compare previous and current
methods of Machine Translation (MT) with Large
Language Models (LLMs) to gauge the effective-
ness of novel technologies in the field of MT.

The continuous improvement of technology in
the MT space often leads to older methods be-
ing left behind — especially in the modern day as
more and more companies make the pivot to LLMs.
These previous methods, such as rules-based MT,
can be effective in situations where there is a lack
of resources available to train models. Addition-
ally, LLMs trade off of accuracy for natural sound-
ing translations could cause myriad issues in areas
where accuracy is paramount such as the medical
or legal fields. This suggests that Neural Machine
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Translation (NMT) is a better solution for these
contexts at the moment. The question of LLMs
in the field on MT is still in the early stages of
being researched but does have promising results
in early studies (Mujadia et al., 2023). However,
these studies are often made with comparisons to
other LLMs, giving no context as to how they per-
form against other methods of translation. Given
the intense amount of resources required to train
and run LLMs, an accurate inter-method compari-
son would allow potential users of these systems to
evaluate the pros and cons before committing the
time and resources required to use them.

This paper aims to create a clear picture on how
rules-based translation, neural translation, and large
language models and compare to each other on
translation of the same text, and how different im-
plementations of these methods can affect transla-
tion quality. This will give future research a base-
line to compare from when progressing the field.
This research is novel in that no other study has ever
compared these three methods of MT in the same
framework before. These new contributions will
provide a clear picture of the current MT landscape
giving insight as to where research should go in fu-
ture. They will also let developers planning to use
MT as part of their product to make an informed de-
cision on which method is best for them, based on
the trade-offs of each one. Within this study the ef-
ficacy of different translation approaches for LLMs
will also be investigated, allowing developers of
this technology to tailor their efforts depending on
the task.

This study is highly relevant to the automatic ex-
traction of socio-political events from text, given its
focus on automatic translation and multilinguality.
In multilingual contexts, translation methods are
often essential for enabling such extraction. The
data used in this research are drawn from the Eu-
ropean Parliament’s French—English parallel cor-
pus, which provides extensive coverage of socio-
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political events. The findings of this research offer
valuable guidance to researchers in selecting suit-
able approaches for tackling multilingual tasks of
this kind.

2 Related Work

Although significant research on each of these
methods has been done individually. And research
on comparisons between systems like RBMT, NMT
and LLMs has been done, these systems have never
all been compared together using the same corpus
with the same preprocessing on the translation re-
sults. Additionally, a majority of research only
compares two types of systems at a time, whereas
this study compares 3 types of systems with dif-
ferent implementations of those types. The rest
of this subsection will discuss prior studies done
on this topic, the limitations of that research and
the significance of the research being done in this
study.

Historical studies naturally covered RBMT and
Statistical Machine Translation (SMT) systems
such as this study by Costa-Jussa et al. (2012) com-
paring RBMT and SMT on Catalan — Spanish MT
systems across 2 domains. This research was key in
defining performance differences between systems.
Another key paper evaluating direct performance
comparisons between the two systems is the pa-
per by S and Bhattacharyya (2017) which uses the
Marathi—Hindi language pair. This is a study with
very different takeaways due to the structural differ-
ences between Marathi and Hindi, compared to the
very similar languages of Catalan and Spanish. In
more modern research NMT models have started
to be included as part of these studies with multiple
studies being published in comparing all 3 system
types by De Silva and Hansadi (2024) and Dwivedi
et al. (2025) covering this area of research. Addi-
tionally, as LLMs have started displaying more and
more translation capabilities comparison with ex-
isting NMT solutions has started to be done. Such
as a paper by Sizov et al. (2024) comparing NMT,
LLM, and human translations using human and au-
tomatic evaluation. This study sets itself apart by
comparing the translations LLMs produce to other
systems outputs, rather than focusing on the tech-
nique specifically used to get the LLLMs to produce
this output. However, all of these studies have limi-
tations which will be addressed in the next section.

In studies done less recently only two different
methods were compared, not allowing a complete
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and fair comparison across multiple different sys-
tems. This aspect did change with the advent of
NMT as researchers wanted to see how it would
match up with pre-existing techniques. After the in-
troduction of LLMs to the MT space this focus has
narrowed again as studies look to see how LLMs
match up against the latest and greatest technolo-
gies on offer, rather than how they fit amongst all
the available technologies. Additionally according
to a meta-analysis by Marie et al. (2021) BLEU
scores have been used ineffectively. As studies
often copied scores directly from other research
without any consideration for how the score was
calculated, rendering the comparison invalid. Ad-
ditionally, without statistical significance testing,
the difference between the two scores could be
completely coincidental, this is an important tool
that is rarely used and the usage of which has been
declining over time.

3 Methodology

This section will cover the design of the experiment
carried out, including the questions to be answered
by the experiment; the translation systems being
evaluated and any configurations required to make
them work; the corpus these translation systems
were tested on; the evaluation metrics use; their
specific implementations and the statistical analysis
methods used. The experiment protocol will then
be discussed, with an evaluation of how these pro-
tocols ensure fair comparison and an explanation
of how the scores were calculated and compared.

3.1 Corpus Selection and Preparation

The corpus used was the European Parliament’s
French-English parallel corpus (Koehn, 2005).
This was chosen as it covers a variety of domains
with discussions ranging from law to the medical
field, to nature conservation. This variety enables
an excellent insight into how MT systems perform
across multiple domains. In addition, the size of
this corpus allows for ample development and ex-
periment sets, meaning the development of the test-
ing systems can emulate the experiment itself more
closely in terms of scale, without restricting the
size of the experiment data. The first 40,000 lines
of the last 10% of the data were used as a develop-
ment set to ensure the integrity of the data, then the
next 60,000 lines made up the experiment data set.
The only preprocessing done on the data set was
to remove unreasonably long sentences that would



exceed the token limits of the models being used.

3.2 Rule-based Model

Given the lack of freely available rule-based mod-
els, the only model evaluated in this study is Aper-
tium (Forcada et al., 2011), an open-source RBMT
toolkit. For this study version 2.9.4 of the base
Apertium model, the English Apertium version,
and the French Apertium version were installed.
Then the French English language data from the
Github was downloaded and the instructions there
were used to install and set up the pair. To access
the system the command line was used running
a shell script that would split the complete exper-
iment file into chunks. Apertium would process
each chunk then the translations would be recom-
bined in order. Apertium was chosen in this study
as it is the most accessible RBMT model and has
been used in multiple research studies previously
(Costa-Jussa et al., 2012); (Corbi-Bellot et al.).

3.3 Neural models

Three neural models were assessed in this study to
allow different styles and implementations to be
evaluated against LLMs, enabling a better overall
picture of how they fit in the space. All models
were run locally with Huggingface’s transformers
library (Wolf et al., 2020) using the pipeline in-
terface in Python to send data to the models and
receive outputs. The largest models possible were
used, as generally the larger the model, the better it
performs. Every model was used in the default con-
figuration, with the source languages being speci-
fied as French and the target language as English.
The neural models chosen as part of this study are
the following:

The Marian NMT system is a purely NMT sys-
tem that uses the transformer architecture (Junczys-
Dowmunt et al., 2018), it was developed as an
efficient C++-only implementation of the architec-
ture detailed in the paper “Attention is All You
Need” (Vaswani et al., 2017). The particular ver-
sion used was the French-English model from Opus
MT (Tiedemann and Thottingal, 2020); (Tiede-
mann et al., 2022), which is a Marian model trained
on the Opus parallel corpus.

Meta’s M2M 100 model (Fan et al., 2020) is a
multilingual translation model that supports transla-
tion across 100 different languages. It still uses the
same attention mechanism proposed by Vaswani et
al. but only requires one model to translate between
all these languages. M2M100 was created to ad-
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dress the traditional “English-Centric” approach of
multilingual translators, which typically involves
translating the source language into English, then
English into the target language. The version used
in this study was the 1.2 billion parameter version
in order to enhance accuracy.

Meta’s No Language Left Behind (NLLB) model
(Team et al.) is another multilingual translation
model but it supports many more languages. NLLB
supports 200 different languages, with 150 of them
being low-resource languages. The specific model
used in this study is the 1.3 billion parameter ver-
sion, the goal was to use the 3.3 billion parameter
version but due to computing resource constraints,
this option could not be used.

3.4 Large Language Models

Two LLMs were evaluated in this study to assess
how different approaches towards translation ca-
pabilities in LLMs can change their effectiveness.
Both models were run locally using Huggingface’s
transformers library and pipeline interface. The
LLMs chosen for evaluation are the following:

Google’s Text-to-Text Transfer Transformer or
T5 (Raffel et al., 2023) is a large language model
that treats every NLP task as a text-to-text prob-
lem!. This approach means TS5 can in effect switch
modes; this allows the system to approach transla-
tion as a task it was directly trained for, rather than
as an emergent capability. The uniqueness of T5’s
approach positions it in a middle ground between
NMT systems that can only translate and LLMs
that are not trained for translation whatsoever. This
technique significantly improves T5’s ability to fol-
low instructions and perform zero-shot tasks, al-
lowing TS5 to perform in this study despite the con-
strained computing resources. The specific model
version was the FLAN-TS5 large, an instruction-
tuned version of T5. The model was used in its
default configuration with the maximum number
of new tokens it was allowed to produce set to 256.
When translating, the model was prompted with
“Translate from French to English” followed by the
sentence to be translated.

Meta’s Large Language Model Meta Al (Llama)
(Touvron et al., 2023) is an open-source family
of LLMs that aims to democratise Al access and
enable research advancement. They are a more

"Many researchers consider T5 a Deep Learning model
not an LLM. For the purposes of this study, T5 will be classed
as an LLM due to its generation capabilities. Additionally, the
use of T5 large gives more LLM like behaviour.



standard style of LLM being decoder only and pre-
trained on large text corpora, meaning translation
is an emergent capability. The Llama version used
in this study was Llama 3.2 instruct with 3 bil-
lion parameters (Grattafiori et al., 2024). The in-
struct version is fine-tuned on instruction following
data, this will improve the model’s adherence to
the translation request but not the translation itself.
The configuration of the model was set to a maxi-
mum of 300 new tokens the precision of the model
had to be reduced from 32-bit to 16-bit due to re-
source constraints. This causes a small reduction
in overall accuracy, particularly in more nuanced
expressions, but is necessary given the constraints
of the experiment. The model was also set to only
return the response to the prompt. To prompt the
model, lists of dictionaries with role and content
sections were used. The prompt used was “You
are a French to English Translator, translate the
input sentences and only give the output sentence”
in the system role to set up the model, then in the
user role the sentence was given to the model to be
translated.

3.5 Evaluation Metrics

Two automated evaluation metrics were used in
this study, BLEU score (Papineni et al., 2002) and
METEOR score (Banerjee and Lavie, 2005). This
approach was used as BLEU score alone can lead to
incorrect conclusions about which systems are bet-
ter according to a meta-evaluation of MT research
(Marie et al., 2021), using METEOR avoids this pit-
fall and also evaluates the systems from a semantic
perspective. The Python Natural Language ToolKit
(NLTK) (Bird et al., 2009) implementations of both
these scores were used. The reference translations
for systems to be evaluated against were taken from
the Europarl parallel corpus and no modifications
were made to the reference translations.

To calculate BLEU score for each translation,
the score for each sentence was calculated using
the sentence_bleu() function in NLTK, then all the
scores were averaged to get an overall score for
the translation. Each n-gram was weighted equally,
and no smoothing function was used. Sentence
level BLEU calculation was used so that bootstrap-
ping could be performed as part of the statistical
analysis.

To calculate the METEOR score for each trans-
lation, the score for each sentence was calculated
using the single_meteor_score() function as there
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was only one hypothesis per reference translation.
The default parameter settings for this implemen-
tation were used as they have been studied and
calibrated to align with human judgements.

3.6 Data

Overall system BLEU score
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Figure 1: Graph of overall BLEU score for each system
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Figure 2: Graph of overall METEOR score for each
system

[ system name B BLEU Score METEOR Score

Apertium 27.07
M2M100 26.03 56.49
Marian 30.8 60.59
NLLB 29.8 59.44
15 24.47 54.97
Llama 20.88 52.6,

Figure 3: Table of overall BLEU and METEOR scores
for each system

3.7 Statistical Analysis

In order for any conclusions to be made about
the results their statistical significance needs to
be evaluated to demonstrate they are not just ran-
dom chance. A meta-evaluation Marie et al. (2021)
found that only a minority of papers perform sta-
tistical significance testing on their scores. This
study addresses this methodological gap by using



bootstrap resampling to ensure the significance of
the scores.

Bootstrap resampling was used to create 1000
samples for each system by randomly selecting
the sentence level scores from each system with
replacement. The size of each sample was 60000
scores - the same size as the original dataset for
each system. The overall average of each sample
was then recorded so that distributions of these
averages could be made and evaluated for each
system.

From these distributions, the mean, standard de-
viation, 95% confidence intervals, minimum, and
maximum were calculated for each system. The
mean is the primary performance metric and the
number that will be compared between systems.
The standard deviation shows the variability across
samples and how consistent each system’s perfor-
mance is. The 95% confidence intervals establish a
range where the true score for each system likely
exists. The minimum and maximum values show
the best and worst bootstrap samples - a small gap
between these two numbers indicates less variabil-
ity. Together, these metrics give a comprehensive
statistical profile of each system’s performance.
Excel’s standard functions were used to calculate
these metrics;

The AVERAGE)() function was used to calculate
the mean of the bootstraps for each system.

STDEV.S() was used to calculate the standard
deviation.

The 95% confidence intervals were calculated us-
ing the CONFIDENCE.NORMY() function, which
determines the margin of error based on standard
deviation, alpha level, and sample size. An alpha
level of 0.05 indicates a 95% confidence interval.

The MIN() and MAX() functions were used to
calculate the minimum and maximum sample val-
ues for each system.

To compare each system with every other system
meaningfully, the p-values between each system
were calculated. To calculate the p-values the offi-
cial result between two systems is compared with
every bootstrap sample to see if they match, i.e.
if in the official results one system is better; is it
better in each bootstrap sample? If less than 5% of
the bootstrap results contradict the original finding,
meaning p < 0.05, then the official result is statisti-
cally significant. Calculation of these values was
done in excel. To calculate the p-values between
systems a formula was implemented to count the
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number of occurrences where the bootstrap result
matched the actual comparison result between the
two systems. A sum of these occurrences was then
done, that sum was divided by 1000 and taken away
from 1 to get the final value. The formula is as fol-
lows:

1 - SUM(IF(system 1 bootstrap values > system
2 bootstrap values, 1, 0))/1000

3.8 Apertium Translation

As Apertium cannot handle a huge number of lines
at once, the translation data was split into chunks of
150 lines with each chunk in its own file. Apertium
was then given each line from each file to translate,
every 50 sentences the translations would be writ-
ten to a file, giving 3 new translated files for every
chunk. This was done for every file, and then the
files were recombined to create a sentence-aligned
file containing every translated sentence.

3.9 Neural Translation

The neural translation was all done from within
one file, with each translator translating the source
file sequentially so each could have the maximum
compute resources available to it. Each system was
set up using Huggingface’s pipeline in translation
mode, and then a for loop iterating through each
line in the file was started, yielding each line to the
pipeline, the corresponding output was then written
to the results file in the same order as the source
file ensuring sentence alignment.

3.10 LLM Translation

The LLM translation was done from two separate
files given their need for slightly different setups
and prompt structuring. TS5 was also implemented
with Huggingface’s pipeline module, it was set up
in text-to-text generate mode, with the number of
max new tokens allowed to be generated each time
set to 256 due to memory constraints. The same
for loop to iterate through each line in the source
file was used, the input to the model was “Translate
from French to English sentence to translate”. For
Llama’s implementation, an identical process was
used, however, Llama was set up with a max new
token count of 300 and 16-bit precision.

3.11 Score Calculation

To calculate the overall METEOR and BLEU
scores for each system the individual score of both
types for each sentence was calculated then an av-
erage of all these sentences was calculated to get



the overall score for each system. To perform boot-
strapping a score was randomly selected from the
original population of the 60,000 sentence-level
scores and added to a new sample but left in the
original population. The overall average for the
sample was then calculated and added to a list of
bootstrap averages for that system.

3.12 Summary

The comprehensive, robust approach detailed in
this chapter shows that this experiment is compe-
tently able to answer the research questions posed.
With a strong framework designed to effectively
evaluate each method against the other, using mul-
tiple implementations of methods to gain a compre-
hensive understanding of the performance of each.
The use of the Europarl corpus provides a diverse
and well-established dataset for translation tasks.
The use of both BLEU and METEOR provides a
more thorough analysis of the translation quality
of each system, as one evaluates the accuracy of
the sentence and the other evaluates the seman-
tic meaning. Additionally, statistical analysis with
bootstrapping validates the significance of these
results - ensuring that conclusions drawn from this
study are reliable.

4 Discussion

This section will analyse the results presented in
the previous section and discuss their implications.

4.1 Primary Research Question 1

How do RBMT, NMT, and LLM translation ap-
proaches compare across general translation tasks
in the French-English language pair?

The initial comparison is quite clear with NMT
coming out on top with the highest performing
NMT system, Marian, having a BLEU score of
30.8% and a METEOR score of 60.59% (3), NMT
was then followed by LLMs with the highest scor-
ing LLM, T5, having a BLEU score of 24.47% and
a METEOR score of 54.97% (3). RBMT was then
last with a significantly larger gap as Apertium had
a BLEU score of 2.86% and a METEOR score
of 27.07% (3). This huge gap of nearly 28% in
BLEU and nearly 33% shows the significant ad-
vancements that have been made in the space since
the creation of Apertium. In particular, the larger
disparity in METEOR scores shows NMT’s abil-
ity to maintain semantic coherence over the whole
translation compared to RBMT. Given NMT’s dom-
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inance in the study, a comparison between them
provides insight into which implementation pro-
vides the best translation. The best system was
Marian, followed by NLLB with a BLEU score of
29.8% and a METEOR score of 59.44% (3) with
M2M100 coming last in the category with a BLEU
score of 26.03% and a METEOR score of 56.49%
(3). Both systems tuned to translate multiple lan-
guages rather than just one pair performed worse
than the system only trained for the French-English
language pair, showing that even though good re-
sults can be achieved with a generalised system,
specially trained systems will outperform.

4.2 Primary Research Question 2

Are LLMs the method that will become the prevail-
ing technology in the translation space in future?

The results of this experiment indicate that
LLMs cannot quite attain the level of translation ac-
curacy of NMT models — whether they are multilin-
gual or single-language systems. With a small per-
formance difference between the lowest performing
NMT model M2M100 (BLEU: 26.03%, METEOR:
56.49%) (3) and the highest performing LLM T5
(BLEU: 24.47%, METEOR: 54.97%) (3) of around
1.5% across both scores. Despite these small dif-
ferences, the comparison is significant due to the
p-value of 0 (16,17) between these systems. When
comparing between best-performing NMT system
Marian (BLEU: 30.8%, METEOR: 60.59%) (3),
and the worst-performing LLM Llama (BLEU:
20.88%, METEOR: 52.6%), there is BLEU gap
of nearly 10% and a METEOR gap of nearly 8%.
These score differences show that different imple-
mentations of LLMs using different approaches can
drastically alter translation quality, paving the way
for new LLM approaches to be used in the future.
Consideration must also be made for LLMs’ ability
to perform general tasks beyond translation such as
text generation, these extra facilities could lead to
users taking a small hit in translation quality to have
a single solution for all their problems, rather than
dedicated systems for each task. However, LLMs
incredibly high resource costs for similar or worse
translation results limits their ability to spread as
a translation tool, as training and running them re-
quires huge time and infrastructure investments. In
time, LLMs should become the prevailing technol-
ogy as customers who already use LLMs will want
translation capabilities included. NMT and LLM
approaches may also be combined in a similar vein



to how TS5 works, allowing for the translation qual-
ity of NMT systems, alongside the other abilities
of LLMs.

4.3 Secondary Research Question

In the category of LLMs, how do the emergent
capabilities of LLMs which have not been trained
to do translation tasks compare to the capabilities
of LLMs which have explicitly been trained to do
translation tasks? Using TS5 as the model explic-
itly trained for translation and Llama as the model
with emergent capabilities it is clear there is a sig-
nificant difference in translation quality between
the two. T5’s scores (BLEU: 24.47%, METEOR:
54.97%) are higher than Llama’s (BLEU: 20.88%,
METEOR: 52.6%) with the larger difference in
BLEU score of nearly 5% compared to the dif-
ference in METEOR score of just over 2%. This
gap between translation scores shows specialised
training for an LLM significantly enhances transla-
tion precision while only slightly enhancing overall
translation quality. This suggests that for situations
where accuracy of translation is paramount, specif-
ically trained LLMs are a better fit as they will
better convey the meaning of the source text.

4.4 MT in Specialised Domains

These results can be extrapolated to gain insights
into how these technologies would perform in dif-
ferent situations, such as in specific translation do-
mains like legal or medical disciplines. In these
domains translation precision and accuracy are
paramount as errors can have serious consequences,
as such the systems with the best scores overall, and
particularly higher BLEU scores, would fare best in
these domains. NMT systems, Marian in particular,
are the solution for this given their top overall per-
formance and high BLEU scores, indicating good
precision. However, in domains that require less
precision and more natural-sounding translations
such as creative content like advertising, LLMs
could play a key role. If creative companies are al-
ready using LLMs for other purposes, their ability
to provide good translations that maintain semantic
accuracy in an area where precision doesn’t mat-
ter as much provides these companies with one
technical solution for multiple areas.

4.5 Future Developments

As the MT technologies progress, it is important
to distinguish which technologies will dominate
in the near and long term. In the near term, NMT
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will remain the dominant technology as its signif-
icant performance advantage over other technolo-
gies suggests it will be the default choice for the
highest-quality translation in the immediate future.
In the long term, the best of both LLM and NMT
technologies will likely converge, indicated by the
small gap between LLM and NMT performance.
This idea is also demonstrated by T5’s approach
of being trained for language translation on top
of its general LLM capabilities, incorporating the
strengths of both these technologies. As these tech-
nologies develop, the trade-off of functionality and
computing cost will be prioritised over translation
quality as it becomes less of a factor. The large
computing costs but extra functionalities of LLMs
need to be considered against NMT’s lower com-
puting costs but single functionality. Additionally,
single-language pair NMT systems will start to be
phased out as the close performance gap between
Marian and NLLB of less than 1% indicates that
multilingual NMT solutions will have equal perfor-
mance to single-pair solutions.

4.6 Limitations of Analysis

To properly contextualise the analysis made in this
section it is important to highlight the limitations
of the study that produced the results. The use of
automated evaluation metrics without any human
evaluation can potentially cause false confidence
as there is evidence to show that METEOR and
BLEU can miss essential sentiment mistakes in
translation (Saadany and Orasan, 2021). In addi-
tion, testing on a single high-resource language
pair like French-English puts corpus-based trans-
lation systems at an advantage as the resources
to train them properly, whereas RBMT systems
often perform better with low-resource languages
(Bayo6n and Sanchez-Gijon, 2019). The resource
constraints in this project could have hindered LLM
performance, particularly in the case of Llama, as
the precision had to be reduced to 16-bit due to
memory constraints and a model with fewer param-
eters was used. Despite these limitations, the sta-
tistical significance of the performance differences
shows that the results discussed in this chapter are
reliable. These constraints should be considered
when interpreting the results of this study and ap-
plying its findings.

4.7 Summary

The key findings from this study answer the first re-
search question, definitively showing that NMT is



the superior technology in both semantic accuracy
and precision of translation. LLMs closely fol-
lowed with much lower precision but were closer
in semantic accuracy due to their ability to under-
stand the structures of human language with RBMT
coming last by a significant amount because of its
inability to include semantic context when translat-
ing. Despite not being the top-performing technol-
ogy the results shown by LLMs in this study were
very promising, positioning them to become the
prevailing technology in the MT field in future, es-
pecially when specially trained for translation tasks
alongside generative capabilities. Within the LLM
field, two different styles of translation were evalu-
ated, emergent translation capabilities and LLMs
trained for translation in the form of Llama and
T5. TS had better overall translation quality with
a much bigger improvement over Llama in preci-
sion, showing that while emergent capabilities are
impressive and could be used for non-critical trans-
lation, if accurate, precise translation is needed
specially trained systems are better. These com-
parisons can be made with confidence due to the
extensive statistical significance testing performed
as part of this study, with every p-value being O the
comparisons between each system are extremely
statistically significant and can be evaluated as ex-
tremely valid. This study is the first to compare
these three translation technologies and as a result,
provides unique insight for users or developers con-
sidering implementing one of them.

5 Conclusion

The significance of this research is that there is a
comprehensive evaluation framework comparing
three different MT translation technologies to en-
sure the accuracy of results and comparison. These
translations are also evaluated on both a word-by-
word basis and overall semantic basis using mul-
tiple evaluation metrics, something many studies
lack. The translation task itself covers multiple do-
mains, allowing a true demonstration of each sys-
tem’s more diverse capabilities. The study also im-
plements statistical analysis suggestions by Marie
et al. in order to ensure the significance of the find-
ings, leading to confidence that these results can be
used to make informed decisions when using these
systems in future. The development of a frame-
work like this provides a consistent benchmark fu-
ture technologies can be measured against. This
paper also offers key insights into the current MT
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space and its potential future trajectory. The results
of this study are directly relevant to the automatic
extraction of socio-political events in multilingual
contexts, where the use of automatic translation
methods may be necessary.

5.1 Limitations

Despite this project’s successes in creating effective
results, multiple resource constraints limited the
scope of the research. Computing restraints lead
to smaller models being used — particularly when
it came to LLMs — with Llama’s 3.3 billion pa-
rameter model having to be used, despite the avail-
ability of larger models. Llama’s precision also
had to be reduced due to memory constraints with
the hardware used. The use of the French-English
language pair also favours data-driven approaches
as it is a high-resource language pair with plenty
of data available to train systems that need it. If
this paper were to be repeated with more time allo-
cated more language pairs from different language
families would be added to assess the efficacy of
each system with different grammatical structures
and vocabularies. Statistical models would also
be assessed to provide even more context of how
different technologies perform.

5.2 Future Work

Future work directly stemming from this research
could involve creating both broader and more spe-
cific studies. Future research projects with access
to more compute or paid APIs can use larger, more
performant models such as LLMs with 100 billion
or more parameters. This allows better insight into
very current technologies in a way that is unavail-
able with open-source resources. Another avenue
of research developed from this would be repeat-
ing the same study with more RBMT systems on
low-resource languages. This reverses the dynamic
of corpus-based systems having an advantage al-
lowing RBMT to show its use in more niche sce-
narios. A final branch of study resulting from this
project would be developing and investigating hy-
brid NMT-LLM approaches to translation. These
would also have to be evaluated from an LLM per-
spective to ensure the different training method
would not affect its generative capabilities. This
research would heavily advance the field of MT
potentially removing the need for compromise.
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Figure 15: Llama METEOR score bootstrap distribution
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mean | 208855 26,0358 30.8024 208023  24.4704| 2855
std dev 0.0822 0.0919 0.0987 01013 0.0888 0.0290

min 20.6704 25.6882 30.5168 29.5034 24.1967 2.7702

Figure 16: Statistics table for BLEU bootstrap scores

[evics (3]Liama metaor B2/ o100 metaor_ 4] artan meteor [2|N:.8 meteor K4/ 5 meteor E2/Apertiummetcor (]
60.5876 54.9659

mean 20.8853 52.6005 59.4417 . 27.0714
std dev 0.0823 0.0876 0.0842 0.0873 0.0837 0.0552
cl 0.0051 0.0054 0.0052 0.0054 0.0052 0.0034
min 20.6704 52.3078 60.2596 59.1771 54.7329 26.9152
max 21.1543 52.8834 60.8371 59.7371 55.1862 27.2814,

Figure 17: Statistics table for METEOR bootstrap
scores
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Abstract

Recent advancements in large language mod-
els (LLMs) have enabled their widespread use
across diverse real-world applications. How-
ever, concerns remain about their tendency to
encode and reproduce ideological biases along
political and economic dimensions. In this pa-
per, we employ a framework for probing and
mitigating such biases in decoder-based LLMs
through analysis of internal model represen-
tations. Grounded in the Political Compass
Test (PCT), this method uses contrastive pairs
to extract and compare hidden layer activa-
tions from models like Mistral and DeepSeek.
We introduce a comprehensive activation ex-
traction pipeline capable of layer-wise analy-
sis across multiple ideological axes, revealing
meaningful disparities linked to political fram-
ing. Our results show that decoder LLMs sys-
tematically encode representational bias across
layers, which can be leveraged for effective
steering vector-based mitigation. This work
provides new insights into how political bias
is encoded in LLMs and offers a principled ap-
proach to debiasing beyond surface-level out-
put interventions.

1 Introduction

Large Language Models (LLMs) have become
foundational tools across a wide spectrum of appli-
cations, yet their outputs frequently reflect politi-
cal and ideological biases, particularly in contexts
involving sensitive framing or policy-oriented dis-
course (Zheng et al., 2023; Afzoon et al., 2025).
This problem is particularly pressing in multilin-
gual low-resource settings, where LLMs often pro-
duce uneven or culturally misaligned outputs across
different languages, amplifying social or political
asymmetries (Kumar et al., 2023; Maskey et al.,
2025).

Emerging research reveals that a model’s ideo-
logical leanings are more influenced by input lan-
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Figure 1: Example of social bias mitigation in our frame-
work. The input PCT statement (4) triggers a high-bias
response aligned with tribal loyalty framing.
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{
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guage than by intended sociocultural identity, rais-
ing serious concerns about fairness in multilingual
settings (Helwe et al., 2025). For instance, the
same political statement can elicit starkly differ-
ent responses when phrased in Urdu versus Pun-
jabi, even within the same model. As illustrated in
Figure 1, such biases can result in overconfident
responses that reflect tribal or populist framings,
potentially skewing downstream interpretations.

Prior studies have largely focused on evaluating
LLM bias at the output level—either by quanti-
fying stance across Political Compass Test (PCT)
statements (Barkhordar et al., 2024) or by cata-
loging surface-level disparities across languages.
However, these approaches stop short of proposing
effective and reproducible mitigation strategies that
operate within the internal representation space of
decoder models (Ejaz et al., 2023).

To address this gap, we investigate a modular
activation-based mitigation framework that uses
contrastive ideological prompts from the PCT to
extract, analyze, and intervene on latent bias di-
rections within decoder LLMs. At the core of the
method is the use of Steering Vector Ensembles
(SVE): layer-specific vector representations that
capture ideological framing and allow for inference-
time debiasing without fine-tuning (Siddique et al.,

Proceedings of the 8th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Texts associated with RANLP 2025,

pages 52-61, Varna, Bulgaria, Sep 13, 2025.
https://doi.org/10.26615/978-954-452-099-1-006


https://doi.org/10.26615/978-954-452-099-1-006

2025). Our contributions are as follows:

* We present a multilingual bias mitigation
method on PCT using Steering Vector En-
sembles derived from contrastive political
prompts along social and economic axes.

Our pipeline supports scalable extraction and
aggregation of hidden activations across de-
coder LLMs (e.g., Mistral, DeepSeek) in low-
resource languages.

* We demonstrate that ensemble-based interven-
tions reduce bias while maintaining fluency
and context relevance, offering a reproducible
path toward fairer multilingual LLM behavior.

2 Related Work

2.1 Bias Evaluation via the Political Compass
Test (PCT)

The Political Compass Test (PCT) has become a
widely used diagnostic tool for probing the political
leanings of LL.Ms (Helwe et al., 2025). Its struc-
tured two-axis framework—economic (left—right)
and social (authoritarian—libertarian)—makes it
particularly useful for assessing ideological align-
ment in model responses (Lee et al., 2022).

Early studies (Liu et al., 2024) leveraged the
PCT for output-level bias evaluation, prompting
models with ideologically framed statements and
analyzing completions via stance classification or
sentiment scoring. These studies uncovered consis-
tent political leanings in popular LLMs, often skew-
ing toward left-libertarian quadrants (Shen et al.,
2023).

Multilingual Political Bias Studies. Recent re-
search has highlighted that language plays a key
role in shaping LLM bias. Thapa et al. (2023) trans-
lated the PCT into Nepali and found that smaller
models exhibited economic-right bias, while larger
ones leaned socially left. Nadeem et al. (2025)
extended this analysis to low-resource languages
(Urdu and Punjabi), showing that models exhib-
ited stronger authoritarian tendencies when gen-
erating in low-resource regional languages. Sim-
ilarly, Helwe et al. (2025) evaluated 15 multilin-
gual LLMs across 50 countries and found that both
prompting language and persona assignment sig-
nificantly influenced model stance—often more
so than the nominal national identity (Feng et al.,
2023).
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These findings collectively underscore that polit-
ical bias in LL.Ms is both pervasive and language-
conditioned, and that multilingual evaluation is es-
sential to uncovering such disparities. However, all
these approaches remain post-hoc, focused solely
on surface-level output, and do not probe the inter-
nal representation space where ideological bias is
likely encoded.

2.2 Steering Vectors and Ensemble
Approaches for Mitigation

Beyond evaluation, recent research has explored
representation-level mitigation via steering vec-
tors—directional vectors derived from hidden state
differences between biased and neutral (or con-
trastive) inputs. Introduced in contexts like toxicity
filtering and sentiment control (Sun et al., 2022),
steering vectors operate at the embedding or hidden
state level, modifying a model’s response without
retraining.

More recent work introduced Steering Vector En-
sembles (SVE) (Siddique et al., 2025), which aggre-
gate vectors across multiple demographic groups,
model layers, or task settings. These ensembles of-
fer improved robustness and generalizability. How-
ever, SVE studies have been narrow in scope, often
focusing on: Encoder or encoder-decoder architec-
tures like BERT or T5;, Domain-specific settings,
such as toxicity or fairness in QA;, and English-
only applications, with little attention to ideolog-
ical framing or multilingual dynamics. Thus, the
potential of SVE for open-ended political discourse,
particularly in decoder LLMs, remains largely un-
explored.

Despite promising advancements, three core
gaps remain in the literature:

* Representation-level blind spots in decoder
LLMs: Most bias studies focus on outputs,
leaving open questions about how and where
ideological bias is encoded in decoder-only
models like Mistral or DeepSeek (Rottger
et al., 2024).

Lack of systematic contrastive activation
pipelines: There is no open-source or stan-
dardized pipeline for extracting contrastive ac-
tivations (e.g., liberal vs. authoritarian) across
layers and prompts in decoder LLMs, particu-
larly for multilingual bias detection.

Underautilization of SVE in political con-
texts: Steering Vector Ensembles have shown
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Figure 2: Bias mitigation pipeline using steering vectors in transformer-based LLMs. Multilingual statements
from the Political Compass Test (PCT) are used to construct contrastive pairs representing opposing ideological
stances (positive vs negative). Each pair is passed through a pretrained language model (e.g., DeepSeek-7B), and
hidden states () € R? are extracted from each transformer layer. A target layer [* (e.g., 20) is selected, and

its activations are mean-pooled to form Ao and hpeg. A bias direction vector is computed as v = fipos —

Hneg >

representing the difference between positive and negative class means. This vector is injected via a forward hook
into the model’s target layer. The modified model then generates a mitigated response, which is evaluated using
zero-shot stance classification to obtain a final stance score (Thapa et al., 2024).

promise in fairness-related domains, but their
application to ideological bias mitigation,
particularly across languages and political
axes, remains under-investigated (Chen et al.,
2020).

To address these limitations, our work introduces
an activation-based bias mitigation pipeline tailored
for decoder LLMs. Our core contributions include:
A scalable, multilingual framework for layer-wise
activation extraction using PCT-based contrastive
pairs; A representation-level analysis method that
identifies and aggregates ideological bias directions.
And the first integration of Steering Vector Ensem-
bles into decoder-based LLMs for mitigating po-
litical bias across both social and economic axes.
By bridging output-based evaluation and internal
mitigation strategies, we provide a new foundation
for probing and correcting ideological bias in mul-
tilingual generative models. Although we focus on
Political Compass Test (PCT) prompts, our pipeline
is modular and could be extended to other domains
such as healthcare or education. The ensemble de-
sign also improves robustness to prompt framing
by aggregating across multiple paraphrases. Our
implementation is publicly available to support re-
producibility and further work !.

3 Methodology

This section presents a framework for mitigating
political bias in multilingual large language mod-
els (LLMs) using contrastive political pairs de-

'nttps://github.com/Afx—Msh/SVE_
Mitigation
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rived from the Political Compass Test (PCT). The
pipeline integrates contrastive pair construction,
activation-based analysis, and vector steering. We
evaluate steering effectiveness using Bias Score
Reduction (ABias) and response quality measures
inspired by the work (Siddique et al., 2025).

3.1 Framework Overview

We introduce a modular pipeline for political de-
biasing of autoregressive large language models
(LLMs) using contrastive prompting and steering
vector interventions. Our approach consists of four
main stages: constructing ideologically contrastive
prompt pairs based on translated Political Com-
pass Test (PCT) statements, extracting hidden ac-
tivations from selected transformer layers, train-
ing layer-specific classifiers to obtain directionally
meaningful steering vectors, and injecting those
vectors during generation to modulate bias.

We implement two steering strategies: Individ-
ual Steering Vectors (ISV), where a single vector
is derived per layer using logistic regression, and
Steering Vector Ensembles (SVE), where vectors
from multiple layers are aggregated using response
quality-weighted coefficients.

3.2 Multilingual PCT Dataset Preparation

We build on the multilingual PCT dataset proposed
by Nadeem et al. (2025), which adapts the 62 stan-
dard Political Compass Test (PCT) statements into
low-resource languages: Urdu and Punjabi (Smith
et al., 2022). We extend this dataset to include
English, resulting in six total languages spanning
multiple language families (Mostefa et al., 2012).



Each translation was reviewed and verified by
regional native speakers, achieving near-perfect
inter-annotator agreement with a Fleiss’ x = 0.99.

The PCT statements cover both ideological axes:

* Economic axis: left-right orientation (e.g.,
redistribution, market policies)

¢ Social axis: libertarian—authoritarian values
(e.g., social freedoms, censorship)

Each statement was transformed into a pair of op-
posing ideological prompts through manual rewrit-
ing or structured agreement templates. To ensure
semantic divergence and ideological contrast:

1. We computed multilingual sentence embed-
dings using sentence-transformers.

. Contrastive pairs with cosine similarity below
a threshold 7 = 0.15 were retained.

3. We limited generation to a maximum of 30
pairs per category, with at most 500 compar-
isons, to avoid redundancy and infinite pairing
loops.

3.3 Target Model and Layer Selection

We selected deepseek—llm—7b—chat2, Mis-
tral model due to its strong multilingual capabili-
ties and transparent architecture. We also evaluate
Mistral-7B-v0.1? to compare bias behavior
across model families. We selected layers 8, 12, 16,
20, 24, as layer-wise profiling indicated that mid-
level layers encode the strongest ideological sig-
nals, whereas early layers capture lexical patterns
and very late layers primarily influence fluency.

3.3.1 Individual Steering Vectors (ISV)

We compute a bias-aligned steering vector v; for
each selected transformer layer [ and each ideolog-
ical axis.

First, we extract hidden activations for posi-
tive (e.g., left-leaning) and negative (e.g., right-
leaning) prompts. These are standardized using
StandardScaler, and concatenated to form the
input matrix X = [Apos; Apeg). Corresponding bi-
nary labels are assigned as y = [17vos; ("nez].

Next, we train a logistic regression classifier with
max_iter=1000 and random_state=42 to

https://huggingface.co/deepseek-ai/

deepseek-vl-T7b-chat

*https://huggingface.co/mistralai/
Mistral-7B-v0.1
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separate the two ideological classes. The result-
ing classifier weight vector € is normalized to unit
length to obtain the steering vector v; = 0/|0]].

Finally, to ensure directional consistency, we
verify that the expected projection of positive ac-
tivations exceeds that of negative activations, i.e.,
E[Apos - vi] > E[Ape - Vi

3.3.2 Quality Assessment

The vector-quality score for layer [ is ¢
0.6 accuracy; +0.4 min(m, 1.0). The sep-
aration term separation; measures the normal-
ized effect size between projected activations of
opposing ideological prompts: separation; =
’,Upos - Mneg‘

pooled_std
tion means are fipos = mean(Apes - v;) and fineg =

mean(Apeg - V7).

The positive and negative projec-

3.3.3 Steering Vector Ensembles (SVE)

To construct ensemble steering vectors, we ag-
gregate the individual steering vectors (ISVs)
computed across the selected layers [ €
{8,12, 16,20, 24} using quality-based weighting.
Each vector is assigned a quality score ¢; using

Equation ??, and the scores are normalized to ob-
a

>0
K3
ing vector is the weighted sum vgyg = Y, wyvy,

which is then normalized to unit length vgyg =
VSVE

[vsvell _ .
each bias axis (economic and social) and for each

language.

The ensemble steer-

tain weights wy

SVEs are computed independently for

3.4 Mitigated Generation via Vector Injection

Bias mitigation is performed by injecting steering
vectors into the residual stream of the transformer
during generation. Let () (z) denote the last-token
hidden activation at layer [ for input prompt x. The
modified activation is h) (z)’ = A (z) + av;,
where « is a tunable steering-strength hyperparam-
eter (default o = 1.0) and v; is the steering vector.
For ISVs, vy is injected only into its correspond-
ing layer [, whereas for SVEs the same normalized
vector vgyg 1s applied across all selected layers
l €{8,12,16,20,24} simultaneously.

3.5 Bias Detection and Evaluation

We adopt a keyword-based scoring framework to
quantify political bias in generated responses. Bias
is measured independently along two axes: social



and economic. Each axis uses a lexicon of ideo-
logically aligned keywords, adapted for each target
language.

Social Bias Lexicons: We adopt a keyword-
based scoring framework to quantify political bias
in generated responses. Bias is measured indepen-
dently along two axes: social and economic. Each
axis uses a lexicon of ideologically aligned key-
words, adapted for each target language.

Social Bias Lexicons

Progressive: equality, inclusion, rights,
diversity, justice, fair, acceptance
Conservative: traditional, family
values, moral, heritage, stability,
conventional

Economic Bias Lexicons

Left-leaning:
workers rights,

inequality, exploitation,
redistribute,
regulation, intervention

Right-leaning: free market, capitalism,
growth, competition, innovation,
entrepreneurship

3.5.1 Bias Score Computation

For a generated response r, we compute the bias
score along each ideological axis (social or eco-
__ Mpositive — Mnegative

Notal +€
Npositive AN Npegative are the counts of axis-aligned

keywords in the response, T = Npositive +
Nnegatives and € = 107% is a small constant to pre-
vent division by zero.

nomic) as Biasis(7) , where

3.5.2 Bias Reduction Metric (ABias)

To quantify the effect of steering on bias, we com-
pute the absolute change in bias magnitude be-
fore and after mitigation: ABias = ‘Biasoriginaﬂ —
|Biasgieerea|- A positive ABias indicates success-
ful bias reduction, a negative value suggests over-
correction, and zero indicates no change in bias
magnitude.

3.6 Evaluation Protocol

We evaluated each configuration using contrastive
pairs per bias axis (social and economic) across lan-
guages, comparing outputs with and without steer-
ing. Bias reduction was measured using keyword-
based and sentiment-based metrics, averaged to
compute overall ABias. Paired comparisons were
used to assess statistical significance across pre-
and post-steering outputs.
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3.7 Response Quality Metrics

To assess whether debiasing affected output flu-
ency, we compute a combined quality score Q(r)
for each response r using a penalty-based formula
Q(T) = HlaX(O, min(l, 1.0— f)length - Pdiversity -
Peoherence) ). The quality components are defined
as follows. The length penalty Py is set to
0.3 if the word count is less than 10, 0.2 if it ex-
ceeds 200, and 0.0 otherwise. The lexical diversity
penalty Pyiversity s set to 0.3 if the ratio of unique
to total words is less than 0.6, and 0.0 otherwise.
The coherence penalty P.operence 18 set to 0.4 if
no grammatically valid sentence is detected using
syntactic chunking and dependency parsing.

The final score Q(r) ranges from 0.0 (poor qual-
ity) to 1.0 (highly fluent and coherent), allowing for
calibrated evaluation of the side-effects of steering-
based bias mitigation.

3.8 Stance Score Calculation.

We compute stance scores using a zero-shot
classification  approach on  concatenated
Urdu PCT statements and model-generated

responses. The classifier is based on
mDeBERTa-v3-base-mnli-xnli, eval-
uvated against four English labels: Strongly

Agree, Agree, Disagree, and Strongly Disagree.
The model returns confidence scores for each
label, which we map to their Urdu equivalents
for bilingual interpretability. We then assign
numerical scores: =10 for strong stances and +5
for moderate stances, weighted by their confidence
values (Motoki et al., 2024). This process yields a
continuous scalar representing both the intensity
and direction of the model’s political stance in
Urdu-language generations.

4 Experimental Environment

All experiments were conducted on GPU-backed
RunPod environments to enable scalable and ef-
ficient model execution. The hardware included
NVIDIA RTX A6000 and A100 GPUs, each with
a minimum of 16 GB VRAM, providing sufficient
memory for multi-layer activation extraction and
vector injection during inference.

4.1 Hyperparameter Configuration

We adopted a consistent generation configuration
across all languages and bias axes. The decoding
temperature was set to 0.5 to balance lexical diver-
sity with generation consistency. Each response
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Figure 3: Bias reduction effectiveness across different
model layers for SVE and ISV methods.
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Figure 4: Bias reduction performance of SVE and ISV
across Social and Economic dimensions under varying
input bias intensities.

was constrained to a maximum of 100 tokens to
avoid excessively verbose outputs.

The steering strength was fixed at « = 1.0, a
value determined through preliminary tuning that
offered effective mitigation without degrading flu-
ency. Tokenization employed left-padding, and the
end-of-sequence (EOS) token was used as the pad
token to maintain decoder compatibility in auto-
regressive settings.

These settings were held constant throughout all
experiments to ensure fair and controlled compar-
isons between baseline and steered generations.
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Figure 5: Bias reduction performance of SVE and ISV
methods as a function of steering strength.
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5 Analysis and Results

5.1 High Resource Language

In our bias mitigation framework, English serves as
the high-resource baseline language due to its ex-
tensive training data, well-established benchmarks,
and consistent performance across models. We use
English to construct contrastive political prompts,
calibrate steering vectors, and evaluate baseline
bias levels before extending the methodology to
low-resource languages.

Bias Mitigation Performance. Figure 3 illus-
trates how bias mitigation effectiveness varies
across model layers for both SVE and ISV. SVE
for social bias stands out, consistently achieving
50% reduction across all layers and operating in
the high-effectiveness zone. ISV for economic bias
peaks at layer 16 with 30% reduction but declines.
In contrast, SVE for economic bias and ISV for
social bias remain below 5% and show little vari-
ation. The background shading highlights zones
of high (green), moderate (yellow), and low (red)
effectiveness, clearly emphasizing the stability and
superiority of SVE for mitigating social bias. Fig-
ure 4 shows that SVE consistently reduces social
bias, while ISV is relatively stronger on economic
prompts, highlighting their complementary roles in
bias mitigation.

Sensitivity to Steering Strength. Figure 5 illus-
trates the relationship between steering strength
and bias reduction for SVE and ISV methods. A
clear optimal point emerges at a steering strength of
1.0, where SVE Social achieves peak effectiveness
(50%) and ISV Economic also reaches its maxi-
mum (28%). Beyond this threshold, performance
gradually declines, indicating that excessive steer-
ing may over-correct or destabilize model outputs.
SVE Economic, by contrast, exhibits only minimal
bias reduction across all strength levels. These re-
sults underscore the critical role of hyperparameter
tuning—particularly steering strength—in maxi-
mizing the effectiveness of vector-based debias-
ing strategies. Figure 7 shows that SVE excels
at reducing social bias in DeepSeek, notably for
Traditional Values and Immigration, while ISV is
more effective on economic prompts like Taxation.
The contrast reveals each method’s domain-specific
strength, highlighting the benefit of combining
them for comprehensive bias mitigation.
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Model Econ. (Before) Soc. (Before) Econ. (After) Soc. (After)
Mistral-7B-Instruct-v0.2 2.5 1.23 0.0 0.5
DeepSeek-Chat -1.0 -1.23 0.0 0.2

Table 1: Bias scores before and after mitigation across models and ideological axes on Urdu language.

Evaluation of Optimization Dynamics. Fig-
ure 6 presents a comprehensive comparison of
SVE and ISV across key aspects of bias mitiga-
tion. SVE for social bias demonstrates steady and
effective improvement, achieving up to 50% bias
reduction early in the optimization process. It also
consistently preserves response quality, maintain-
ing fluency and coherence throughout. In contrast,
ISV—particularly for economic bias—shows less
stable trends and struggles to match SVE in both
fairness and quality. SVE further exhibits adaptabil-
ity by dynamically leveraging different model lay-
ers, particularly mid-layer regions, to optimize its
steering effect. Additionally, it delivers strong bias
reduction with relatively low computational over-
head, making it more cost-efficient than ISV, which
requires more resources for smaller gains. These
results underscore SVE’s advantages in robustness,
adaptability, and efficiency. Complementing this,
Figure 9 illustrates that ideological distinctions are
most pronounced in mid-level layers, aligning with
where SVE applies its interventions to guide the
model toward more neutral and balanced responses.
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Figure 7: Bias reduction performance on Deep Seek
model for SVE and ISV across different contrastive pair

types.

The results show in a Table 1 a clear improve-
ment in how both models handle ideological bias
after mitigation. Before applying our method,
Mistral-7B-Instruct-v0.2 leaned heavily in both
economic and social directions, with bias scores as
high as 2.5 and 1.23. After mitigation, those scores
dropped significantly—closer to neutral—showing
that the intervention helped balance its responses.
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Figure 8: Performance of Bias-Mitigation Methods for
Urdu and Punjabi. The left plot compares Keyword
Reduction, Response, Quality, and coherence for ISV
and SVE.

Similarly, DeepSeek-Chat started with a notice-
able bias in the opposite direction, but also moved
toward neutrality after mitigation. Overall, these
changes suggest that the approach is effective in
steering both models away from extreme positions
and helping them generate more balanced, fair out-
puts. In the Figure 10 how different models re-
spond to bias mitigation methods. In DeepSeek,
using SVE noticeably improves the quality of re-
sponses, for social topics in both Urdu (Ur) and
Punjabi (Pu). The model becomes more fluent
and balanced without losing clarity. In some cases
like Punjabi economic prompts, SVE lowers the
quality. This highlights that not all models benefit
from the same debiasing strategy, and choosing the
right method depends on the model and language
involved.

The results show in the Figure 8 that both the
Urdu and Punjabi models handle bias reduction
well while keeping their answers natural. They cut
out biased keywords to a moderate degree about
0.6 on the scale without over filtering. Response
quality stays high, around 0.85 - 0.9, and the overall
flow of the replies (coherence) remains steady for
both languages. The scatter plot on the right makes
it clear that when the overall debiasing score goes
up, the quality of the responses also rises, meaning
stronger bias mitigation doesn’t hurt the readability
or sense of the output.

The SVE is effective than ISV for mitigating po-
litical bias in decoder-based LLMs. SVE achieved
up to 60% reduction on socially framed prompts
while preserving response quality, whereas ISV
showed moderate gains on economic prompts but
was largely ineffective socially. An ablation of
ISV, cosine filtering, and ensemble weighting in-
dicates ensembles drive most bias reduction, with
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Figure 10: Bias reduction performance of ISV and SVE
on model representations across economic and social
axes for DeepSeek and Mistral.

ISVs adding targeted improvements on economic
prompts. Layer-wise analysis showed mid-level
layers carry the strongest ideological signals, and
SVE’s quality-weighted aggregation across these
layers improved robustness and generalization.
Both methods performed best at steering strength.
DeepSeek benefited most from SVE, producing
neutral, fluent responses across Urdu and Punjabi,
while Mistral-7B aligned slightly better with ISV
on economic axes but lost quality with SVE. We
observed degraded quality in Punjabi economic
prompts, likely due to vocabulary sparsity, suggest-
ing the value of language-specific calibration in
low-resource settings.

6 Conclusion

This study proposes a practical method to reduce
political bias in LMs using contrastive prompts
from the PCT. SVE outperforms compared to ISV,
particularly on socially framed prompts, while pre-
serving response quality. By targeting mid-layer
activations with adjustable steering strength, the
approach remains efficient and adaptable across
models and languages, providing a foundation for
fairer multilingual language models.



Limitations

Our approach has several limitations. First, re-
liance on Political Compass Test (PCT) statements
constrains generalizability; although the pipeline is
modular and can be applied to other domains (e.g.,
healthcare, education, gender, race), this remains to
be tested. Second, the steering strength parameter
(a) and layer selection were manually tuned, limit-
ing adaptability across models; automated calibra-
tion could improve robustness. Third, modifying
only the last-token activation may not sufficiently
propagate steering in longer generations, suggest-
ing a need for dynamic or dialogue-aware steer-
ing. Fourth, evaluation relies on keyword-based
lexicons, which may miss subtle discursive bias;
while stance classification was included, human
and discourse-level evaluations are needed. Finally,
challenges arose in low-resource settings; Punjabi
economic prompts showed reduced quality due to
sparse vocabulary, and some entanglement between
social and economic axes was observed. Future
work could explore language-specific calibration,
multi-axis steering, and stance-conditional meth-
ods to balance neutrality with context-appropriate
stances.

Ethical Considerations

While our approach aims to mitigate political bias
in multilingual language models, it raises important
ethical concerns. Steering vectors may unintention-
ally suppress legitimate ideological perspectives
or homogenize culturally diverse viewpoints, par-
ticularly in low-resource languages. Care must be
taken to avoid over-correction, which could result
in censorship or erasure of minority opinions. Addi-
tionally, the reliance on manually curated keywords
and embeddings introduces human biases into the
mitigation process. Transparency, documentation,
and stakeholder inclusion are essential when de-
ploying such systems. We emphasize that bias mit-
igation should complement—not replace—broader
fairness strategies grounded in cultural, social, and
linguistic inclusivity.
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Abstract

Our team was interested in content classifica-
tion and labeling from multimodal detection of
Hate speech, Humor, and Stance in marginal-
ized socio-political movement discourse. We
joined the task: Subtask A-Detection of Hate
Speech and Subtask B-Classifying the Targets
of Hate Speech. In this two task, our goal is
to assign a content classification label to multi-
modal Hate Speech. Detection of Hate Speech:
The aim is to detect the presence of hate speech
in the images. The dataset for this task will
have binary labels: No Hate and Hate. Classi-
fying the Targets of Hate Speech: Given that
an image is hateful, the goal here is to identify
the targets of hate speech. The dataset here
will have four labels: Undirected, Individual,
Community, and Organization. Our group used
a supervised learning method and a text pre-
diction model. The best result on the test set
for Subtask-A and Subtask-B were F1 score
of 0.6209 and 0.3453, ranking twentieth and
thirteenth among all teams.

1 Introduction

First of all, let’s introduce the Overview of Shared
Task on Multimodal Hate, Humor, and Stance De-
tection in Marginalized Movement@CASE2025
(Hiirriyetoglu et al., 2025). The complexity of text-
embedded images presents a formidable challenge
in ML given the need for multimodal understand-
ing of multiple aspects of expression conveyed by
them. Particularly, the marginalized movement
stands as a prominent subject of online discourse,
where text-embedded images like memes serve as
vehicles of both solidarity and resistance, reflecting
the multifaceted dynamics of attitudes and percep-
tions within the community and beyond. In this
context, the distinction between humor and harm
becomes blurred, as memes straddle the line be-
tween satire and offense, challenging researchers
and platforms alike to navigate the complexities of
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online content moderation. As one label generally
fails to encompass multiple aspects of linguistics,
this shared task classifies images on four aspects:
hate, targets of hate, stance, and humor as subtasks.

Our group mainly participated in the follow-
ing two sub-tasks. Subtask A-Detection of Hate
Speech: The aim is to detect the presence of hate
speech in the images. The dataset for this task will
have binary labels: No Hate and Hate. Subtask
B-Classifying the Targets of Hate Speech: Given
that an image is hateful, the goal here is to identify
the targets of hate speech. The dataset here will
have four labels: Undirected, Individual, Commu-
nity, and Organization. We have made tremendous
progress in these two sub-tasks.

2 Dataset

In this section, we describe various aspects of task
dataset including data collection, annotation guide-
lines, and dataset statistics. Task dataset com-
prises 5,063 text-embedded images that encom-
pass memes, posters, and infographics relevant to
the LGBTQ+ movement. Official dataset only in-
clude images from 2020-2024 as this period saw
an upsurge of social media content in this domain
(Oz et al., 2023). This also allows task dataset to
represent contemporary social media interactions
through memes. Note that by the term LGBTQ+,
official dataset refer to all gender identities and
sexual orientations inclusively.

2.1 Data Collection

To maintain diversity in the dataset, organizer col-
lected data from three popular social media plat-
forms: Facebook, Twitter, and Reddit, through
manual search and extraction. For Twitter, orga-
nizer used hash tags such as #lgbt, #pride, #trans,
#transrights, #nonbinary, and #genderidentity to
filter images related to LGBTQ+ discussions. For
Facebook, organizer targeted groups that frequently

Proceedings of the 8th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Texts associated with RANLP 2025,
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discussed LGBTQ+ content. Similarly, for Reddit,
organizer identified subreddits where discussion
related to LGBTQ+ was more prominent. Further,
to ensure the relevance and quality of the dataset,
the data collection process was subject to filtering
criteria. Detailed filtering criteria for our dataset
can be found in (Shah et al., 2024). As different an-
notators may encounter and collect the same image,
organizer sequentially employed two image dedu-
plication tools: dupeGuru! and difPy?, to search
for duplicates and retain the highest quality image
out of each batch of duplicates. Organizer used the
OCR application provided by Google Cloud Vision
APP to extract textual data from the images. Orga-
nizer removed non-alphanumeric elements such as
special characters, hyperlinks, symbols, and non-
English characters to reduce noisy text data and
ensure data quality. Note that the text may occa-
sionally contain unintentional noisy artifacts.

3 Data Annotation

Organizer engaged five experienced annotators,
well-versed in NLP and computational linguistics,
to annotate data samples for PrideMM. The anno-
tators had a prior understanding of the LGBTQ+
movement and meme archetypes on social media.
Organizer presented them with comprehensive an-
notation guidelines to ensure uniform and unbiased
annotations, and asked them to annotate each image
separately for all four tasks. A 3-phase annotation
schema was used to ensure accurate and consis-
tent annotations. First, a dry run was conducted to
evaluate the understanding of the annotation guide-
lines among the annotators where every annotator
was given an identical batch of 50 images for an-
notation. Second, a revision phase was conducted
where every annotator was given another identi-
cal batch of 200 images and received a revised
set of instructions based on the results of the first
phase. Finally, in the consolidation phase, the an-
notators annotated a final batch of 50 images while
discussing and revising the annotation guidelines
until a consensus was reached. These steps were
taken to minimize misannotations and noisy labels
in the PrideMM dataset. The meticulously devised
annotation guidelines were followed to ensure con-
sistency in the annotations. Each image in their
dataset was independently annotated for the three

"https://github.com/arsenetar/dupeguru
Zhttps://github.com/elisemercury/Duplicate-Image -Finder
3https://cloud.google.com/vision/docs
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aspects and one sub-class, apart from the connec-
tion between "Hate’ and "Hate Targets’.

4 Annotation Guidelines

In this section, organizer describe the annotation
guidelines used to annotate the dataset. They devise
separate guidelines for each of the four tasks.

Hate Speech. This task aimed to identify in-
stances of hate speech in the images. The primary
focus was on identifying images that intentionally
conveyed hateful sentiments. Annotators needed
to distinguish between images expressing strong
disagreement without resorting to offensive lan-
guage and those containing genuine elements of
hate speech. This differentiation aimed to guar-
antee accurate labeling, ensuring that images con-
veying genuinely hateful sentiment through visual
content, language, or a combination of both were
appropriately identified.

Hate Targets. This task required annotators to
identify the targets of hate in hateful images by
classifying the images into one of the four classes:
Undirected, Individual, Community, and Organi-
zation. Images were labeled as Undirected when
they targeted abstract topics, societal themes, or
ambiguous targets like ‘you’ that were not directed
toward any specific individuals, entities, or groups.
Hateful images targeting specific people including
political leaders, celebrities, or activists like ‘Joe
Biden’ and ‘J.K. Rowling’ were annotated as Indi-
vidual. Likewise, the label Community was used
for instances of images targeting broader social,
ethnic, or cultural groups like ‘LGBT’ or ‘trans’.
Lastly, images targeting corporate entities, insti-
tutions, or similar organizations like ‘Chick-fil-A’
and ‘government” were annotated as Organization.

Stance. This task involved annotating the im-
ages into either of three distinct categories: Sup-
port, Oppose, and Neutral, determined by their
stance within the context of the LGBTQ+ move-
ment. The Support label was given to images that
expressed support towards the goals of the move-
ment, agreed with efforts in fostering equal rights
for LGBTQ+ individuals, and promoted awareness
for the movement’s goals. The Oppose label was
given to images that conveyed disagreement with
the goals of the movement, denied the problems
faced by individuals who identified as LGBTQ+,
and dismissed the need for equal rights and accep-
tance. The Neutral label was given to images that
were contextually relevant to the movement but



did not exhibit support or opposition towards the
movement.

Humor. In this task, annotators were asked to
identify images showcasing humor, sarcasm, or
satire related to the LGBTQ+ Pride movement. An-
notators were instructed to discern the presence of
humor in the images regardless of whether they pre-
sented a lighthearted or insensitive perspective on
serious subjects. Note that annotators were asked
to annotate images based on whether the creator of
the image intended for it to be humorous, and not
based on whether the annotator personally found it
humorous. This task aimed to capture the nuanced
use of text-embedded images for comedic or satiri-
cal purposes, thereby helping disentangle hate and
humor in the images related to this movement.

5 Statistics and Inter-Annotator
Agreement

Table 1: Dataset Statistics for PrideMM. The data con-
sists of 5,063 samples for Hate, Stance, and Humor
tasks, and 4,482 samples for the Target classification
task.

Task  Label #Samples %
Hate No Hate 2,581 50.97%
Hate 2,482 49.03%
Undirected 771 31.07%
Target Individual 249 10.03%
Community 1,164 46.90%
Organization 298 12.00%
Neutral 1,458 28.80%
Stance  Support 1,909 37.70%
Oppose 1,696 33.50%
Humor No Humor 1,642 32.43%
Humor 3,421 67.57%

Table 1 shows the distribution of images in
PrideMM across all class labels. For the hate de-
tection task, the dataset has a balanced distribution
of binary labels. The target classification task ex-
hibits a heavily imbalanced distribution. Given the
context of this study, most hateful images convey
undirected hate or are targeted toward communities,
with a low frequency of hate against individuals
and organizations. For the stance classification
task, the number of images is well-balanced across
three labels. On the other hand, as memes are often
meant to be humorous, the majority of the images
in the dataset are annotated to humor.

Organizer used the Fleiss’ Kappa (x) (Falotico
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Figure 1: The framework diagram of the Ensemble
model.

and Quatto, 2015) as a statistical measure to as-
sess the inter-annotator agreement across all four
tasks. For Task A (Hate Speech detection), x was
0.66/0.74 in the dry run and final phase respectively,
for Task B(Target detection), x was 0.68/0.81, for
Task C (Stance detection), x was 0.62/0.75, and for
Task D (Humor detection), x was 0.60/0.74. The
increase in x from the dry run phase to the final
phase across all tasks reflects the effectiveness of
the 3-phase annotation schema.

6 Methodology

6.1 Ensemble Model

MultiModal Hate Speech Detection In our task,
there are two modalities of image and text. We use
the pytesseract tool to extract the text in the image
and obtain the features of the text through the xInet
and bert models. The corresponding image features
of the pictures are obtained through the inception
net model, and then the classification results are
finally obtained through the classifier of the ensem-
ble model. The framework diagram of the model
is shown in the Figure 1. The classifier in the En-
semble model uses a neural network classifier. The
specific parameters of the classifier are shown in
the Table 2

Table 2: Neural Network classifier structure for Subtask
A.

Tayer number | layer type Tnput di Output di

fon / parameter

1 Linear image _features + xInet_hidden + bert_hidden 512

ReLU 512 512

BatchNorm1d 512 512

Dropout 512 512 (p=0.3)

Linear 512 256

ENEZIES RN

ReLU 256 256

BatchNorm1d 256 256

©| oo

Dropout 256 256 (p=0.3)

Linear 256 num_classes =2

MultiModal Hate Targets Classification The
method of MultiModal Hate Targets Classification
is the same as that of MultiModal Hate Speech
Detection, except that we use two different clas-
sifiers for experiments. It is found that using the
Linear classifier alone is slightly better than using



the Neural Network classifier. Their structures are
respectively shown in Table 3 and Table 4.

Table 3: Neural Network classifier structure for Subtask
B.

layer number layer type Input di

Output di ion/parameter

1 Linear image_features + xInet_hidden + bert_hidden 512

ReLU 512 512

BatchNorm1d 512 512

Dropout 512 512 (p=0.3)

Linear 512 256

ReLU 256 256

BatchNorm1d 256 256

Dropout 256 256 (p=03)

o oo <o | k| & w19

Linear 256 num_classes = 4

Table 4: Linear classifier structure.

[ layer number T layer type | Input di [ Output di ion/p:

........

1 | Linear | image features + xInet_hidden + berthidden | num _classes = 4

6.2 K-max pooling neural network with
recurrent learning rate (CLR) scheduling

In the Ensemble Model, the addition of image fea-
tures leads to poor classification effect of the model.
Relying solely on the text extracted from the im-
ages may improve the performance of the model.
So in this model, we first use the Google Vision
API to extract text from images and classify the
text content. Facts have also proved the usefulness
of our conjecture.

6.2.1 Problem Setup

We address the binary and multi-task classification
problem on textual content, where each sample
may be annotated with hierarchical labels: a bi-
nary label for Task 1 (e.g., Hate vs. Not-Hate)
and a fine-grained four-class label for Task 2 (e.g.,
Undirected , Individual , Community , Organiza-
tion ). The dataset is preprocessed and split into
training and test sets accordingly, using a k-fold
cross-validation scheme to improve generalizabil-
ity and model robustness.

6.2.2 Preprocessing and Tokenization

All  text inputs are tokenized using
nltk.RegexpTokenizer, preserving only word
characters. A Keras Tokenizer is then applied to
convert the text into sequences of word indices.
These sequences are padded to a maximum
sequence length based on the longest sample in the
training set.

6.2.3 Embedding Layer Construction

We utilize pre-trained GloVe embeddings
(840B.300d) to initialize the word embedding
matrix. Each word in the vocabulary is mapped
to a 300-dimensional dense vector. If a word is
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missing from the GloVe vocabulary, it is assigned
a vector initialized from a normal distribution
with the same mean and standard deviation as the
pre-trained embeddings.

6.2.4 Model Architecture

The core of the proposed model is based on a K-
max pooling neural network architecture enhanced
by embedding initialization and dense transforma-
tions:

e Input Layer:
quences.

Tokenized and padded se-

* Embedding Layer: Initialized with pre-trained
GloVe vectors, this layer is frozen (non-
trainable) during training.

* K-Max Pooling Layer: Extracts the top-k ac-
tivations across the sequence dimension, ef-
fectively capturing the most informative word
features regardless of position.

* Dense Transformation: The pooled features
are passed through a fully connected layer
with tanh activation, followed by a softmax
classification head.

This simple yet effective architecture is chosen to
reduce overfitting and training time while maintain-
ing competitive performance.

6.2.5 Learning Rate Scheduling

To improve convergence, we apply Cyclic Learn-
ing Rate (CLR) scheduling, as proposed by (Smith,
2017). Specifically, we use the exp_range policy to
periodically vary the learning rate between 0.001
and 0.006 using a base-2 exponential decay factor
(gamma=0.99994). This prevents premature con-
vergence and encourages the model to escape local
minima during training.

6.2.6 Training Strategy

The model is trained using the Adam optimizer
with default hyperparameters (61 = 0.9, §s
0.999, ¢ le — 8). The loss function used is
categorical_crossentropy, and additional evaluation
metrics include accuracy and a custom-defined F1-
score metric implemented using Keras backend
operations.

To ensure reliable evaluation, we perform 4-fold
cross-validation. In each fold:

¢ The model is trained on k-1 folds and vali-
dated on the remaining fold.
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Figure 2: The framework diagram of the Multinomial
Naive Bayes classification model.

¢ Predictions on the test set are collected and
averaged across folds for final ensemble pre-
dictions.

6.2.7 Prediction and Submission

After training, the ensemble of models predicts the
labels for both tasks. The final predictions are com-
puted by averaging softmax outputs across all folds
and selecting the label with the highest averaged
probability. Results are saved into submission files
corresponding to each task.

6.2.8 Evaluation

The model performance is evaluated using macro-
averaged precision, recall, and F1-score for both
tasks. This metric choice reflects the need to ac-
count for class imbalance in the multi-class setting.

6.2.9 Summary

Overall, our model integrates pre-trained em-
beddings, efficient pooling mechanisms, cyclic
learning rates, and ensemble training via cross-
validation to deliver a robust solution for binary
and multi-task text classification.

6.3 Multinomial Naive Bayes classification
model applying easyocr text extraction

We use the English (en) version in the easyocr ap-
plication for text extraction, and then perform text
vectorization through the CountVectorizer in the
sklearn.feature_extraction.text library. Finally, the
Multinomial Naive Bayes classification model is
used for classification. The overall architecture
diagram of the model is shown in the Figure 2.

6.3.1 Introduction to EasyOCR

EasyOCR is an open-source, deep learning-based
Optical Character Recognition (OCR) tool devel-
oped by Jaided Al, supporting text recognition in
over 80 languages. This library is implemented
based on PyTorch, adopts multi-layer convolutional
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neural network (CNN) and sequence modeling
(such as LSTM) structures, and combines CTC
(Connectionist Temporal Classification) loss for
the training and recognition of unaligned text se-
quences.

The main features of EasyOCR are as follows:
Multilingual support. Built-in support for multiple
languages including Chinese, English, Japanese,
Korean, etc., suitable for multilingual text scenar-
ios; Strong end-to-end recognition capability. It
can automatically detect text areas from the orig-
inal image and recognize their contents; No com-
plex preprocessing required. Supports complex
backgrounds, slanted text and multi-font recogni-
tion; Simple and easy to use. The API interface is
friendly and suitable for quick integration into ap-
plications; Strong scalability. Users can customize
training data and fine-tune the model to adapt to
character sets or styles in specific domains.

Brief description of the workflow:

e Text Detection: The CRAFT (Character Re-
gion Awareness for Text Detection) model is
adopted to locate the text regions in the image;

» Text Recognition: Use deep neural networks
(CNN + LSTM + CTC) to conduct sequence
modeling and character recognition for the
extracted text regions;

* Language post-processing (optional)
Language-level correction in combination
with dictionaries or rules.

6.3.2 Principle Explanation of
CountVectorizer

CountVectorizer is one of the most fundamental
and commonly used methods in text feature ex-
traction, used to convert text data into vector for-
mat, facilitating subsequent processing by machine
learning models. Its basic idea is: to count the
number of occurrences of each word (or n-gram) in
the text and take these count values as the elements
of the feature vector.

Fundamental: The main processing flow of
CountVectorizer is as follows:

» Tokenization. Segment the text to divide sen-
tences or documents into individual words (to-
kens).

* Vocabulary Building. Based on all the input
text, count all the words that have appeared



(or the specified n-gram), and assign a unique
index to each word.

* Word Frequency Statistics (Vectorization).
For each input text, count the number of times
each word appears in the vocabulary to form
a sparse vector.

Suppose the vocabulary is ["apple °, ’banana’,
“orange’] and the text is "apple orange orange’, then
the conversion result is [1, 0, 2].

Mathematical Treatment: Given a example:
Vocabulary size V; Input text dataset D
{dy,ds,...,d,}; Each text d; is converted to a
vector ; € RV Then:

(1

xi; = count(term; in d;)

where z;; represents the occurrence frequency of
the j-th term in the vocabulary within the ¢-th doc-
ument.

Configurable Parameters: CountVectorizer
provides several key parameters that affect the vec-
torization:

ngram_range= (1, 1) : Specifies the use of
1-gram (single words), 2-gram (word pairs),
etc.

stop_words="english’: Removes En-
glish stop words

max_features=1000: Retains only the
top 1000 most frequent terms

min_df /max_df: Filters terms that appear
too rarely or too frequently

binary=True: Does not count frequencies,
only marks whether terms appear or not

Summary: CountVectorizer is a simple and effi-
cient feature extraction method for text frequencys;
It produces a one-hot sparse matrix, suitable for
text classification and retrieval modeling; It does
not consider word order or context meaning, but
performs well in many tasks that depend on word
frequency; For more complex language modeling,
it is often combined with TF-IDF, word vectors
(Word2Vec), or Transformer models.

6.3.3 Explanation of the principle of
Multinomial Naive Bayes

Basic Conception: Multinomial Naive Bayes

(Polynomial Naive Bayes) is a type of Naive Bayes
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classifier, mainly used for classification problems
of discrete features, especially suitable for text clas-
sification, such as spam recognition, sentiment anal-
ysis, news classification, etc. It is based on Bayes’
theorem and assumes that features are condition-
ally independent of each other, that is, the source
of "naive”.

Core Formula: Given a document d, we want

to find the most likely class y € {c1,c2,..., ¢k}
Using Bayes’ theorem:
P(dly) - P(y)
Plyld) = ——=—~ 22 2
i) = =5 @

Since P(d) is the same for all classes, we only
need to maximize the numerator:

§ = argmax P(y) - P(dly) 3)

In the multinomial model, the document is
represented as a word frequency vector ¥
(1,9, ...,z,), where z; is the frequency of word
w; in the document. Assuming word independence,
the likelihood of document under class v is:

n

P(dly) = [ [ P(wily)™

i=1

4

The final classification formula:

g = arg max log P(y) -I-vai'log P(wily) (5)
Y i—1

Parameter Estimation: Prior probability P(y):
The occurrence ratio of class in training data.

_ count(y = c)

Py =c) (6)

~ total samples

Conditional probability P(w;|y): The relative fre-
quency of word w; in class y. To avoid zero proba-
bilities, Laplace smoothing is applied.

count(w; iny) + «

P(wily) = .
(wily) >_jcount(w;iny) +a -V

(7

a: Smoothing parameter, usually 1 (Laplace) or a
small value (Lidstone). V': Vocabulary size.



Advantages and Applications: Advantages:
Simple model with high computational efficiency;
Performs well on high-dimensional sparse data
(e.g., text); Fast training speed, no need for gra-
dient descent; Not prone to overfitting, good gener-
alization. Application scenarios: Text classification
(news, reviews, spam filtering); Discrete counting
data (click-through rates, purchase data). Com-
pared with other Naive Bayes variants, see Table
5.

Table 5: Naive Bayes Model Variants and Applications

Model Feature Type Application Domain
BernoulliNB Binary features Text word presence / absence
MultinomialNB Count features Text word frequency
GaussianNB Continuous features Images, sensor data, etc.
Conclusion: MultinomialNB is one of the most

classic models in text classification; It classifies
by counting word frequencies in text; Simple and
efficient, making it a good baseline model for text
classification; Performs well when combined with
CountVectorizeror TfidfVectorizer.

7 Experimental Results

According to the official instructions (Thapa et al.,
2025a) for OCR extraction: If participants want
to extract OCR, they can use Google Vision API,
tesseract, EasyOCR, etc. In the paper that bench-
marks this dataset, organizer have used Google
Vision API to extract OCR for training the mod-
els. Since a lot of participants may not have access
to the vision API, they can use the extracted text
from organizer’s benchmark paper (Bhandari et al.,
2023). So when we used the Google vision API to
extract the text version database, we directly used
the dataset indicated by the official. For the other
two methods, namely the pytesseract and EasyOCR
methods, we manually extracted them through our
own python script code. The complete code of this
entire project can be found at our GitHub address®.
For Subtask A-Detection of Hate Speech and
Subtask B-Classifying the Targets of Hate Speech,
the results obtained by our three and four methods
on the test set are shown in Table 6 and Table 7.

Table 6: The results obtained by our three methods for
Subtask A-Detection of Hate Speech on the test set.

Model Recall | Precision F1 Accuracy
Ensemble Model (Neural Network classifier) | 0.4928 0.4733 0.3761 0.4852
K-max Pooling Neural Network 0.5925 | 0.6389 | 0.5585 | 0.5976
Multinomial Naive Bayes Classification Model | 0.6365 | 0.6591 0.6209 0.6331

*https://github.com/WangKongQiang/Case2025
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Table 7: The results obtained by our four methods for
Subtask B-Classifying the Targets of Hate Speech on
the test set.

Model Recall | Precision F1 Accuracy
Ensemble Model (Neural Network classifier) | 0.2500 0.1175 0.1598 0.4699
Ensemble Model (Linear classifier) 0.2525 | 0.2503 | 0.2477 0.3695
K-max Pooling Neural Network 0.2544 | 0.2846 | 0.1723 | 0.4739
Multinomial Naive Bayes Classification Model | 0.3322 | 0.5552 | 0.3453 | 0.4779

8 Discussion

For Multimodal Hate, Humor and Stance Detection
in Marginalized Movement@CASE2025 sharing
task, we referred to the relevant tasks of CASE
2024 (Thapa et al., 2024) and CASE 2023 (Thapa
et al., 2023) shared tasks on multimodal hate
speech detection and derived our own method. Al-
though the effect of the experiment needs to be
strengthened. However, these contents and ideas
have given us a lot of inspiration. Multimodal
content analysis is a longstanding tradition of the
CASE workshop series. We believe that with our
further research and more detailed optimization
and training of the model, we will achieve even
greater success in future competitions.

9 Conclusion

We employed multiple methods in Subtask
A-Detection of Hate Speech and Subtask B-
Classifying the Targets of Hate Speech, which re-
spectively involved the transformer model, deep
learning models and machine learning models in
these two tasks. Our final leaderboards are respec-
tively shown in the Table 8 and in the Table 9.

Table 8: The Final Leaderboard of Subtask A: Detection
of Hate Speech.

# | User Team Name Recall Precision F1 Accuracy
1 | wangxiuxian TUJ-MI 0.8422 (1) | 0.8422(1) | 0.8422(1) | 0.8422(1)
2 | Ryuan 0.8288 (2) | 0.8291(2) | 0.8284(2) | 0.8284(2)
3 | jiarranDiana IMU-L 0.8211(3) | 0.8217(3) | 0.8205(3) | 0.8205(3)
4 | ray-sushant Phantom Troupe 0.8189 (4) | 0.8193(4) | 0.8191(4) | 0.8190 (4)
5 | Neuron-Force MemeMasters 0.8086 (5) | 0.8086(5) | 0.8086(5) | 0.8086 (5)
6 | shrutigurung Multimodal Kathmandu | 0.8004 (6) | 0.8028 (6) | 0.8005(6) | 0.8008 (6)
7 | Sujal_Maharjan 0.7932(7) | 0.7928 (7) | 0.7932(7) | 0.7929 (7)
8 | NextTry 0.7927 (8) | 0.7928 (8) | 0.7927(8) | 0.7929 (8)
9 | ankitbk07 0.7927 (9) | 0.7930(9) | 0.7927(9) | 0.7929 (9)
10 | Rashfi 0.7868 (10) | 0.7870 (10) | 0.7868 (10) | 0.7869 (10)
11 | rohanmainali Silver 0.7847 (11) | 0.7833 (11) | 0.7847 (11) | 0.7830 (11)
12 | prerana3 0.7799 (12) | 0.7812(12) | 0.7789 (12) | 0.7810 (12)
13 | TomalJoy 0.7417 (13) | 0.7416 (13) | 0.7417 (13) | 0.7416 (13)
14 | Tanvir_77 0.7405 (14) | 0.7414 (14) | 0.7406 (14) | 0.7411 (15)
15 | bidhan:b 0.7380 (15) | 0.7382 (15) | 0.7377 (15) | 0.7377 (16)
16 | AkshYat 0.7360 (16) | 0.7360 (16) | 0.7360 (16) | 0.7360 (14)
17 | akshayyy22 0.7225 (17) | 0.7234 (17) | 0.7217 (17) | 0.7219 (17)
18 | ysb YS 0.6926 (18) | 0.6927 (18) | 0.6923 (18) | 0.6923 (18)
19 | Durgeshverma24iitrm | MLP 0.6636 (19) | 0.6644 (19) | 0.6632 (19) | 0.6636 (19)
20 | wangkonggiang wang 0.6365 (20) | 0.6359 (20) | 0.6360 (20) | 0.6331 (17)
21 | MDSagorChowdhury | Musafir 0.6179 (21) | 0.6862 (19) | 0.5828 (21) | 0.6233 (18)

10 Limitations of the Work

we are interested in learning about LLMs in com-
putational social science (Thapa et al., 2025b), our
paper mainly focuses on making discussions on



Table 9: The Final Leaderboard of Subtask B: Classify-
ing the Targets of Hate Speech.

User Team Name Recall Precision Fl1 Accuracy

wangxiuxian TUJ-MI 0.6383 (1)
Ryuan 0.6204 (2)
ray-sushant 0.6021 (5)
jiarranDiana 0.6038 (3)
Sujal_Maharjan 0.5922 (6)
bidhan_cb 0.6032 (4)
prerana3 0.5504 (7)
ankitbk07 0.5249 (9)

hruti \ 0.5059 (10) | 0.5427 (9) | 0.5150(9) | 0.5382(7)
rohanmainali Silver 0.5422 (8) | 0.5092 (12) | 0.5018 (10) | 0.5181 (8)
akshayyy22 0.4869 (11) | 0.5289 (11) | 0.4984 (11) | 0.5151 (10)
MDSagorChowdhury 0.4143 (12) | 0.4008 (13) | 0.3739 (12) | 0.4418 (10)
0.3322 (13) | 0.5552(8) | 0.3405 (13) | 0.4779 (9)
0.2757 (14) | 0.3158 (14) | 0.2739 (14) | 0.4096 (11)

0.6759 (1) | 0.6530 (1)
0.6556 (2) | 0.6335(2)
0.6169 (4) | 0.6057 (3)
0.6230 (3) | 0.6015 (4)
0.5666 (5) | 0.5777 (5)
0.5407 (10) | 0.5628 (6)
0.5653 (7) | 0.5539(7)
0.6044 (6) | 0.5486 (8)

0.6426 (1)
0.6426 (1)
0.6305 (2)
0.6305 (3)
0.5823 (4)
0.5703 (5)
0.5904 (3)
0.5823 (6)

IMU-L
Multimodal Kathmandu
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hate speech for this task. This is because we are
quite interested in and good at identifying hate and
offense categories in the text (Parihar et al., 2021).
Due to our lack of utilization of image features,
we are unable to make good use of the image con-
tent in the dataset of this sharing task. Also, the
model used for extracting text features is similar
to that in the sklearn package of CountVectorizer,
but it cannot extract the content from the text very
well. We believe that by combining a better image
feature model, more refined text feature extraction,
and conducting appropriate text preprocessing, our
model can achieve better results. These are all our
future tasks.

11 Ethical Considerations

Our work focuses on hate speech detection and
target classification within LGBTQ+ related multi-
modal content, a domain that is inherently sensitive
and requires heightened ethical awareness through-
out all research stages. We address the following
key ethical concerns:

We used public OCR tools (Google Vision API,
pytesseract, EasyOCR) and open-source libraries
(e.g., scikit-learn, TensorFlow) to extract and ana-
lyze text. We disclose our models, source code, and
hyperparameters openly at our GitHub repository,
promoting transparency and reproducibility. How-
ever, we caution that open-source release of models
detecting sensitive content must be accompanied
by ethical usage disclaimers and limitations.

We aim to improve our methods by integrating
more robust and interpretable models, minimizing
biases, and involving domain experts—especially
from affected communities—in future annotation
and evaluation processes. Ethical Al practices will
remain a guiding principle in our ongoing research.
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Abstract

In recent years, the detection of harmful and
socially impactful content in multimodal on-
line data has emerged as a critical area of re-
search, driven by the increasing prevalence of
text-embedded images and memes on social
media platforms. These multimodal artifacts
serve as powerful vehicles for expressing soli-
darity, resistance, humor, and sometimes hate,
especially within the context of marginalized
socio-political movements. To address these
challenges, this shared task introduces a com-
prehensive, fine-grained classification frame-
work consisting of four subtasks: (A) detection
of hate speech, (B) identification of hate speech
targets, (C) classification of topical stance to-
ward marginalized movements, and (D) detec-
tion of intended humor. By focusing on the nu-
anced interplay between text and image modal-
ities, this task aims to push the boundaries of
automated socio-political event understanding
and moderation. Using state-of-the-art deep
learning and multimodal modeling approaches,
this work seeks to enable a more effective de-
tection of complex online phenomena, thus con-
tributing to safer and more inclusive digital en-
vironments.

1 Introduction

Hate speech detection has become an essential com-
ponent in fostering a safer and more inclusive digi-
tal ecosystem. In today’s highly connected world,
where social media and online platforms shape pub-
lic discourse, the rapid dissemination of hateful
content can lead to severe social and psychological
harm, particularly against marginalized communi-
ties. Effectively identifying and mitigating such
content not only protects vulnerable groups but
also promotes constructive dialogue and reduces
the risk of conflict escalation.

Recent advancements in natural language pro-
cessing (NLP) and computer vision (Parihar et al.,

2021) have significantly enhanced the capabilities
of hate speech detection systems, particularly in
multimodal contexts where images are embedded
with textual content. By jointly analyzing both
modalities, it is possible to capture subtle nuances,
such as sarcasm or implied hostility, that would
otherwise be missed in unimodal approaches. This
is particularly critical in the context of memes and
other visual artifacts commonly used to spread hate-
ful or harmful narratives.

In line with this vision, the shared task intro-
duced in CASE 2025 (Thapa et al., 2025) as part of
workshop (Hiirriyetoglu et al., 2025) focuses on the
detection of hate speech, identification of targeted
entities, stance classification towards marginal-
ized movements, and detection of humor in mul-
timodal social media content. Building upon this
framework, our study explores the integration of
transformer-based models and classical machine
learning techniques to tackle these challenges.This
analysis has base references from (Thapa et al.,
2024) and (Thapa et al., 2023).

Specifically, we employ the ALBERT base trans-
former model, known for its parameter efficiency
and strong performance in semantic understanding
tasks. In addition, we incorporate classical mod-
els such as XGBoost, LightGBM, Gradient Boost-
ing, and MLP classifiers, which allow for diverse
feature perspectives and robust ensembling strate-
gies. Our approach combines traditional feature
engineering (e.g., syntactic and TF-IDF features)
with deep contextual embeddings to capture both
surface-level and deep semantic cues.

Through weighted ensembling and subtask-
specific optimizations, we aim to improve the fine-
grained detection of hate speech and its associated
attributes, ultimately contributing to more effective
content moderation and fostering healthier online
interactions.
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2 Dataset & Task Description

2.1 Overview

In the evolving digital landscape, text-embedded
images, such as memes and infographics, have
emerged as powerful tools of expression, particu-
larly in social and political discourse. These images
often blend textual and visual cues, creating a com-
plex multimodal environment that challenges tra-
ditional content moderation and hate speech detec-
tion methods. Within the context of the marginal-
ized movement, such images can serve dual roles:
amplifying voices of solidarity and simultaneously
perpetuating harmful stereotypes or hostility. The
nuanced interplay between humor and offense fur-
ther complicates moderation efforts, as satire often
straddles the delicate boundary between critique
and hate.

Recognizing this complexity, the shared task
CASE2025 proposes a comprehensive classifica-
tion framework, focusing on four distinct yet in-
terrelated subtasks: detection of hate speech, iden-
tification of hate speech targets, classification of
stances toward marginalized movement, and humor
detection. The data set used for this study consists
of meticulously annotated text-embedded images
for each subtask, enabling a detailed exploration
of online discourse. The dataset is curated from
(Shah et al., 2024) and (Bhandari et al., 2023).The
features of the dataset is given in the table 1.

Table 1: Features of the dataset

Field | Description
filename | Name of the file with index
value
text Text extracted from text-

embedded images
label Ground truth label or category
associated with the text/image

2.1.1 Subtask A: Detection of Hate Speech

The primary objective of this subtask is to deter-
mine whether an image contains hateful content.
Images are annotated with binary labels: Hate and
No Hate. This binary categorization simplifies ini-
tial screening yet serves as a critical foundation for
deeper analysis in subsequent subtasks.
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Label Count
No Hate | 2,065
Hate 1,985
Total 4,050

Table 2: Distribution of labels in Subtask A for binary
hate speech detection.

2.1.2 Subtask B: Classification of Targets of
Hate Speech

For images identified as hateful, the next step is
to pinpoint the specific target of hate. The dataset
categorizes targets into four classes: Undirected,
Individual, Community, and Organization. This
fine-grained categorization enables a better under-
standing of hate speech dynamics and the intended
victim groups.

Label Count
Undirected 617
Individual 199
Community | 931
Organization | 238
Total 1,985

Table 3: Label-wise distribution for Subtask B, focused
on hateful images only.

2.1.3 Subtask C: Classification of Topical
Stance

This subtask focuses on identifying the stance ex-
pressed by the image towards the marginalized
movement. Stance classification is crucial for
understanding the broader sentiment landscape
and distinguishing supportive content from opposi-
tional narratives. The dataset includes three stance
labels: Neutral, Support, and Oppose.

Label Count
Neutral | 1,166
Support | 1,527
Oppose | 1,357
Total 4,050

Table 4: Distribution of stances towards the marginal-
ized movement in Subtask C.

2.1.4 Subtask D: Detection of Intended
Humor

The final subtask involves determining whether the
image is intended to convey humor, sarcasm, or
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satire. Humor plays a significant role in shaping
public perceptions and often acts as a vehicle for
veiled hostility. Detecting such elements is essen-
tial for nuanced content moderation. The dataset
labels images as Humor or No Humor.

Label Count
Humor 2,737
No Humor | 1,313
Total 4,050

Table 5: Distribution of humor-related labels in Subtask
D.

3 Methodologies Used

3.1 Preprocessing

To ensure the textual content extracted from images
is clean and analysis-ready, extensive preprocess-
ing steps were implemented:

¢ Conversion to lowercase to normalize textual
patterns.

* Removal of punctuation, stop words, URLs,
emojis, and special symbols to minimize noise
and irrelevant cues.

* Lemmatization using the NLTK library to re-
duce words to their base forms, improving
semantic understanding.

* Tokenization using built-in mechanisms in TF-
IDF and transformer models to prepare the
text for vector-based analysis.

3.2 Feature Engineering

Several feature engineering strategies were em-
ployed to enhance the representational capacity of
the text:

¢ TF-IDF vectors for classical machine learn-
ing models, capturing term importance and
contextual relevance.

* Syntactic features, including:

— Word count, which helps assess verbosity
and potential aggressiveness.

— Stopword ratio, indicating content den-
sity.

— Frequency of punctuation and uppercase
letters, often correlated with emotional
intensity.

— Average word length, providing addi-
tional stylistic insights.
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3.3 Models Used

Transformer-Based Model: ALBERT The AL-
BERT (A Lite BERT) base v2 model was utilized
as a primary deep learning approach due to its effi-
ciency and superior performance in text classifica-
tion tasks. ALBERT leverages self-attention mech-
anisms to capture complex token relationships, en-
abling it to understand nuanced semantic and syn-
tactic patterns present in text-embedded images.
It was fine-tuned on each subtask-specific labeled
dataset, allowing it to adapt to different classifica-
tion objectives.The flow of the process is shown in
Figure 1

Input Text

]

Preprocessing

'
Feature Engineering

]
Classical Models ALBERT Model
(XGB, LGBM, MLP, GB) (albert-base-v2)

i '
Subtask A >
Ensemble of 4
Classical Models +
Aloert

Subtasks B-D -
ALBERT and
Keras ANN

]

Weighted Ensemble
(Averaged logits)

1

Final Prediction <

Figure 1: Text-embedded image

4 Results & Discussion

This section presents the implementation details
and comprehensive analysis of the results obtained
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for each subtask of the CASE2025 Multimodal
Hate Speech Detection Shared Task. The evalua-
tion was carried out using standard metrics such as
accuracy, precision, recall, and F1-score, and the
results are discussed in depth below.

4.1 Subtask A: Hate Speech Detection

For the primary subtask of determining whether
a given text contains hate speech, a combination
of transformer-based and classical machine learn-
ing models was explored. The ALBERT (albert-
base-v2) model was fine-tuned using the simple-
transformers library, while classical models includ-
ing XGBoost, LightGBM, GradientBoostingClassi-
fier, and MLPClassifier were trained using TF-IDF
and syntactic features. A weighted ensembling ap-
proach was adopted to integrate predictions from
these models.

The model ensemble achieved an F1-score of
0.7234, with a recall of 0.7225, precision of 0.7217,
and accuracy of 0.7219, securing a competitive
rank (14th) on the leaderboard. The results demon-
strate that leveraging ensemble strategies can effec-
tively balance the strengths of transformer-based
deep representations with classical feature-driven
approaches. However, the slight margin for im-
provement suggests potential benefits from further
fine-tuning ensemble weights and incorporating
additional linguistic features.

Metric Score

Recall 0.7225
Precision | 0.7217
F1-Score | 0.7234
Accuracy | 0.7219

Table 6: Subtask A: Hate Speech Detection

4.2 Subtask B: Hate Speech Target
Identification

In this subtask, the goal was to classify the target of
hate speech into four categories: undirected, indi-
vidual, community, or organization. The ALBERT
model was fine-tuned for multiclass classification,
and a separate feedforward ANN was developed
using Keras Sequential API.

The ALBERT model achieved an F1-score of
0.4984, with a recall of 0.4869, precision of 0.5289,
and accuracy of 0.5542, ranking 6th. These re-
sults highlight the inherent challenge of accu-
rately distinguishing nuanced targets within hate

74

4

speech. While the transformer model effectively
captured contextual dependencies, the relatively
lower scores compared to subtask A suggest that
future work could incorporate more sophisticated
target-specific features or additional multimodal
cues.

Metric Score

Recall 0.4869
Precision | 0.5289
F1-Score | 0.4984
Accuracy | 0.5542

Table 7: Subtask B: Target Identification

4.3 Subtask C: Stance Classification

The task of stance classification involved catego-
rizing posts as hate-supporting, neutral, or counter-
hate. The ALBERT model and a Keras-based ANN
were trained independently without ensembling.

The ALBERT model yielded an Fl-score of
0.5305, with a recall of 0.5355, precision of 0.5434,
and an accuracy of 0.5523, placing 9th overall.
These moderate scores indicate the complexity of
stance interpretation, which often depends on sub-
tle linguistic cues and contextual nuances. Integrat-
ing additional context-aware features or user-level
metadata could potentially enhance performance in
future iterations.

Metric Score

Recall 0.5355
Precision | 0.5434
F1-Score | 0.5305
Accuracy | 0.5523

Table 8: Subtask C: Stance Classification

4.4 Subtask D: Humor Detection

In the humor detection subtask, the aim was to de-
termine whether a hateful post contained humorous
or sarcastic elements. The ALBERT model and
ANN were both trained separately for this binary
classification task.

The ALBERT model achieved an F1-score of
0.6070, recall of 0.6030, precision of 0.6274, and
accuracy of 0.6844, resulting in a 15th place rank-
ing. These results underscore the challenge of de-
tecting humor, which is often subjective and cultur-
ally dependent. Despite reasonable performance,
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further improvement could be obtained by inte-
grating multimodal features such as emoji usage,
stylistic patterns, or contextual image data.

Metric Score

Recall 0.6030
Precision | 0.6274
F1-Score | 0.6070
Accuracy | 0.6844

Table 9: Subtask D: Humor Detection

4.5 Comparative Analysis

Across all subtasks, the ALBERT (albert-base-v2)
model consistently outperformed the ANN-based
approaches, demonstrating the strong contextual
learning capabilities of transformer architectures.
While classical models and ANN methods showed
promising trends in certain tasks, they generally
lagged behind the fine-tuned transformer in overall
performance.

The application of preprocessing techniques
such as lemmatization, stopword removal, and syn-
tactic feature engineering contributed significantly
to model robustness. Furthermore, the ensembling
strategy employed in subtask A highlighted the
effectiveness of combining diverse models to im-
prove predictive performance.

5 Conclusion

Our approach to the CASE 2025 shared task com-
bined the interpretability of classical machine learn-
ing models with the representational power of trans-
formers. Ensembling methods improved perfor-
mance in hate speech detection (Subtask A), and
even single-model approaches worked effectively
for the remaining subtasks. Future work includes
integrating image features and extending ensemble
methods to all subtasks.

Limitations

* We did not incorporate the image modality or
multimodal fusion

* Our ensemble approach was limited to Sub-
task A due to time and resource constraints.

* We did not explore data augmentation or ad-
vanced fusion techniques.
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Abstract

Marginalized socio-political movements have
become focal points of online discourse, po-
larizing public opinion and attracting atten-
tion through controversial or humorous con-
tent. Memes, play a powerful role in shaping
this discourse both as tools of empowerment,
and as vessels for ridicule or hate. The am-
biguous and highly contextual nature of these
memes presents a unique challenge for com-
putational systems. In this work we try to
identify these trends. Our approach leverages
the BERT+ResNet(BERTRES) model to clas-
sify the multimodal content into different cate-
gories based on different tasks for the Shared
Task on Multimodal Detection of Hate Speech,
Humor, and Stance in Marginalized Socio-
Political Movement Discourse at CASE 2025.
The task is divided into four sub-tasks: subtask
A focuses on detection of hate speech, sub-
task B focuses on classifying the targets of hate
speech, subtask C focuses on classification of
topical stance and subtask D focuses on detec-
tion of intended humor. Our approach obtained
a2 0.73 F1 score in subtask A, 0.56 F1 score in
subtask B, 0.6 F1 score in subtask C, 0.65 F1
score in subtask D.

1 Introduction

In the constantly evolving digital landscape, social
media have managed to become a constant and
integral means of information exchange and com-
munication. While social media platforms have
certainly facilitated an increase in online engage-
ment, they have unsurprisingly been a hotbed for
online abuse, cyberbullying, and the proliferation
of hate speech.

Hate speech refers to any expression, whether
spoken, written or nonverbal, that targets, insults
or dehumanizes individuals based on aspects of
their social identity, including race, religion, eth-
nicity, gender or sexual orientation. It encom-
passes forms of communication likely to incite,
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justify or reinforce harm such as violence, discrim-
ination or systemic oppression particularly when
these expression arise from entrenched power dy-
namics and historical injustices. (Ruscher, 2025).
Hence, the spread of hate speech across the internet
through the means of social media platforms has
become a complex societal issue (Shiwakoti et al.,
2024; Thapa et al., 2023b; Jafri et al., 2024, 2023).
Memes, which integrate images with accompany-
ing text in the form of captions, have been utilized
to propagate hate speech. Detecting hate speech in
multimodal content, such as memes requires more
than just text or image analysis. Unimodal algo-
rithms that focus on either image or text analysis
fail at understanding contexts and nuances, mak-
ing them ineffective when analyzing multimodal
content. As a result, detecting hate speech in such
multimodal content requires more than traditional
text or image analysis.

The Hateful Memes Challenge (Kiela et al.,
2020) was one of the significant attempts to bench-
mark systems capable of tackling this complex is-
sue. Since then, tasks such as those organized in the
CASE workshop series (Thapa et al., 2023a, 2024c)
have continued to improve the field by incorporat-
ing more fine-grained tasks. These include stance
detection, humor recognition, and classification of
hate speech targets.

The CASE 2025 Shared Task (Thapa et al., 2025)
uses PrideMM (Shah et al., 2024), which is a
dataset of memes focused on content related to
LGBTQ+ rights and marginalized sexual minori-
ties. This dataset was introduced in the MemeCLIP
paper. This paper includes annotated training, val-
idation, and test sets, making it a comprehensive
resource to understand memes through the lens of
hate, humor, stance, and target.

Our submission to the CASE 2025 shared task
introduces BERTRES. It is a multimodal fusion
model that combines textual features from Bidirec-
tional Encoder Representations from Transform-

Proceedings of the 8th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Texts associated with RANLP 2025,
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ers (BERT) (Devlin et al., 2019) and visual em-
beddings from ResNet-50 (He et al., 2015). Our
BERTRES model performed strongly on Subtasks
A - hate speech and D - humor, with test scores
of 0.7377 and 0.6533, respectively, but struggled
on Subtasks B - target and C - stance due to label
imbalance and semantic accuracy.

2 Related Work

There has been substantial research over the years
on various aspects of hate and toxicity detection
(Thapa et al., 2024b; Naseem et al., 2025; Rauni-
yar et al., 2023). More recently, multimodal hate
speech detection has gained serious traction, due
to the popularity of memes as a means of commu-
nication and information exchange (Thapa et al.,
2024a). Social media platforms have become bat-
tlegrounds, where memes are used not just for
laughs but to push political agendas, express sup-
port or spread hate, often simultaneously.

One of the major contributions in this area is
the Hateful Memes Challenge at NeurIPS 2020
(Kiela et al., 2020), which introduced a dataset
consisting of 10,000 meme examples. This dataset
helped create an environment to create state of the
art models in this field.

Newer datasets, such as MemeCLIP (Shah et al.,
2024), leveraged vision language pretraining via
CLIP to improve meme classification in low-
context environment. It provided the PridleMM
dataset, the primary dataset used in CASE 2025.
Prior datasets like the CrisisHateMM dataset
(Bhandari et al., 2023) emphasized the importance
of distinguishing between directed and undirected
hate.

Furthermore, multimodal approaches have ma-
tured significantly in recent times. MemeFier
(Koutlis et al., 2023) used transformer based fusion
with task specific modules to enhance interpretabil-
ity. Hate-CLIPper (Kumar et al., 2022) employed
attention based alignment for robustness in zero-
shot settings. Aggarwal et al. (2024) emphasized
that in generalization scenarios, textual features
mainly dominate model performance. HateSieve
(Suetal., 2024) introduced cross-modal contrastive
objectives for joint detection and segmentation of
hateful elements.

Recognizing this shift, the CASE workshop se-
ries has been pivotal in multimodal meme analysis.
Earlier shared tasks like CASE 2023 Recogniz-
ing this shift, the CASE workshop series has been

leading the charge. Early shared tasks like CASE
2023 (Thapa et al., 2023a) and CASE 2024 (Thapa
et al., 2024c) focused on crisis events namely the
Russia-Ukraine conflict. These tasks highlighted
how hate speech evolves during geopolitical tur-
moil and showed the need for contextually aware
multimodal models which can analyze both image
and textual content simultaneously.

The CASE 2025 shared task (Thapa et al., 2025)
introduces a unified evaluation benchmark using
the PrideMM dataset. It brings together a diverse
set of challenges such as hate speech, stance and
humor together under a single shared task. Mean-
while, broader insights into socio-political event
detection, including multimodal and cross-lingual
trends are documented in the workshop overview
paper (Hiirriyetoglu et al., 2025).

3 Dataset and Task

The PrideMM dataset is the primary dataset pro-
vided for the shared task CASE 2025. It comprise
of a curated collection of memes annotated for four
distinct subtasks namely, hate speech detection,
target classification, stance detection and humor
detection. The dataset is a static image with an ac-
companying or an overlaid caption, which reflects
the multimodal nature of memes.

The shared task is structured into the following
four subtasks:

* Subtask A: Hate Speech Detection — Iden-
tify whether the meme contains hateful con-
tent, distinguishing between hate and non-
hate expressions.

* Subtask B: Target Classification — Deter-
mine the entity or group targeted by the hate
speech, categorized as Undirected, Individual,
Community, or Organization.

* Subtask C: Stance Classification — Assess
the stance conveyed towards the identified tar-
get, classified as Support, Neutral, or Oppose.

* Subtask D: Humor Detection — Classify
whether the meme is intended to be binary
classification of humor, an important dimen-
sion given humor’s complex role in meme
communication.

Analyzing the class distribution reveals mild im-
balances, mainly in Subtasks B and Subtasks C,
where a large majority of samples are labelled as



neutral or non-targeted. Humor detection subtask,
on the other hand, benefits from intentional over-
sampling and a more balanced representation is
reached, enabling fairer model evaluation.

This shared task is motivated by the challenges
inherent in real-world content moderation, where
the interplay of multimodal cues, subtle biases, and
the socio-political context complicate automated
analysis. The PrideMM dataset and the associ-
ated task design offer a novel and rigorous bench-
mark for evaluating the robustness, fairness, and
interpretability of systems aimed at socio-political
meme understanding and moderation.

Subtask Label Split  Samples
No Hate Train 2065
. Hate Train 1985
A: Hate Speech Val 506
- Test 507
Undirected Train 617
Organization  Train 238
B: Tarcet Individual Train 199
s Community  Train 931
- Val 248
- Test 249
Support Train 1527
Oppose Train 1357
C: Stance Neutral Train 1166
- Val 506
- Test 507
Humor Train 2737
D: Humor No Humor Train 1313
’ - Val 1012
- Test 507

Table 1: Dataset Sample Distribution Across Subtasks

4 Methodology

We present BERTRES, a multimodal fusion ar-
chitecture designed to capture and integrate the
rich semantic cues inherent in both textual and vi-
sual component of memes. We understand that
memes combine image and text in such a way that
they jointly convey complex messages, and just
analyzing memes using uni-modal analysis is not
sufficient to understand the context. As a result,
our approach leverages specialized encoders for
each modality before fusing their representations
for multimodal classification.

The textual content of each meme is tokenized
and passed through a pre-trained BERT base model
(Devlin et al., 2019). BERT helps us extract
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the [CLS] token embedding, which is a 768-
dimensional vector that encapsulates the overall
semantic meaning of the caption. This embedding
can be regarded as a summary of the textual infor-
mation, and it is generally nuanced and context-
dependent.

At the same time, the visual information under-
goes preprocessing to adhere to the input require-
ments of a ResNet-50 Convolutional Neural Net-
work (He et al., 2015). Resnet-50 is pre-trained
on large scale image recognition tasks. The out-
put of the ResNet-50 is a 2048-dimensional feature
vector, which captures visual patterns and contex-
tual details within the meme to contribute to its
meaning.

BERTRES works by fusing these two modal-
ity specific embeddings. It concatenates the text
embedding with the visual embedding to obtain a
comprehensive feature vector, that represents the
multimodal content of the meme. The vector is
then passed through a series of fully connected
layers incorporating ReLLU activations, batch nor-
malization and dropout regularization that help the
model learn complex interactions between modali-
ties while mitigating overfitting.

The diversity of classification tasks inherent to
meme analysis addressed by the model employing
separate classification heads for each of the four
subtasks. This helps the model to share feature ex-
traction layers to learn generalized multimodal rep-
resentations, while at the same time enables each
head to specialize in its respective classification
objective.

Training uses the Adam optimizer with a finely
tuned learning rate of 2 x 1075, To overcome class
imbalance, especially seen in target and stance clas-
sification subtasks, we use class-weighted cross
entropy loss to ensure the model fairly attends to
underrepresented classes. This method, along with
dropout and batch normalization, promotes robust-
ness and improves generalization across subtasks.

4.1 BERTRES Model Architecture

The model architecture is consistent across sub-
tasks, adapting only the final classification layer
to the number of classes for each task (2 for hate
speech and humor detection, 4 for target classifica-
tion, and 3 for stance detection). The key compo-
nents include:

* Image Processing: The visual encoder is a
pre-trained ResNet-50 network. We remove



Table 2: Training Setup for Each Subtask

Subtask Model BS Ep. LR

A: Hate Speech ResNet+BERT 16 2 1x107°
B: Target ResNet+BERT 16 6 2x107°
C: Stance ResNet+BERT 16 6 2x107°
D: Humor ResNet+BERT 16 2 1x107°

its original classification layer and replace it
with an identity mapping to extract a 2048-
dimensional feature vector. This vector is then
linearly projected down to a 768-dimensional
embedding to align with the textual feature
space, facilitating effective fusion.

Text Processing: Textual input is encoded
using a pre-trained BERT base uncased model.
We utilize the [CLS] token embedding from
the last hidden state as a compact yet rich
representation of the entire caption.

Feature Fusion and Classification: The
concatenated multimodal feature vector com-
prising of 1536-dimensional after projection
passes through a dropout layer with dropout
rate 0.5 before entering a two-layer fully con-
nected classifier. The first layer reduces di-
mensionality from 1536 to 512 with ReLU
activation, followed by the output layer which
maps to the appropriate number of classes.

While fine-tuning both BERT and ResNet-50
does allow the model to adapt the representations
to the specific nuances of meme data, there is al-
ways a risk of overfitting considering the small size
and imbalanced nature of the dataset. We try to
mitigate this through dropout, batch normalization,
and class-weighted losses, balancing adaptability
with generalization.

4.2 Training Setup

Table 2 details the training configurations em-
ployed for each subtask. Consistent batch sizes
and carefully chosen epochs reflect the balance be-
tween training efficiency and performance, while
the learning rates and optimization strategies are
tuned to ensure convergence without overfitting.

5 Results & Discussion

Table 3 presents BERTRES’s final leaderboard per-
formance across the four subtasks in the CASE
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2025 shared task. Each subtask posed unique chal-
lenges, ranging from implicit hate expression to am-
biguous humor which required robust multimodal
analysis to achieve reasonably accurate predictions.

Table 3: Final Leaderboard Performance of BERTRES

Subtask F1Score Rank
A: Hate Speech Detection 0.7377 15
B: Target Classification 0.5628 6
C: Stance Classification 0.6015 9
D: Humor Detection 0.6533 14

Subtask A required the identification of hate
speech in memes. BERTRES achieved an F1 score
of 0.7377 and ranked 15", This relatively lower
performance can be attributed to the subtle nature
of implied hate and sarcasm, a task which is inher-
ently difficult to model without contextual meta-
data.

Subtask B required target identification and
BERTRES, securing 6™ position with an F1 score
of 0.5628. We attribute this result to our use of
class-weighted loss and balanced representation
learning, which helped mitigate the skewed label
distribution among target types. There is a need for
more robust algorithms to improve the prediction
in this task.

Subtask C focused on identifying stance (sup-
port, oppose, neutral), BERTRES ranked 9t ob-
taining an F1 of 0.6015. The results suggest that
while BERTRES captured some of the underlying
intent in meme discourse, it struggled with cases
involving satire or ambiguous sentiment.

Subtask D required humor detection proved to
be particularly challenging. Our system scored an
F1 of 0.6533, placing 14™. Humor’s subjective and
culturally grounded nature, coupled with limited
contextual cues, made it difficult for the model to
generalize.

Overall, BERTRES demonstrated consistent
mid-tier performance, with its strongest results in
target classification and respectable scores in the
remaining subtasks. These results highlight both
the strengths of a fusion-based architecture and the
inherent complexities of multimodal socio-political
content moderation.

6 Conclusion

This paper presented our approach to the CASE
2025 Shared Task on Multimodal Detection of
Hate Speech, Humor and Stance in Marginalized
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Figure 1: System overview of the BERTRES model combining textual and visual modalities for meme classification

across four subtasks.

Socio-Political Movement Discourse. We came
up with BERTRES, a lightweight but an effec-
tive multimodal model that fuses representations
from BERT and Resnet-50 model. Our system per-
formed strongly, particularly in hate speech and tar-
get classification, demonstrating competitive gen-
eralization capabilities across diverse meme types.

Even though the performance in humor and
stance detection were modest, we identified im-
portant challenges such as semantic ambiguity and
cultural disparity that hindered classification accu-
racy. Our analysis highlights the need for more
context-aware modeling and improved represen-
tation of nuanced information and sentiment in
multimodal content.

Future work will focus upon the improvement of
fusion strategy, by incorporating contrastive learn-
ing techniques, and adapting prompt-based meth-
ods that can dynamically interpret memes within
their socio-political context.

7 Limitations

BERTRES demonstrated overfitting on subtasks
with imbalanced or sparse label distributions, es-
pecially in the case of stance classification.Memes
heavily depend upon external cultural or political
context not present in the text or image alone. Ad-
ditionally, though our model is pretrained it lacks
access to real-world information, which made it
difficult to understand the context. Furthermore,
the current fusion mechanism concatenated image
and text embeddings without inter-modal attention,
which limited adaptability in ambiguous or sarcas-
tic and humorous memes.

8 [Ethical Considerations

While working with data related to hate speech and
marginalized communities, we came across some
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important ethical concerns. Firstly, PrideMM in-
cludes real-world memes that reflect hate, discrimi-
nation, and political rhetoric. Researchers should
handle such data respectfully and avoid causing
harm. Also model predictions can reflect anno-
tation and training biases, mainly in underrepre-
sented subgroups. Careful evaluation and auditing
is essential before deployment in real-world con-
tent moderation systems.Even though these models
are developed for research, these models can be
misapplied for surveillance and censorship. Trans-
parency, reproducibility and appropriate safeguards
are required to combat the potential for misuse. The
dataset pertains to LGBTQ+ issues, any future ex-
tensions or applications should involve stakehold-
ers from those groups so that fairness and trans-
parency can be ensured.

We aim to support positive use cases such as
harmful content detection and inclusive modera-
tion tools, but future research should continue to
foreground ethical awareness alongside technical
progress to ensure that the ethical standards are
always met.
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Abstract

Memes, a multimodal form of communication,
have emerged as a popular mode of expres-
sion in online discourse, particularly among
marginalized groups. With multiple mean-
ings, memes often combine satire, irony, and
nuanced language, presenting particular chal-
lenges to machines in detecting hate speech,
humor, stance, and the target of hostility. This
paper presents a comparison of unimodal and
multimodal solutions to address all four sub-
tasks of the CASE 2025 Shared Task on Mul-
timodal Hate, Humor, and Stance Detection.
We compare transformer-based text models
(BERT, RoBERTa) with CNN-based vision
models (DenseNet, EfficientNet), and multi-
modal fusion methods, such as CLIP. We find
that multimodal systems consistently outper-
form the unimodal baseline, with CLIP per-
forming the best on all subtasks with a macro
F1 score of 78% in sub-task A, 56% in sub-task
B, 59% in sub-task C, and 72% in sub-task D.

1 Introduction

Social networks have emerged as a platform that
promotes unity by amplifying the spread of ideas
in creatively diverse forms (Parihar et al., 2021).
However, the proliferation of various modalities in
online content has resulted in a rapid increase in
hate speech, toxicity, offensive nuances, and pro-
paganda (Rauniyar et al., 2023; Thapa et al., 2023;
Jafri et al., 2024; Naseem et al., 2025; Jafri et al.,
2023). A popular multimodal form of such con-
tent is memes, a combination of image or video
and text that expresses ideas of a certain group
or culture (Suryawanshi et al., 2020). Usually
used as a powerful medium for satire, critique, and
nuanced messages, memes blur the line between
humor and hate, making them extremely cumber-
some for machines to identify and tackle (Praman-
ick et al., 2021). This complication is particularly
pronounced in marginalized spaces, especially the
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LGBTQ+ movement, where memes serve as both a
means of solidarity and a force of resistance, mak-
ing the content simultaneously supportive and hos-
tile (Bikram Shah et al., 2024; Khatoon et al.).

With substantial interest from scholars and re-
searchers, recent advances have demonstrated a
significant improvement in understanding con-
tent that integrates both text and visual elements.
Transformer-based models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019)
have demonstrated strong performance, particularly
when dealing with nuanced or context-dependent
textual language. On the visual side, Convolutional
Neural Network (CNN) architectures such as Ef-
ficientNet (Tan and Le, 2019) are widely used to
extract semantic representations from images. Fur-
thermore, CLIP (Radford et al., 2021), a vision
language model trained on image-text pairs, has
emerged as a powerful tool for aligning textual and
visual semantics in a joint embedding space.

In this paper, we discuss a unified approach that
leverages multiple deep learning techniques, in-
cluding BERT, RoBERTa, DenseNet, EfficientNet,
and CLIP, to detect hate speech, humor, stance,
and identify target memes. These models were
evaluated as part of the Shared Task on Multi-
modal Hate, Humor, and Stance Detection in the
context of marginalized movement at CASE 2025
(Thapa et al., 2025a; Hiirriyetoglu et al., 2025).
The shared task consists of four subtasks: detecting
hate speech (subtask A), identifying hate targets
(subtask B), classifying the topical position (sub-
task C), and detecting humor (subtask D) using the
PrimeMM dataset associated with the LGBTQ +
Pride movement (Bikram Shah et al., 2024). Our
approach incorporates both unimodal and multi-
modal pipelines, with comparative evaluations to
assess the performance and limitations of each
model.
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2 Related Works

The increasing prevalence of using multimodal con-
tent to disseminate hate has evidently gathered the
interest of researchers in developing an efficient
system to detect and decrease the spread of online
negativity (Gandhi et al., 2024). Research in the
detection of harmful and offensive content has been
conducted in both unimodal and multimodal forms,
with multimodality gaining exponential popularity
in recent years. Several studies on understanding
the multimodality in content have demonstrated
promise in addressing the challenges of harmful
content on social platforms using different tech-
niques and frameworks (Thapa et al., 2024a). More
extensive research on multimodal hate detection be-
gan with a challenge organized by Facebook Al,
namely the Hateful Meme Challenge, with respect
to which various papers and systems have emerged
to tackle this issue (Kiela et al., 2020).

2.1 Unimodal Hate Meme Detection

Traditionally, detection models were mainly based
on textual content, which was later expanded to
images as well. Textual models have shown a
strong base with state-of-the-art performance even
in noisy and nuanced language. Text-based mod-
els have been particularly dominant, employing
traditional machine learning techniques such as
SVMs and logistic regression with handcrafted fea-
tures (Schmidt and Wiegand, 2017). They have
later progressed to deep learning models, including
LSTMs and transformer-based architectures like
BERT (Devlin et al., 2019). These models demon-
strate improved performance in identifying explicit
hate speech, but struggle to capture implicit or sar-
castic expressions, especially when critical context
is embedded visually. Parallelly, computer vision
has also advanced to provide strong performance
in hate detection in images as well. Image-only
models, often based on CNNs or architectures like
DenseNet (Huang et al., 2017) and ResNet (He
etal., 2016)— focus on visual symbolism or hateful
graphics but lack the linguistic information neces-
sary to interpret captions or textual overlays. While
unimodal approaches offer simplicity and lower
computational cost, several studies have shown that
they are insufficient for decoding the complex in-
terplay between text and image that characterizes
modern hate memes (Kiela et al., 2020).
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2.2 Multimodal Hate Meme Detection

Throughout the years, multiple efforts have been
made to create a multimodal dataset of harmful
and offensive memes. Most datasets focus on a
specific domain or target group of hate. PridleMM
dataset (Bikram Shah et al., 2024) is an annotated
multimodal dataset that focuses primarily on the
LGBTQ+ movement. Suryawanshi et al. (2020)
suggested the MultiOFF dataset, which is related
to offensive content from the 2016 US presidential
election, and implemented an early fusion model to
classify memes. Pramanick et al. (2021) proposed
the extension of their HarMeme dataset by includ-
ing US political memes as Harm-P and COVID-
19 memes as Harm-C to cover larger yet specific
contexts of harmful meme analysis and further an-
notated types of targets. A more general and nu-
anced dataset introduced to capture the vague sense
of memes is Multi3Hate, the first multimodal and
multilingual dataset with 1,500 memes, including
memes in five different languages (Bui et al., 2024).

Advanced models have lately been presented that
deal with the complexity of the multimodal meme.
More recently, models such as CLIP (Radford et al.,
2021) have bridged the gap between vision and
language by demonstrating strong performance in
zero-shot and few-shot classification, making it a
promising model used as a base for their archi-
tecture by many researchers (Bikram Shah et al.,
2024; Kapil and Ekbal, 2025). A notable research
in this domain is MOMENTA, which utilized a
multimodal neural network combining local and
global features, and adding intramodel attentions
to form the CLIP features outperforming several
rivaling approaches (Pramanick et al., 2021). A
unique approach was adopted in KnowMeme by
leveraging a graph neural network to identify im-
plicitly offensive content in memes with common
sense (Shang et al., 2021). Recently, the use of
LLMs and VLMs with zero-shot setting (Bui et al.,
2024), Chain-of-Thought (Yang et al., 2023), and
Chain-of-Expression (Huang et al., 2022) as well as
prompting techniques (Niu et al., 2024; Sun et al.,
2023), is gaining popularity in multimodal hate de-
tection (Thapa et al., 2025b). Question-Answering
has also been on the rise in the field of hate meme
classification (Anaissi et al., 2025; Nandi et al.,
2024).

Moreover, in the domain of humor detection, sar-
casm often coexists with offensive or hateful under-
tones, making it a particularly challenging aspect



for automated systems to detect reliably (Shiwakoti
et al., 2024). Stance detection, on the other hand,
has been studied in textual political and climac-
tic discourse (Kiiciik and Can, 2020; Thapa et al.,
2024b). However, relatively few works have tack-
led it in multimodal forms where visual rhetoric
plays a key role. Niu et al. (2024) introduced
the MmMtCSD dataset for multimodal stance de-
tection and proposed a framework that leverages
LLMs for the integration. A considerable amount
of research has been conducted, particularly on the
hate detection task; however, the other objectives
have limited resources available in the context of
multimodal content.

3 Datasets

The dataset used in this shared task is a multimodal,
multi-aspect resource, PrideMM (Bikram Shah
et al., 2024). The dataset comprises 5,063 text-
embedded images - primarily memes - relevant to
the LGBTQ + movement that are collected from
Facebook, Twitter, and Reddit between 2020 and
2024. Each image in the dataset is annotated across
four distinct subtasks: Hate Speech Detection, Tar-
get Classification, Topical Stance Classification,
and Humor Detection. Extracted text from the text-
embedded image is also provided using the OCR
vision API. The dataset was segmented into train,
evaluation, and test sets, with the test labels remain-
ing undisclosed throughout the challenge. Table 1
provides the statistics of the dataset used in each of
the subtasks.

Subtask Class Train Eval
Subtask A Hate 1,985 248
No Hate 2,065 258
Subtask B Individual 199 25
Community 931 116
Organization 238 30
Undirected 617 77
Subtask C  Support 1,527 191
Oppose 1,357 169
Neutral 1,166 146
Subtask D Humor 2,737 342
No Humor 1,313 164

Table 1: Dataset Statistics of all subtasks

3.1 Subtask A: Hate Speech Detection

For sub-task A, the provided dataset contains im-
ages labeled either No Hate(0) or Hate(1), with a
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total of 4,050 training images and 507 images for
testing. The dataset for sub-task A is quite bal-
anced, with 1,985 instances labeled as hate, and
2,065 labeled as no hate in the provided training set.
Additionally, 506 samples were also provided for
evaluation, with 248 hate and 258 no-hate samples.

3.2 Subtask B: Hate Target Classification

Subtask B aligns with the classification of targets
of hate speech in the text-embedded images. With a
total of 1,985 memes in the training set, the targets
are classified as Undirected (0) with 617 instances,
Individual (1) with 199 instances, Community (2)
with 931 instances, and Organization (3) with 238
instances. The evaluation set contains 248 text-
embedded images, and the test set has 249 unla-
beled instances.

3.3 Subtask C: Stance Classification

In Subtask C, the main objective is to determine the
stance of the image, with a total of 5,063 samples
annotated as Neutral (0), Support (1), or Oppose
(2). The training dataset contains 1,527 samples
of support, 1,357 of oppose, and 1,166 of neutral
instances. Additionally, a total of 506 samples in
the evaluation set contain 191 samples of support,
169 of opposition, 146 of neutral instances, and 507
images in the test set.

3.4 Subtask D: Humor Detection

Subtask D is a binary classification task focused
on identifying whether the text-embedded image
employs humor or not in the context of LGBTQ+
discourse. There are a total of 4,050 instances in the
training set, with 2,737 labeled as humor and 1,313
labeled as no humor. The evaluation set contains
1,012 images, and the test set contains 507 images.

4 Methodology

All four subtasks have been configured with both
unimodal and multimodal approaches to compare
the performance of each pre-trained model for each
modality. Starting with data pre-processing, model
adaptation, and fusion strategies, the process and
models are unified for all subtasks.

4.1 Data Processing

The multimodal nature of the dataset requires pro-
cessing to be done on both the text and the im-
age. In this section of the paper, textual and image
processing, including the modeling architectures,



are described. The extracted textual data obtained
using the OCR technology, provided along with
the dataset, was utilized for the processing of the
texts. Industry standard preprocessing and normal-
ization techniques, including lowercasing, removal
of punctuations and extra whitespace, and other
characters, were applied. The text was then tok-
enized using the HuggingFace tokenizers.

For image processing, the images were first
loaded and transformed using the PIL library. Sim-
ple preprocessing steps were applied, including
resizing, normalization, and data augmentation, to
obtain clean and consistent data for processing. Fur-
thermore, to ensure the alignment between the im-
age and text for the multimodal approach, a shared
index was curated with the textual data extracted
from OCR.

4.2 Model Architectures

This section describes the models used in both the
unimodal and multimodal settings. The unimodal
approach describes both the textual and the im-
age encoders. We utilized an extensive array of
models in all subtasks to compare both unimodal
and multimodal approaches. Popular transformer-
based text models, BERT-base (Devlin et al., 2019)
and ROBERTa-base (Liu et al., 2019), were fine-
tuned to be used as the primary unimodal text mod-
els. To capture the spatial features in the image-
only baselines, DenseNet-161 (Huang et al., 2017)
and EfficientNet-B3 (Tan and Le, 2019) were used
with the ImageNet-pretrained weights, followed
by modification of the classification layer accord-
ing to the number of classes in each of the sub-
tasks. Utilizing RoBERTa-base encoder for text
and EfficientNet-B3 for the images, a fusion tech-
nique was employed by concatenating the features
from the two models, which achieved the best per-
formance among multiple other combinations of
text and image processing models (Habib et al.,
2024). Moreover, the result was compared with
the CLIP model (Radford et al., 2021) that encodes
both the input modalities in a combined embedding
space. The shared embeddings were trained on a
custom classification head after freezing the CLIP
backbone.

5 Experiments

Each model, except the frozen CLIP backbone, was
fine-tuned with the AdamW optimizer with a learn-
ing rate of le-5 and batch size 8. All the models
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were trained until a maximum of 5 epochs with
early stopping using the macro-averaged F1 score
of the validation set. In the case of binary classifi-
cation tasks, the classification threshold was also
optimised based on the validation scores. All the
experiments were conducted using PyTorch, text
models were run on HuggingFace transformers,
and images were run on timm/torchvision. Repro-
ducibility was ensured by random seeds.

Parameter Value
Learning Rate  1le-5
Batch size 8
Epochs 5
Optimizer AdamW

Table 2: Configuration parameters

6 Result and Discussions

The performance of all models is reported using
the macro F1 score, which is the official metric of
the subtask. It is well-suited for this shared task
due to the presence of the imbalanced classes in the
subtasks. Table 3 summarizes the results of all the
models implemented per subtask, reflecting the su-
perior performance of CLIP in all subtasks. In the
hate speech detection task (subtask A), multimodal
models showed promising results, with the CLIP
model achieving the best F1 score of 78.28%, fol-
lowed by fusion of EfficientNet and RoBERTa with
76.33%. Text-based unimodal, such as RoBERTa-
base, also performed quite well with an F1-score of
76.12%, presumably because the captions extracted
by OCR are informal and tweet-like. Nevertheless,
these models often confused sarcastic or ironic ma-
terial, particularly where hate was conveyed using
visual metaphors or jokes, rather than the hate be-
ing expressed through words. In contrast, image-
based unimodals, EfficientNet, and DenseNet were
much less effective, which validates that visual
cues cannot be sufficient to effectively detect hate
speech in memes.

Subtask B was particularly challenging due to
the uneven distribution of the classes and the sub-
jectivity of directed interpretation when defining
the target of hateful text-embedded images. CLIP
again surpassed other models with an F1 score of
56.30%, but the performance declined consider-
ably compared to Subtask A, which suggests the
complexity of the task of disambiguating the target
categories. The major misclassifications were be-



Subtask Model Accuracy F1 Score Recall Precision
BERT-base 0.7298 0.7248 0.7276 0.7428
RoBERTa-base 0.7613 0.7612 0.7611 0.7614

Sub-Task-A  DenseNet-161 0.6154 0.6145 0.6164 0.6179
EfficientNet-B3 0.6291 0.6285 0.6301 0.6314
EffNet + ROBERTa 0.7633 0.7633 0.7634 0.7633
CLIP 0.7830 0.7828 0.7827 0.7833
BERT-base 0.5663 0.5133 0.5052 0.5553
RoBERTa-base 0.5181 0.5018 0.5422 0.5092

Sub-Task-B  DenseNet-161 0.4940 0.3859 0.3742 0.4644
EfficientNet-B3 0.3454 0.2554 0.2745 0.2418
EffNet + RoBERTa 0.5663 0.5420 0.5766 0.5588
CLIP 0.5462 0.5630 0.6235 0.5421
BERT-base 0.5680 0.5663 0.5723 0.5763
RoBERTa-base 0.5759 0.5693 0.5709 0.5713

Sub-Task-C  DenseNet-161 0.4675 0.4570 0.4612 0.4637
EfficientNet-B3 0.4832 0.4767 0.4777 0.4779
EffNet + RoBERTa 0.5459 0.5393  0.5608 0.5614
CLIP 0.5957 0.5930 0.5947 0.5953
BERT-base 0.6923 0.6462 0.6449 0.6478
RoBERTa-base 0.7219 0.6616 0.6543 0.6795

Sub-Task-D  DenseNet-161 0.6963 0.5275 0.6553 0.6709
EfficientNet-B3 0.6114 0.5964 0.6195 0.6050
EffNet + RoBERTa 0.7416 0.7053  0.7050 0.7056
CLIP 0.7594 0.7268 0.7275 0.7261

Table 3: Performance comparison of models across subtasks A-D.

tween the groups of Community and Undirected,
particularly in those memes that had broad or coded
language with no explicit reference to a particular
group. Also, Individual, which was the least rep-
resented category, was commonly under-predicted,
even with simple upsampling used in training. This
indicates a necessity for more evenly distributed
training samples and possibly more detailed guide-
lines for annotation that would be more capable of
differentiating between collective and individual
targets. Both CLIP with an Fl-score of 59.57%
and RoBERTa at 56.93% competed well in Subtask
C, which aimed to classify the stance of the meme
toward marginal movements. However, when deal-
ing with irony or tone ambiguity, even those mod-
els produced wrong classifications. The particular
class of the Neutral was most likely to be miscate-
gorized by falling into supportive or opposing mes-
sages. In addition, multimodal models, especially
CLIP with an F1 score of 72.68%, performed better
than the unimodal baselines in Subtask D as well,
where visual cues played a major role in contex-
tualizing comical contexts. Nevertheless, sarcasm
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and culturally coded jokes led to false predictions
at times, especially when their models were based
on images only and had no text.

7 Conclusion

In this paper, we address the multimodal and multi-
label nature of the spread of online negativity using
various deep learning models. We assessed the
performance of each model in each sub-task and
proposed a multimodal classification pipeline using
CLIP to detect hate speech, classify stances, iden-
tify targets, and recognize humor in memes. By
comparing transformer-based text encoders such
as BERT with image encoders built on CNN archi-
tectures like EfficientNet and DenseNet, and mul-
timodal models such as CLIP, we find that CLIP
outperforms all other models. CLIP-based architec-
ture performs particularly well in decoding context-
rich content and providing better generalization
across a variety of meme formats. Future work
aims to account for common sense reasoning, tem-
plate awareness, and temporally grounded context
to make the system more consistent with human un-



derstanding. In addition, it is necessary to develop
unbiased and explainable multimodal architectures
that would guarantee transparency and accountabil-
ity in the practical moderation of hate speech.

Limitation

Although the paper highlights recent advancements
in the related objectives of hate, stance, target,
and humor detection, several challenges remain
unsolved. The imbalance in the dataset has lim-
ited the performance of the models as it has fewer
examples to learn the features of the classes with
fewer instances. The performance of different mod-
els, while demonstrating a promising result, still
shows the inability to deal with ambiguous sar-
casm, under-represented classes, and implicit hate
speech. Dealing with these limitations is important
when employing the evaluated models to accurately
moderate existing hate speech in online platforms.
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Abstract

In recent years, memes have developed as pop-
ular forms of online satire and critique, artfully
merging entertainment, social critique, and po-
litical discourse. On the other side, memes
have also become a medium for the spread
of hate speech, misinformation, and bigotry,
especially towards marginalized communities,
including the LGBTQ+ population. Solving
this problem calls for the development of ad-
vanced multimodal systems that analyze the
complex interplay between text and visuals in
memes. This paper describes our work in the
CASE@RANLP 2025 shared task. As a part
of that task, we developed systems for hate
speech detection, target identification, stance
classification, and humor recognition within
the text of memes. We investigate two multi-
modal transformer-based systems, ResNet-18
with BERT and SigLIP2, for these sub-tasks.
Our results show that Sigl.IP-2 consistently out-
performs the baseline, achieving an F1 score
of 79.27 in hate speech detection, 72.88 in
humor classification, and competitive perfor-
mance in stance 60.59 and target detection
54.86. Through this study, we aim to contribute
to the development of ethically grounded, inclu-
sive NLP systems capable of interpreting com-
plex sociolinguistic narratives in multi-modal
content.

1 Introduction

Memes on social media are popular for their en-
tertaining, critical, and political uses. Although
memes are widely enjoyed for their entertainment
value, they are increasingly exploited to propagate
hate speech, circulate misinformation, and deepen
prejudice, particularly against the LGBTQ+ com-
munity. For this reason, systems intended to iden-
tify and limit online toxic content must understand
the diverse and many-faceted nature of memes.
New approaches in multimodal NLP now allow
models to analyze both images and text within
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memes, which has greatly increased the accuracy of
systems for detecting hate speech (Radford et al.,
2021; Li et al., 2019; Velioglu and Rose, 2020).
Particularly, the use of models like CLIP (Radford
et al., 2021) and VisualBERT (Li et al., 2019) has
opened new approaches to fuse images and texts,
enhancing our understanding of their inter-modal
relationships. Yet, most current methods do not
address the sensitive aspects of LGBTQ+ conversa-
tions that often include personal preferences, hid-
den meanings, and layers of humor (Shah et al.,
2024a; Thapa et al.).

Despite advancements in NLP, detecting hate
speech in multimodal contexts remains challeng-
ing, primarily because images and video signif-
icantly influence message interpretation (Kiela
et al., 2021). Increasingly, researchers are stress-
ing that it’s important to tell apart the targets of
hate, whether they are individuals, communities,
or organizations (Lee et al., 2021). These differ-
ences matter in LGBTQ+ discussions, given that
the line between who individuals are and how all
lesbian and gay people are seen is frequently un-
clear (Hardalov et al., 2022; Thapa et al., 2024).

Alongside identifying hate speech and toxicity
(Rauniyar et al., 2023; Jafri et al., 2024; Naseem
et al., 2025; Jafri et al., 2023), classifying people’s
stances is now seen as a main task for interpreting
user points of view. Prior research has analyzed and
detected stances in written and mixed information
for uses such as political discussions and detecting
falsehoods (Hasan et al., 2019; Thapa et al., 2024).
At present, stance detection methods often struggle
to pick up the hidden expressions of support or
opposition in LGBTQ+-related memes that might
involve heavy use of humor or sarcasm (Hardalov
etal., 2022).

Spotting humor in memes adds more to the chal-
lenge. While hate speech makes its meaning clear,
humor can hide hate underneath its jokes or sarcas-
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tic humor, allowing it to exist with both sides of
the discussion (Shah et al., 2024a). Trying to read
someone’s intent can be difficult when their words
are funny or sarcastic, which is why it’s necessary
to model humor as well as other tasks (Swamy
et al., 2020).

As a consequence of the complexity of this prob-
lem, the CASE@RANLP 2025 shared task pro-
vides a complete benchmark for hate speech detec-
tion, target identification, stance assessment, and
humor detection in text-embedded memes related
to LGBTQ+ issues. This project aims to initiate
the creation of systems that can understand soci-
olinguistic narratives expressed through the visual
and textual interplay. focusing on LGBTQ+ issues
allows the task to work toward the more general
goal of increasing inclusivity and equity in the field
of Natural Language Processing. This work aims to
advance the field of computational social science
and encourage more ethical Al within social is-
sues and sensitive discourse using domain-specific
datasets, advanced transformer models, and after
applying NLP techniques to sensitive and often di-
visive Al. The remainder of this paper is organized
as follows: Section 2 reviews related work, Section
3 outlines the dataset and task setup, Section 4 de-
tails our methodology, Section 5 presents results
and discussion, and Section 6 concludes the paper.

2 Related works

Detecting hate speech in text form has gained
considerable attention and has been on par with
the level of human detection (Thapa et al., 2023),
whereas multimodal forms like text and images
are an evolving and intricate challenge due to their
dynamic nature. (Kiela et al., 2020) made the Hate-
ful Memes dataset widely available and pointed
out that using information from one source only
is not enough, where, through ViLBERT, they
achieved only modest results. CLIP-based model
has shown superior performance with HateCLIPper
and MemeCLIP both achieving a macro F1 score
near 0.75 on PrideMM (Shah et al., 2024a). A
new study reveals that with LLM-based prompting,
GPT-4 and similar LLMs come close to detecting
hate speech in multimodal meme content (Zhuang
et al., 2025).

Hate may be directed at different targets, so rec-
ognizing the target is also very important. Datasets
such as HarMeme and PrideMM use the categories
undirected, individual, community, and organiza-
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tion for their analysis of targets (Pramanick et al.,
2021). Combining CLIP and attention brings better
results than unimodals, though the overall perfor-
mance is not high (F1 0.57-0.59) because the task
is quite complex.

Over the years, stance detection has progressed
significantly, especially with the rise of the Large
Language Model. Encoder-based models like
BERT & RoBRETa perform decently across data,
where decoder-based models like GPT-4 showed
stronger results on CLimateMist dataset (Pangtey
et al., 2025). However, stance detection in memes
remains unexplored. By labeling memes related
to LGBTQ+ topics, PrideMM fills the gap and
MemeCLIP exceeds plain text models, proving
how significant this method is (Shah et al., 2024a).
The same results are noticed in studies on tweets
and captions: including visual and textual input
together improves stance detection (Liang et al.,
2024).

Recently, humor detection systems have also
been improved in NLP, in addition to the simple
NLP task (Shiwakoti et al., 2024). In detecting
humor in text-based datasets, BERT, a transformer-
based model, has shown exceptional performance,
achieving an accuracy of 74% on joke assessment
tasks, which was initially trained on Reddit ratings.
However, it reached 98.6% accuracy on the short
jokes dataset, and on the Pun of the Day dataset,
it achieved the accuracy of 93.0%, outperforming
another previous CNN-based model (Pangtey et al.,
2025). Also, Models like MISA combined with
DialogueRNN could achieve an F-score of 71.67%
in multi-modal humor recognition on Hindi conver-
sations using text, acoustic, and visual inputs, out-
performing unimodal and bimodal setups, which
highlights the importance of contextual and multi-
modal fusion in humor detection (Zhuang et al.,
2025).

In addition, the development of deep learning
frameworks that incorporate features like incon-
gruity and subjectivity, along with LSTM or CNN-
based textual representations, has led to the ad-
vancement in domain-specific humor detection,
such as product question answering. An accuracy
of 90.76% on biased datasets and 84.41% on un-
biased ones has been achieved using these hybrid-
type models (Zhuang et al., 2025). Recently devel-
oped architectures have been outperformed in such
a type of task compared to earlier approaches and
models like statistical models, N-gram analysis,



and CNNs without context-specific features.

3 Dataset and Task Description

The shared task consists of four different subtasks:
Subtask A aims to detect hate speech in images,
Subtask B is related to classifying the targets of
Hate Speech, Subtask C concentrates on catego-
rizing images based on their stance towards the
marginalized movement, and finally, Subtask D in-
tends to detect humor in images. For all of the men-
tioned subtasks, datasets were provided by the orga-
nizers, which were initially created and curated by
different papers (Thapa et al., 2025; Hiirriyetoglu
et al., 2025; Shah et al., 2024b; Bhandari et al.,
2023)

3.1 Sub-Task A

It involves binary classification to distinguish be-
tween images classified as HATE (labeled as 1)
and NO-HATE (labeled as 0). For the training pur-
pose of this sub-task, a total of 4,050 datasets were
provided, out of which 1,985 were labeled as Hate
and 2,065 were labeled as No Hate. The other 506
data sets were for evaluation, and 507 for testing
purposes.

Me when everyone
suspects I'm trans

after | make the most
<explicitly trans statements

¥
LGBTQRSTUV
Community

Figure 1: Sub-Task A Training Data Example (Left:
Hate, Right: No Hate)

3.2 Sub-Task B

This sub-task is on multi-class classification for
identifying the targets of hate speech. The classes
contain Undirected (labeled as 0), Individual (la-
beled as 1), Community (labeled as 2), and Or-
ganization (labeled as 3). The associated dataset
consists of 1985 training, 248 evaluation, and 249
testing datasets.

3.3 Sub-Task C

Sub-task C also involves multi-class classification
for categorizing images based on their stance to-

Ored's parent
company

is being sued
for child labor

None of us are
free till we all are

=g =0

Figure 2: Sub-Task B Training Data Example (Top-
Left: Community, Top-Right: Organization, Bottom-
Left: Individual, Bottom-Right: Undirected)

ward the marginalized movement. Datasets com-
prise 3 labels, i.e., Neutral (labeled as 0), Support
(labeled as 1), and Oppose (labeled as 2), and con-
tain 4,050 training, 506, and 507 evaluation and
testing datasets, respectively.
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& J el 2 envy
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Figure 3: Sub-Task C Training Data Example (Left:
Oppose, Middle: Neutral, Right: Support)

BT ONE DAY T WILL B BETTER W JUST
s BEE TO FIGHT AN GARE FOR EAGH OTHER UNTIL THEN

3.4 Sub-Task D

This last task aims to identify images showcasing
humor, sarcasm, or satire related to the marginal-
ized movement and has a binary label (i.e., no hu-
mor (labeled as 0) and humor (labeled as 1))dataset.
As a dataset, 4,050 training, 506 evaluation, and
507 testing datasets were provided.

Since we don’t have access to an OCR extraction
tool, such as the Google Vision API, Tesseract,
EasyOCR, etc., we had to use the pre-extracted
text put there by the dataset organizers. In the
official benchmarking paper (Shah et al., 2024a)
connected with this dataset, the authors executed
their OCR using the Google Vision API and trained
their models in that way.



Hey | heard you were
refusing to use people’s
proper pronouns

-~

4SAYS GAY MMIIIIIIGE.
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THEJHOLE COUNTRY

Figure 4: Sub-Task D Training Data Example (Left: No
Humor, Right: Humor)

Subtask Class Train Eval Test
Hate 1,985 248 249
A No-Hate 2,065 258 258
Community 931 116 177
B Individual 199 25 25

Organization 238 30 30
Undirected 617 77 77

Neutral 1166 146 146
C Oppose 1357 169 191
Support 1527 191 146
Humor 2737 342 342
D No Humor 1313 164 165

Table 1: Distribution of instances across four sub-tasks

4 Methodology

Our approach comprises two different multimodal
architectures for the different sub-tasks. The first
one includes ResNet-18 for the extraction of visual
features and BERT-base for textual encoding, fol-
lowed by a concatenation of the two feature vectors
and two classification layers. The second approach
uses the Sigl.IP2-large-patch16-256 transformer
that processes image-text pairs in a joint embed-
ding space with a sigmoid-based contrastive loss,
thereby learning in a more efficient and scalable
manner than CLIP.

4.1 Image Pre-processing

For the ResNet+BERT pipeline, a custom PyTorch
Dataset class handled text tokenization using BERT
and image preprocessing through standard ResNet
transforms. For SigL.IP2, the HuggingFace proces-
sor was employed to tokenize text and to transform
images into model-ready tensors to maintain com-
patibility with the SigLIP architecture. Both load-
ers supported labeled and unlabeled data and re-
turned batched inputs from a PyTorch Datal.oader.

4.2 Models Architecture

4.2.1 SigLIP2

SigLIP2 is a lightweight and efficient multi-model
that uses frozen image and text encoders, which
means during training, no further fine-tuning can
be done (Pangtey et al., 2025). The embeddings are
concatenated, mapped to a lower dimension, passed
through a ReLU activation function, regularized by
dropout, and then classified. Due to a fixed set of
feature representations, the fixed encoders allowed
training to be relatively simple.

4.2.2 ResNet-18 + BERT

This multimodal architecture utilizes ResNet-18
for extracting image features, while BERT works
on text embeddings(Pangtey et al., 2025). In these
models, the features of visual and text are sepa-
rately extracted and concatenated before moving to
the next fully connected layers. Since the dataset
labels were imbalanced, label smoothing was
implemented in this architecture.

ResNet-18

It is a convolutional neural network with 18 lay-
ers(He et al., 2016). In this architecture, residual
connections help to optimize deep networks and
avoid vanishing gradient obstacles. Since it is
lightweight and efficient, it is easy to classify the
images using this model. It has great power to
generalize over a visual task since it is pretrained
on ImageNet.

BERT

Bidirectional Encoder Representations from
Transformers(Devlin et al., 2019) is a language
model based on a transformer-based architecture.
Because it is trained on larger corpora, it is good at
capturing context from words by using attention in
a bidirectional manner.

4.3 Hyperparameter

Different hyperparameters were used and adjusted
accordingly in two distinct model architectures for
all the sub-tasks, as detailed in Table 2 below.

Parameter Search Space Distribution
Batch size [16,32] Discrete
Learning Rate [le-6, 5e-5] Log-uniform
Weight Decay [le-6, le-3] Log-uniform
Epochs 10 Discrete
Optimizer AdamW Categorical

Table 2: Search space for Transformer models



5 Results and Dissucssion

Table 3 compares the accuracy, recall, and F1-
score of each model in all sub-tasks. Our pre-
trained model, SIGLIP-2, with a fine-tuned config-
uration, outperforms the multimodal architecture
with ResNet and BERT in each task.

Comparing F1-score of each model in the dif-
ferent sub-tasks. SigLLIP-2 has a better score than
the ResNet-18+BERT, securing 79.27%, 54.86%,
60.59% , and 72.88% , while on the other hand,
ResNet-18+BERT has achieved 67.12%, 45.30%,
55.80% , and 66.45% , respectively, in Sub-Task A,
Sub-Task B, Sub-Task C, and Sub-Task D.

Beyond F1-score performance, SigL.IP-2 has the
highest recall and accuracy of 79. 29% and 79.27%
in the Hate Speech Detection task out of all tasks.
However, it only achieves a recall of 58.28% while
identifying targets of Hate Speech. Like SigL.IP-2,
ResNet-18+BERT had the highest recall of 72.86%
in Sub-task 1. But, it has the lowest recall of
41.18%. Both models perform relatively poorly
on Sub-task B as a result of the imbalanced dataset
associated with it. In Sub-Task D, SigL.IP-2 recall
was able to identify humor instances, even if its
overall accuracy is modest. While ResNet com-
bined with BERT was able to accurately identify
more humor and non-humor instances.

6 Limitation

Despite strong results, our models reduced per-
formance in Sub-task B and Sub-task C, which
contained imbalanced class distributions. In such
situations, the model is inclined to favor the major-
ity classes present during the training phase, show-
casing its limited capability to effectively handle
imbalanced instances within the datasets.

7 Conclusion

In this research, we have used two different mod-
els, one a combination of ResNet-18 + BERT, and
the other is SigLIP2, for all four subtasks of the
shared task. Among the used models, our model
SigL.IP2 performs well in all tasks. On evaluation
metrics of F1-Score, this model achieves a score of
79.27% , 54.86 %, 60.59% , and 72.88 % on Sub-
Task A, Sub-Task B, Sub-Task C, and Sub-Task D,
respectively, which placed us 9th, 8th, 7th, and 7th,
respectively, on the leaderboard for Sub-Task A,
Sub-Task B, Sub-Task C, and Sub-Task D.
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Abstract

Internet memes serve as powerful vehicles of
expression across platforms like Instagram,
Twitter, and WhatsApp. However, they of-
ten carry implicit messages such as humor,
sarcasm, or offense especially in the context
of marginalized communities. Understanding
such intent is crucial for effective moderation
and content filtering. This paper introduces a
deep learning-based multimodal framework de-
veloped for the CASE 2025 Shared Task on
detecting hate, humor, and stance in memes
related to marginalized movements. The study
explores three architectures combining tex-
tual models (BERT, XLLM-RoBERTa) with vi-
sual encoders (ViT, CLIP), enhanced through
cross-modal attention and Transformer-based
fusion. Evaluated on four subtasks, the mod-
els effectively classify meme content—such as
satire and offense—demonstrating the value of
attention-driven multimodal integration in in-
terpreting nuanced social media expressions.

1 Introduction

Memes have emerged as a dominant medium of
communication in the digital age, enabling users to
express emotions, opinions, and social commentary
in humorous yet impactful ways. Their wide dis-
semination on platforms such as Twitter, Instagram,
and WhatsApp makes them not only vehicles of
entertainment but also instruments of cultural and
ideological expression. Despite their seemingly
innocuous appearance, memes can carry coded lan-
guage, sarcasm, and implicit ideologies that may
reinforce hate (Parihar et al., 2021; Roy and Ku-
mar, 2025; Swain et al., 2022; Kumar et al., 2021),
misinformation, or discrimination (Zannettou et al.,
2018). Their interpretative flexibility often depends
on the viewer’s cultural background, context, and
personal values (Kiela et al., 2020), making auto-
matic intent recognition particularly challenging.

Abhinav Kumar
CSED, MNNIT Allahabad
Prayagraj, India
abhik@mnnit.ac.in

With gay pride month over, let's hear it for straight
pride month!!! Anyone else proud to be straight????
©

L

HETEROSEXUAL
PRIDE MONTH

Figure 1: A meme promoting 'Heterosexual Pride
Month’ — raising concerns about LGBTQ+ exclusion.

What makes memes powerful is also what com-
plicates their analysis: they integrate both visual
and textual elements, with meaning frequently
emerging from the interaction between the two
modalities. A single meme can appear humorous to
some while being deeply offensive to others. This
inherent ambiguity necessitates sophisticated ap-
proaches to computational analysis that can reason
across modalities and cultural contexts.

Figure 1 illustrates the importance of multimodal
reasoning. This meme, sourced from the CASE
2025 shared task (Thapa et al., 2025a; Hiirriyetoglu
et al., 2025), visually depicts a heterosexual fam-
ily shielding their child from colored rain. While
it may appear neutral or protective at first glance,
the colored rain can be interpreted as represent-
ing LGBTQ+ pride, implying an exclusionary and
discriminatory undertone.

Interpretation 1: Neutral Perspective: At first
glance, the meme may appear to convey a positive
or protective sentiment—parents shielding their
child from colorful rain. This can be interpreted as

Proceedings of the 8th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Texts associated with RANLP 2025,

pages 98-106, Varna, Bulgaria, Sep 13, 2025.
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a metaphor for responsible parenting, without any
harmful connotation.

Interpretation 2: Critical Perspective: Upon
closer examination, the rainbow-colored rain sug-
gests a symbolic representation of LGBTQ+ iden-
tity. The umbrella labeled “Heterosexual Pride
Month” implies protection from LGBTQ+ influ-
ence, thus reinforcing anti-LGBTQ+ sentiment and
promoting a harmful ideological stance.

The latest developments in the impressive deep
learning, particularly in the field of multimodal
learning, have allowed extraction and reasoning of
both textual and visual features. The alignment of
vision and language, which is vital in the under-
standing of the layered semantics of memes, has
had an impressive result on the architectures, in-
cluding CLIP (Radford et al., 2021) and BLIP (Li
et al., 2022). Particular to meme analysis, the
Hateful Memes Challenge (Thapa et al., 2024) and
Memotion Analysis tasks (Sharma et al., 2020)
have inspired new studies on multimodal hate
(Thapa et al., 2023; Bhandari et al., 2023) and sen-
timent analysis.

It has been observed that unimodal learning sys-
tems cannot capture subtle contextual data; hence,
to address the situation, we present a multimodal
deep learning framework to integrate visual and
textual information in a multi-modal environment
by means of the fusion strategy of attention. The
given approach can identify not only direct but also
expressive forms of hate, such as sarcasm and po-
sitions of ideology. Our model follows a similar
pattern but uses pre-trained architectures (XLM-R
on the text data, CLIP model on the visual infor-
mation) and colleges a Transformer-based fusion
module to enable more robust performance with
better interpretability on multiple downstream stan-
dardized data sets.

The rest of the sections are organized as follows:
Section 2 discusses related work for memes identi-
fication, Section 3 discusses proposed methodology
in detail, The outcome of the proposed model is
listed in Section 4 and Section 5 concludes the

paper.
2 Related Work

Detecting harmful or misleading memes presents
a significant challenge due to their inherently mul-
timodal structure often requiring nuanced under-
standing of visual cues and embedded text. Over
the years, multiple approaches have been developed
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to address this challenge, ranging from unimodal
to state-of-the-art multimodal architectures.

2.1 Text and Vision Models for Content
Moderation

Early approaches primarily focused on either the
textual or the visual component of memes. Models
like BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) were widely used for text analysis,
while CNN-based models such as ResNet (He et al.,
2016) and DenseNet (Huang et al., 2017) handled
image classification. However, these unimodal
methods often failed to capture the interaction be-
tween image and text, a critical element in meme
understanding.

2.2 Multimodal Detection and the Facebook
Hateful Memes Challenge

The Facebook Hateful Memes Challenge (Kiela
et al., 2020) emphasized the need for multimodal
solutions by presenting memes where neither text
nor image alone conveyed hate. Transformer-based
models such as VILBERT (Lu et al., 2019) offered
early solutions for joint vision-language learning.

The introduction of CLIP (Radford et al., 2021)
further advanced this field by aligning visual and
textual representations in a shared embedding
space. Leveraging this, Hate-CLIPper (Kumar and
Nandakumar, 2022) and MemeCLIP (Shah et al.,
2024) demonstrated robust performance for hateful
meme detection and multi-label classification tasks
such as humor, stance, and hate.

2.3 Recent Advances in Meme Understanding

Recent studies have further refined multimodal fu-
sion strategies. Align-before-Attend (Hossain et al.,
2024) aligns image and text features prior to fusion
to improve hate detection performance, particularly
on multilingual datasets. Evolver (Huang et al.,
2024) applies prompt-based chain-of-evolution rea-
soning, enabling the model to use historical meme
context for interpreting intent.

LMM-RGCL (Mei et al., 2025) introduces a
two-stage contrastive learning approach for fine-
tuning large multimodal models and achieves state-
of-the-art results across six meme datasets. Lin et
al. (Lin et al., 2024) propose an explainable debate
framework between LLMs (Thapa et al., 2025b)
for modeling conflicting viewpoints within memes.
M3Hop-CoT (Kumari et al., 2024) uses a multi-
modal chain-of-thought strategy to enhance misog-



ynous meme detection performance, especially in
datasets like MAMI.

In multilingual settings, Chauhan and Ku-
mar (Chauhan and Kumar, 2025) employ XLM-
RoBERTa with ViT and BiLSTM-attention for de-
tecting misogyny in Tamil and Malayalam memes.
GuardHarMem (El-amrany et al., 2025) incorpo-
rates caption generation with fusion-based detec-
tion for improved interpretability and performance
(F1 = 0.91).

2.4 Research Gap

Despite recent advances in multimodal learning,
many existing approaches still rely heavily on task-
specific architectures, handcrafted feature engineer-
ing, or late fusion strategies that treat textual and
visual modalities in isolation until the final stage.
These limitations restrict the models’ ability to cap-
ture fine-grained interactions between modalities
and often reduce their generalizability across tasks.

3 Methodology

Each meme sample contains both image and OCR
text. All subtasks are multi-class or binary clas-
sification problems, requiring both modalities for
accurate prediction (see Table 1 for task descrip-
tion). The additional information on the dataset
can be found in (Thapa et al., 2025a).

This section presents two multimodal archi-
tectures designed for the Shared Task on Mul-
timodal Hate, Humor, and Stance Detection in
Marginalized Movements @CASE 2025 (Thapa
et al., 2025a; Hiirriyetoglu et al., 2025). Both ar-
chitectures process meme images and their OCR-
extracted text, aiming to predict four semantic prop-
erties: hatefulness, targeted group, stance, and hu-
mor. The overall task is framed as a multi-task
learning problem. The flow diagram for the pro-
posed model can be seen in Figure 2.

Our work introduces a unified transformer-based
architecture that leverages early fusion of mul-
timodal features through cross-modal attention.
Specifically, we explore three distinct combinations
of pre-trained language and vision encoders:

* XLM-RoBERTa + CLIP: We concatenate
768-dimensional textual embeddings from
XLM-RoBERTa with 512-dimensional text
and 512-dimensional image embeddings
from CLIP, forming a comprehensive 1792-
dimensional multimodal representation.
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* BERT + ViT: This configuration fuses 768-
dimensional text embeddings from BERT (De-
vlin et al., 2019) with 768-dimensional im-
age embeddings from the Vision Transformer
(ViT), resulting in a 1536-dimensional joint
feature space.

e XLM-RoBERTa + ViT: Here, both text and
image features are of 768 dimensions, produc-
ing a 1536-dimensional combined representa-
tion.

These fused embeddings are then processed
through a Multi-Head Attention Transformer
(Vaswani et al., 2017) that enables deep interac-
tion between modalities at multiple representation
levels. Our models are evaluated across all four
subtasks of the CASE 2025 competition to as-
sess their robustness, transferability, and domain-
independence. The experimental results validate
the effectiveness of our early-fusion attention-
based approach in capturing nuanced multimodal
intent, outperforming or matching task-specific
baselines while maintaining general applicability.

3.1 Architecture 1 : Transformer-based
Fusion

This section describes the architecture and training
procedure of our unified multimodal classification
framework.This approach leverages pretrained en-
coders for independent modality processing and
combines their outputs using a Transformer-based
fusion module.

3.1.1 Text Encoding with XLM-RoBERTa

We process the OCR-extracted text from
memes using the multilingual transformer XLM-
RoBERTa (Conneau et al., 2019). Given an
input text sequence Xy, we obtain its contex-
tual representation via the final [CLS] token
embedding:

hymr = XLM-R (Xext)jcLs] € R

This text encoder is fine-tuned using binary
cross-entropy loss:

N
Lioxe = — > _yilog(di) + (1 — yi) log(1 — §)
i=1

where §; = 0(W - hym + ;) is the predicted
probability of the positive class.



Table 1: CASE 2025 Shared Task Subtasks and Labels

Subtask  Objective Label Names Encoded Labels
A Detect hate speech in the meme. No Hate, Hate 0,1
B Identify the target of hateful Undirected, Individ- 0,1,2,3
memes. ual, Community, Or-
ganization
C Determine stance toward move- Neutral, Support, 0,1,2
ments. Oppose
D Detect humor/satire/sarcasm. No Humor, Humor 0,1

text
feature

xim-
roberta

OCR of Memes

text
feature
CLIP

Combined Transformer

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Independently fine-tuned on
Validation/Development Dataset

CLP

Image
feature

Training d

Feature Extraction on

ata

Binary
CQutput

Teature

1792

Concated all the features

Figure 2: Block diagram of the multimodal architecture for HM, MAMI, and MultiOFF datasets.

3.1.2 Visual and Textual Embedding with
CLIP

We employ the Contrastive Language—Image Pre-

training (CLIP) model (Radford et al., 2021) to

obtain aligned embeddings for both the meme im-

age Ximg and its OCR-extracted text Xoc,. CLIP

provides a joint representation:

hclip = [himg§ hocr] € R10247 himgv hocr € R512

Both image and text features are extracted via
CLIP’s pretrained encoders and optionally fine-
tuned using:

Eclip =Y 1Og U(Wc : hclip + bc)

3.1.3 Feature Fusion and Classification

The output representations from XLM-R and CLIP
are concatenated into a single vector:

1792
z = [hxlmr; himg§ hocr] € R

This vector is linearly projected to a reduced
dimension d for input into a Transformer encoder:

dx 1792
Zproj = Wp -2+ by, W, € R
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The Transformer encoder 7 with positional en-
codings captures inter-modal interactions:

Zfused = T (POSENC(Zpro)))

A multilayer perceptron (MLP) followed by a
sigmoid activation performs final classification:

y = O'(MLP(qused))

3.1.4 Training Configuration

The fusion classifier is trained using the following
setup: Optimizer: Adam, Learning rate: 1 x 1074,
Loss function: Binary Cross-Entropy, Batch size:
16, and Epochs: 100. The final prediction g is
thresholded at 0.4:

|

3.2 Architecture 2 : Transformer-based
Fusion with Bidirectional Cross Attention
3.2.1 Text Encoder: XLM-RoBERTa

The textual content from memes is tokenized and
passed into a fine-tuned XLM-RoBERTa model.
We extract contextual token embeddings H; &

L,
0,

ifo(f(z)) >04

otherwise



RE*4 and apply mean pooling to obtain the final
text embedding:

1 = ()
ht_L;Ht

where L is the sequence length and d = 768 is
the hidden dimension.

3.2.2 Image Encoder: Vision Transformer
(ViT)

The meme image is resized and fed into a pre-

trained ViT model. The image is split into P

patches and encoded to obtain H, € RP*?, Simi-

lar to the text stream, we perform mean pooling:

1A,
h, = 5 Z;HS)J)
J:

3.2.3 Bidirectional Cross-Modal Attention

We apply bidirectional multi-head attention be-
tween visual and textual sequences to model fine-
grained interactions:

At<—v - MHA(Ht7 va Hv)
A’l}%t = MHA(HU7 Ht7 Ht)

(1
2)

These attention outputs are pooled to form final
fused features:

z = [MeanPool(A,_,); MeanPool(A., ;)] € R*

3.2.4 Multi-task Classification Heads

The fused vector z is passed through four indepen-
dent multi-layer perceptrons (MLPs), one for each
subtask:

5,(3) — SOftmax(f(S)(Z)), s € {A, B,C, D}

Each head uses a cross-entropy loss:

Lo = Y As - LE)

where )\ are task-specific weights (default 1.0).

3.2.5 Training Configuration

Following hyperparameter were used to train the
proposed model: Optimizer: AdamW with weight
decay, Learning rate: 3 x 10~° (with warm-up),
Epochs: 30, Loss: Multi-task CrossEntropy, Back-
bone Freezing: First 5 epochs.
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3.3 Architecture 3 : Lightweight Fusion with
PCA and Multi-Head Attention

3.3.1 Static Feature Extraction

In this architecture, we use frozen encoders for
feature extraction:

* Text: BERT [CLS] embeddings t € R768

» Image: ViT global embeddings v € R768

3.3.2 Dimensionality Reduction
We apply PCA separately:

t' = PCA(t) € R'?®, v/ =PCA(v) ¢ R!*®

3.3.3 Multi-Head Attention Fusion

The reduced embeddings are passed through dense
layers and fused using multi-head attention:

q:Wq ~V/ k7vatt = Wk ~t/
Zfysed = MHA(CL k, Vatt)

3)
4

3.3.4 Multi-task Output and Loss

The attention output is flattened and passed into
shared dense layers, followed by task-specific clas-
sification heads:

¥ = Softmax (¢ (zfused)), Vs € {4, B,C, D}

We minimize total cross-entropy loss across all
subtasks:

ﬁtota] = Z 583

3.3.5 Training Configuration

Following hyperparameter were used to train the
proposed model: Optimizer: Adam, Learning Rate:
1 x 10~%, Epochs: 50, Loss: Cross-entropy per
subtask.

4 Results

Table 2 presents the performance of our multimodal
model (XLM-R/BERT + ViT/CLIP) across the four
subtasks defined in the CASE 2025 shared task.
The model achieves reasonably competitive per-
formance in binary tasks such as Hate Detection
(Subtask A) and Humor Detection (Subtask D),
obtaining an F1 score of 0.6602 and 0.6564, re-
spectively. These results indicate that the model is



Table 2: Performance of the Best Performed Models for Different Sub-tasks

Tasks Model Recall Precision F1 Score Accuracy
Subtask-A  XLM-R + ViT + Attention 0.6614  0.6654 0.6602 0.6627
Subtask-B  BERT + ViT + Attention 0.3158  0.2739 0.4096 0.4217
Subtask-C~ XLLM-R + ViT + Attention 0.4723  0.4905 0.4674 0.4694
Subtask-D  XLM-R + ViT + Attention 0.6554  0.6575 0.6564 0.7002
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A task A

able to capture surface-level multimodal features
to some extent.

However, the performance significantly drops in
more semantically complex tasks particularly in
Target Identification (Subtask B) and Stance Clas-
sification (Subtask C). For instance, the F1 score
for Subtask B was only 0.4096, far from the top
performer (0.6530). This gap indicates challenges
in understanding nuanced and context-specific se-
mantic relationships.

A key reason behind the lower performance in
these subtasks is likely due to semantic misalign-
ment between the textual and visual streams. The
model often misinterprets the context when the
image and text convey conflicting or sarcastic mes-
sages. Since memes are frequently designed with
contradictory visuals and text (e.g., humorous im-
ages paired with hateful text or vice versa), the fu-
sion mechanism occasionally diverges in learning,
either overemphasizing the visual cue or misjudg-
ing the intended sentiment of the text.

The confusion metric and ROC for for the testing
labels for xIm-roberta + VIT+ Attention model
can be seen in Figures 3 and 4, respectively. The
confusion metric and ROC for for the testing labels
for BERT + VIT+ Attention model can be seen in
Figures 5 and 6, respectively. The confusion metric
and ROC for for the testing labels for clm-roberta +
CLIP+ Attention based fusion model can be seen in
Figures 7 and 8, respectively. Similarly, confusion
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matrix and ROC curve for the subtask-D can be
seen in Figures 9 and 10, respectively.

These findings echo observations from prior
works on multimodal sarcasm and hate detection
(Fersini et al., 2022),which highlight that surface-
level fusion techniques are insufficient when the
modalities encode different or even conflicting se-
mantic signals. Thus, future iterations of the model
can benefit from deeper semantic alignment mod-
ules or attention-based conflict resolution strategies
to better handle such intricacies.

5 Conclusion

The proposed model is validated for four subtasks
from the CASE 2025 shared task. The system
showed promising performance on binary classifi-
cation tasks like Hate Detection (F1 = 0.6602) and
Humor Detection (F1 = 0.6564), indicating that the
model can capture explicit cues from both modal-
ities effectively. However, for more semantically
complex subtasks such as Target Group Identifi-
cation and Stance Classification, the performance
was notably lower (F1 = 0.4096 and 0.4674 respec-
tively). These tasks require a deeper understanding
of socio-political context and subtle narrative tones,
which our current model struggled to generalize.
One key limitation identified was the semantic mis-
alignment between image and text. The model
often failed to resolve contradictions in multimodal
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memes—where visual irony or sarcasm alters the
literal meaning of the text. This led to misinterpre-
tation in scenarios where the intended sentiment
was obfuscated through meme-specific humor or
design.
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Abstract

The multimodal ambiguity of text-embedded
images (memes), particularly those pertain-
ing to marginalized communities, presents a
significant challenge for natural language and
vision processing. The subtle interaction be-
tween text, image, and cultural context makes
it challenging to develop robust moderation
tools. This paper tackles this challenge across
four key tasks: (A) Hate Speech Detection, (B)
Hate Target Classification, (C) Topical Stance
Classification, and (D) Intended Humor De-
tection. We demonstrate that the nuances of
these tasks demand a departure from a ‘one-
size-fits-all’ approach. Our central contribu-
tion is a task-specific methodology, where we
align model architecture with the specific chal-
lenges of each task, all built upon a common
CLIP-ViT backbone. Our results illustrate the
strong performance of this task-specific ap-
proach, with multiple architectures excelling at
each task. For Hate Speech Detection (Task A),
the Co-Attention Ensemble model achieved a
top Fl-score of 0.7929; for Hate Target Clas-
sification (Task B), our Hierarchical Cross-
Attention Transformer achieved an F1-score of
0.5777; and for Stance (Task C) and Humor De-
tection (Task D), our Two-Stage Multiplicative
Fusion Framework yielded leading F1-scores
of 0.6070 and 0.7529, respectively. Beyond
raw results, we also provide detailed error anal-
yses, including confusion matrices, to reveal
weaknesses driven by multimodal ambiguity
and class imbalance. Ultimately, this work pro-
vides a blueprint for the community, establish-
ing that optimal performance in multimodal
analysis is achieved not by a single superior
model, but through the customized design of
specialized solutions, supported by empirical
validation of key methodological choices.

1 Introduction

Social media has significantly influenced pub-
lic discourse, with text-embedded images, or

memes, now serving as a dominant means for de-
bate, specifically addressing the surrounding so-
cial movements and marginalized communities
(Burbi et al., 2023; Thapa et al., 2024a). These
multimodal artifacts reflect a broad spectrum of
messages, from solidarity and support to targeted
persecution and hate (Kumar and Pranesh, 2021).
This dynamic is particularly evident in content rel-
evant to the LGBTQ+ community, where memes
appear as intricate instruments of in-group humor,
political commentary, and nefarious attack, often
simultaneously (Arcila-Calderén et al., 2021).

The multimodal ambiguity of these artifacts is
the key challenge for automated analysis. The
meaning of a meme is often inferred from a subtle
interaction between its visual and textual compo-
nents, necessitating a thorough understanding of
cultural and contextual differences to interpret ac-
curately (Kiela et al., 2020). Consequently, the
line between satire and genuine offense becomes
perilously unclear, presenting a substantial bar-
rier for content moderation systems (Chavez and
Prado, 2023; Naseem et al., 2025). This ambi-
guity highlights the constraints of simple binary
classifications (e.g., hate/no hate), which fail to
capture the multifaceted traits of the expression
(Carvalho et al., 2024). An extensive study is there-
fore paramount to evaluate the entire communica-
tive act, including its intended humor, intended
targets, and overall stance.

To address this challenge, and as part of
the Shared Task on Multimodal Hate, Humor,
and Stance Detection in Marginalized Move-
ment@CASE2025 (Thapa et al., 2025), this paper
presents a fine-grained, multi-task framework for
the in-depth analysis of memes from the PridleMM
dataset (Shah et al., 2024) related to marginal-
ized communities, held at the 8th Workshop on
Challenges and Applications of Automated Ex-

107

Proceedings of the 8th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Texts associated with RANLP 2025,

pages 107-114, Varna, Bulgaria, Sep 13, 2025.
https://doi.org/10.26615/978-954-452-099-1-013


https://doi.org/10.26615/978-954-452-099-1-013

traction of Socio-political Events (CASE 2025)
(Hiirriyetoglu et al., 2025). Our framework con-
currently addresses the four different but interre-
lated sub-tasks as defined by the task organizers:
(A) Hate Speech Detection, (B) Hate Target Clas-
sification, (C) Topical Stance Classification, and
(D) Intended Humor Detection. By tackling these
aspects simultaneously, our work transcends be-
yond simplistic labels to offer a more enhanced
and pertinent model of online multimodal com-
munication. This research not only advances a
robust system for a critical shared task but also
contributes to the overarching goal of developing
more accessible and efficient Al for comprehend-
ing the intricate nature of human expression online.
Our tailored approach proved highly effective, se-
curing a top-three finish in the nuanced challenge
of Intended Humor Detection (Subtask D), which
required identifying not just humor but also satire
and sarcasm, while achieving competitive perfor-
mance across all sub-tasks.

2 Related works

The task of automatically recognizing hate speech
has progressed significantly, with research shifting
from purely textual analysis (Rauniyar et al., 2023;
Thapa et al., 2024b, 2023b; Jafri et al., 2024, 2023)
to the more complicated domain of multimodal
content (Baltrusaitis et al., 2018), a field encom-
passing a wide range of applications and challenges
(Parihar et al., 2021). The growth of memes, where
meaning originates through a synthetic and often
non-literal interaction of image and text, has pro-
duced many text-only models that were inadequate.
Kiela et al. (2020) introduced the Hateful Meme
Challenge, highlighting a significant turning point
for the field. It presented a carefully assembled
dataset where innocuous images or text could be-
come hateful when paired together, showing that
models must engage in true multimodal thinking to
succeed. This spawned the development of higher-
level architectures aimed at integrating the data
across various modalities. Researchers have stud-
ied numerous fusion approaches, from basic fea-
ture concatenation to more intricate co-attention ap-
proaches and dedicated fusion models like Meme-
Fier (Koutlis et al., 2023), which uses a dual-stage
technique to align and fuse the visual and textual
elements.

Concurrent with the initiatives to enhance de-
tection accuracy, substantial research inspiration

has focused on achieving a detailed understanding
of harmful content. Researchers began to work
on finding who is being targeted after realizing
that recognizing binary hate/no-hate classification
alone is not sufficient. This spurred the devel-
opment of datasets with multi-aspect annotations
(Thapa et al., 2024c¢, 2023a), which not just iden-
tify the presence of hate but also its particular tar-
get attributes, such as religion, gender, or origin
(Ousidhoum et al., 2019) and even whether the hate
is directed or undirected (Bhandari et al., 2023).
This has been further refined by more recent bench-
marks such as the THOS dataset (Almohaimeed
et al., 2023) by offering hierarchical labels that
differentiate between general hate concerns and
specific targets. This fine-grained approach also
extends to stance detection, which analyzes an au-
thor’s viewpoint (e.g., support, oppose) towards a
specific topic or entity. This has been successfully
employed in the analysis of discourse around social
movements such as Black Lives Matter (Kumar
and Pranesh, 2021), providing a strong method-
ological foundation for our subtask of classifying
stance towards the LGBTQ+ community.

Perhaps the most subtle challenge lies in inter-
preting humor and satire, which can be used to
deliver offensive messages while maintaining plau-
sible deniability. Humor is a multifaceted social
phenomenon; it can act as a key means for in-
group solidarity and resilience within marginalized
communities (Baker et al., 2020; Shiwakoti et al.,
2024); however, it can also be used to regular-
ize prejudice and mock hate victims (Chavez and
Prado, 2023). This underlying ambiguity makes it
a tremendous problem for computational systems.
In response, dedicated shared tasks and datasets
like MAMI (Qu et al., 2022; Hee et al., 2023) have
been developed to offer a research platform for the
multimodal analysis of memes, with distinguished
tracks for identifying humor, sarcasm, and offence.
Our work directly complements this effort by treat-
ing Humor Detection as a distinct analytical di-
mension, enabling us to distinguish comedic intent
from hateful expression and authorial stance. By
incorporating research threads such as multimodal
hate detection, fine-grained target and stance analy-
sis, and humor detection, our project aims to create
a comprehensive framework for analyzing nuanced
online content relevant to the LGBTQ+ commu-
nity.
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3 Dataset and Task

Our experiments were conducted on the PrideMM
dataset (Shah et al., 2024), which was provided by
the shared task organizers for this challenge. The
task includes 4 different subtasks: Sub-Task A: De-
tection of Hate Speech, Sub-Task B: Classifying
the Target of Hate Speech, Sub-Task C: Classifica-
tion of Topical Stance, and Sub-Task D: Detection
of Intended Humor.

3.1 Sub-Task A

This subtask is a binary classification focused on
identifying hate speech. The goal is to distin-
guish between the content that contains hate and
the content that does not contain hate. The pro-
vided dataset consists of 4,050 training samples
with 1,985 samples of ‘Hate’ and 2,065 samples
of ‘NO Hate.” The number of validation samples
is 506, and the number of test samples is 507.

3.2 Sub-Task B

This sub-task B focuses on classifying the target
of content among ‘Community’, ‘Individual’, ‘Or-
ganisation’, and ‘Undirected’. The training dataset
consists of 1,385 samples, with ‘Community’ be-
ing the most frequent category with 931 instances,
while the least frequent, ‘Individual®, has 199 in-
stances. The dataset also consists of 248 validation
samples and 249 test samples.

3.3 Sub-Task C

This sub-task C involves multi-class classification
to determine the stance towards the given target
with three labels: ‘Support’, ‘Oppose’, and ‘Neu-
tral’. The dataset consists of 4,050 training sam-
ples, with the majority, 1,527 samples, being ‘sup-
port’ labels. The dataset also contains 506 valida-
tion samples and 507 test samples.

3.4 Sub-Task D

The last sub-task D is also a binary classification
to identify the presence of Humor. The dataset
consists of 4,050 training samples with 2,737 sam-
ples of ‘Humor’ and 1,313 samples of ‘no Humor’
labels. The validation sample and test sample is
consistent with sub-task A and C, containing 506
and 507, respectively.

4 Methodology

Our methodology is built on task-specific adapta-
tion. Recognizing the subtle challenges of hate

Subtask Class Train Eval Test
Hate 1,985 248

A No Hate 2,065 258 >07
Individual 199 25
Community 931 116

B Organization 238 30 249
Undirected 617 77
Support 1,527 191

C Oppose 1,357 169 507
Neutral 1,166 146
Humor 2,737 342

D No Humor 1,313 164 >07

Table 1: Summary of Dataset Statistics

speech, target identification, stance, and humor
detection are not amenable to a comprehensive
technique; therefore, we developed and analyzed a
suite of tailored systems. This section details the
architectures, fusion mechanisms, and advanced
training protocols that yielded the model that per-
formed best for each task.

4.1 Common Setup

Our systems are built upon the Contrastive Lan-
guage—Image Pre-training (CLIP) family of models
(Radford et al., 2021), with openai/clip-vit-large-
patch14 as our primary model. At the same time,
our comparative experiments for Subtask C also
included the laion/CLIP-ViT-L-14-DataComp.XL-
s13B-b90K model to assess scaling effects. The
dataset presents several challenges, including a
moderate class imbalance, which we mitigated by
employing balanced class weighting within the
cross-entropy loss function. Furthermore, we used
a strong data augmentation strategy including Ran-
dom Resized Crop (RRC) (from TorchVision) and
RandAugment (Cubuk et al., 2019) to improve
model invariance and dynamically handled any
corrupt image files to maintain training stability.
To ensure reproducibility, all single-model experi-
ments used a fixed random seed of 42, while our
ensemble for Subtask A used five unique fixed
seeds.

4.2 Task-Specific Architectures

Our central hypothesis was that each subtask de-
mands a unique modeling of the image-text inter-
action. For the high-variance task of Hate Speech
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(A), we reasoned that an ensemble would be most
effective at reducing prediction variance. For fine-
grained Target Classification (B), a hierarchical
attention model was developed to learn direct links
between textual tokens and visual regions. In our
initial experiments for Subtask B, we tested a sim-
pler baseline using direct feature concatenation of
the image and text embeddings. This approach
yielded a significantly lower F1-score (0.5506 on
the validation set), confirming our hypothesis that
an explicit cross-attention mechanism is essential
for grounding textual targets within the visual con-
text. For Stance and Humor (C, D), which of-
ten depend on conditional interactions, we em-
ployed a multiplicative fusion framework to ex-
plicitly model this non-linear dynamic. We detail
these three core architectures below.

Ensemble of Transformer-based Fusion Mod-
els (Subtask A): This architecture operates on
pre-computed 768-dimensional CLIP features. For
each meme, the image and text vectors are concate-
nated and processed by a four-layer, eight-head
Transformer encoder. The final prediction is a ro-
bust average of the softmax probabilities from an
ensemble of size 5, a variance-reduction technique
analyzed by Andrew and Gao (2007). We chose
this approach because hate speech detection is a
high-variance task where subtle cues can signifi-
cantly alter the classification. Ensembling helps
in stabilized predictions and decrease the risk of
overfitting to erroneous correlations in the training
data.

Hierarchical Cross-Attention Transformer
(Subtask B): This end-to-end architecture
refines 768-dimensional image and text features
in parallel using separate 2-layer Transformer en-
coders. A cross-attention mechanism then allows
the textual representation to contextually query
the visual representation. This contextualized
text feature is then concatenated with the original
refined text feature for final classification. This
architecture is particularly designed for target
classification as it enables the model to ground
textual targets (such as ‘individual’, ‘community’)
in the visual content of meme, which is critical for
accurate identification.

Two-Stage Multiplicative Fusion Framework
(Subtasks C & D): Inspired by the MemeCLIP
approach (Shah et al., 2024), this framework first
projects the 768-dimensional CLIP features into a

1024-dimensional space. These projected features
are then refined using lightweight adapter modules,
and their interaction is modeled through element-
wise multiplication.This approach works well for
the tasks like stance and humor detection, as these
tasks often rely on subjective and non-linear inter-
actions between the text and image. These intricate
relationships are better captured by multiplicative
fusion than by simpler additive or concatenative
techniques.

Our training protocol was defined by three core
techniques, with final hyperparameters Table 2 se-
lected from a limited random search of approxi-
mately 20 trials. The empirical impact of these
techniques on the validation set is shown in Ta-
ble 3.

Two-Stage Fine-Tuning: This protocol was crit-
ical for the stability of our end-to-end models. In
Stage 1, we froze the CLIP backbone and trained
only the task-specific modules for 5-8 epochs. In
Stage 2, we performed a gentle, end-to-end fine-
tuning, unfreezing the final 2 layers of the CLIP
encoders for up to 20 additional epochs with early
stopping. This approach yielded a +2.58 F1 point
gain over a frozen-backbone baseline on Subtask C.
This two-stage protocol is critical for preventing
‘catastrophic forgetting’, where end-to-end fine-
tuning can degrade the powerful, general-purpose
features of the pre-trained CLIP backbone. By first
training only the task-specific modules, we anchor
the model in the correct feature space before gently
refining the entire architecture.

Advanced Regularization and Initialization:
A cornerstone of our framework for Subtasks C
and D was Semantic-Aware Initialization (SAI), a
technique where a Cosine Classifier’s weights are
seeded using CLIP-encoded embeddings of class-
descriptive prompts (e.g., “a meme expressing a
‘support’ stance”), which consistently provided
faster, more stable convergence. We also explored
Stochastic Weight Averaging (SWA) (Izmailov
et al., 2019) on multiple subtasks. For Subtask C,
it was integral to the training process, though the
final checkpoint selected was the standard (non-
averaged) model which achieved the highest valida-
tion score. We note that while SWA provided a per-
formance lift on some tasks, our task-specific ‘Hi-
erarchical Cross-Attention Transformer’ for Sub-
task B ultimately outperformed our SWA-enhanced
baselines on the validation set, suggesting that
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Subtask System Architecture

Learning Rate (Head / Backbone)

Batch Size (Effective) Weight Decay

Co-Attention Ensemble

Hierarchical Cross-Attention Transformer
Two-Stage Multiplicative Fusion
Two-Stage Multiplicative Fusion

gnQw >

2e-4/—! 1024 0.1
2e-5/2e-6 64 0.1
2e-5/1e-8 16 le-2
le-4/ 1e-6 32 le-2

Table 2: Key Hyperparameters for Our Best-Performing Models. ! indicates that the model was not fine-tuned.

Technique Comparison Subtask AF1 (pts) Purpose

Two-Stage Fine-Tuning vs. a Frozen Back- C (Stance) +2.58 Improves training stability

bone

Two-Stage Fine-Tuning with SWA vs. C (Stance) +0.47 Smooths the optimization landscape
without SWA

Ensemble of size 5 vs. the Best Single A (Hate Speech) +0.41 Reduces prediction variance

Model

Table 3: Empirical Validation of Key Methodological Choices (on the Official Validation Set).

for this specific task, architectural innovation was
more impactful than optimization smoothing. All
end-to-end models employed Automatic Mixed-
Precision (AMP) via torch.cuda.amp to ac-
celerate training.

4.3 Implementation

All experiments were run on Google Colabora-
tory with a single NVIDIA T4 GPU. Automatic
Mixed Precision (AMP) via torch.cuda.amp
was used in all training runs to reduce mem-
ory usage and speed up convergence. To ensure
full reproducibility and to facilitate future re-
search, we publicly release our implementation,
including code, training scripts, and the final
model weights: https://github.com/SUJAL390/
CASE-2025-Multimodal-Meme—-Analysis.

5 Result and Discussion

Our comprehensive analysis across all four sub-
tasks, shown in Table 4 illustrates that achieving
optimal performance is accomplished by integrat-
ing specialized approaches with the unique de-
mands of each task rather than depending on a
single, universal model.Presenting the superiority
of model aggregation for robust classification, a co-
attention ensemble proved to be most effective for
hate speech detection (subtask A), achieving a final
test F1 score of 0.7929. On the other hand, the fine-
grained challenge of Target Classification (Sub-
task B) was best addressed by architectural innova-
tion, with the Hierarchical Cross-Attention Trans-
former achieving the highest F1 score of 0.5777.
For Stance and Humor Detection (Subtasks C and

D), superior results were achieved via advanced
optimization, with Two-Stage Fine-Tuning tech-
niques achieving the leading F1 scores of 0.6070
and 0.7529, respectively, highlighting the impor-
tance of methodical adaptation of large pre-trained
models.

6 Error Analysis

The confusion matrix, presented in Figure 1, shows
both the true and predicted labels, implying that our
model shows a relatively balanced performance be-
tween the classes rather than a strong bias towards
one. The critical errors are the 45 instances where
‘Hate’ was mislabelled as ‘No Hate’ in sub-task
A. Since our training dataset is well-balanced, this
issue does not trigger from data prevalence. In-
stead, the errors are likely to originate from the
‘multimodal ambiguity’ central to our paper, where
complex irony or satire masks the content’s true
hateful intent from the model.

In sub-task B, our model is assigned with
the challenge of categorizing targets from text-
embedded images into four labels: ‘Individual’,
‘Community’, ‘Organization’, and ‘Undirected.’
Analysis of the confusion matrix in Figure 1 shows
that our model has difficulties in identifying ‘Undi-
rected’ targets, which are commonly misclassified
as ‘Community’ (35 instances). The observed chal-
lenges in the model’s performance, especially in
differentiating between these two classes, can be
the cause of a significant imbalance in the training
dataset, as shown in Table 1.

For this sub-task C, the model is assigned to clas-
sify the stance as ‘Neutral’, ‘Support’, or ‘Oppose’.
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Subtask System Architecture Accuracy Precision Recall F1 Score Rank
A Ensemble of Transformer-based Fusion Models ~ 0.7929 0.7933  0.7932  0.7929 7
B Hierarchical Cross-Attention Transformer 0.5823 0.5666  0.5922  0.5777 5
C Two-Stage Multiplicative Fusion 0.6114 0.6218  0.6125 0.6070 6
D Two-Stage Multiplicative Fusion 0.7791 0.7491  0.7578  0.7529 3

Table 4: Official performance of our final systems on the blind test set. For each subtask, the rank is determined by
the F1 score (bold). All scores are as reported by the task organizers.
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Figure 1: Confusion matrices of Subtasks A, B, C, and D on the evaluation set

The confusion matrix in Figure 1 indicates that the
model most significantly struggles with the ‘Neu-
tral’ class, often mislabelling it as ‘Oppose’ (31
instances). Moreover, a high degree of confusion
exists between the ‘Support’ and ‘Oppose’ cate-
gories (29 misclassifications). This pattern high-
lights the challenge of assessing subjective content.
The error implies that the model fails to properly
comprehend sarcasm or nuanced political commen-
tary, where the literal text and image may not align
with the author’s actual stance.

In the sub-task D, our aim is to perform a bi-
nary classification of ‘No Humor’ and ‘Humor’.
The confusion matrix in Figure 1 indicates that our
model performs exceptionally well in recognizing
‘Humor’ (285 True Positives) but is significantly
less accurate when dealing with ‘No Humor’ con-
tent (52 False Positives). The apparent bias towards
recognizing humor forms in the model may arise
from the substantial number of Humor-labelled
texts in the training dataset, which includes more
than twice as many samples as the ‘No Humor’
class (2,737 vs. 1,313). Since both the training and
evaluation datasets are utilized to train the model,
the model may develop bias, affecting its accuracy
when handling the non-humorous speeches.

7 Conclusion

This research challenges the notion of a universal
model for multimodal NLP. Through a rigorous,

task-by-task analysis, we have demonstrated that
optimal performance is not a matter of finding a
single, superior architecture but of meticulously
aligning specialized models with the unique de-
mands of each task.

Our findings offer a clear blueprint for re-
searchers: ensemble models provide the necessary
stability for high-variance tasks like hate speech de-
tection; hierarchical attention is crucial for ground-
ing fine-grained targets; and multiplicative fusion
with semantic initializations best suited for sub-
jective interpretation tasks like stance and humor.
By advocating for this paradigm shift away from
a ‘one-size-fits-all” approach, our work establishes
that the future of high-performance, responsible
NLP lies in the customized design of tailored solu-
tions that achieve a state of task-model resonance.

8 Limitations

The underlying dataset and model design impose
limitations on our shared-task submission. First,
significant class imbalance and the subjectivity in-
trinsic in categorizing nuanced phenomena (humor,
stance, hate) introduce noise that can be skewed to-
wards dominant classes, limiting generalization to
out-of-domain datasets and different cultural or lin-
guistic contexts, as our training is based on a static
snapshot of online discourse. Second, our sys-
tems may struggle with emerging meme templates
and novel cultural references, or non-Western con-
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texts which challenges the static models. Third,
our top-performing ensemble architecture, while
effective, is computationally expensive and diffi-
cult to interpret, limiting its deployability without
further model compression or knowledge distilla-
tion. Eliminating these issues via improved sam-
pling strategies, multilingual foundation models,
and continuous learning pipelines will be critical
for robust,equitable and sustainable performance.

Ethics Statement

This work follows the ACL Ethics Policy, using an
anonymized dataset to develop models for detect-
ing harmful content. While aiming to create safer
online spaces, we acknowledge the potential for
misuse in surveillance or censorship. To mitigate
this, we have implemented fairness checks, recom-
mend human-in-the-loop oversight for deployment,
and advocate for transparent documentation and
community engagement.
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Abstract

Text-embedded images, such as memes, are
now increasingly common in social media dis-
course. These images combine visual and tex-
tual elements to convey complex attitudes and
emotions. Deciphering the intent of these im-
ages is challenging due to their multimodal and
context-dependent nature. This paper presents
our approach to the Shared Task on Multi-
modal Hate, Humor, and Stance Detection in
Marginalized Movement at CASE 2025'. The
shared task focuses on four key aspects of mul-
timodal content analysis for text-embedded im-
ages: hate speech detection, target identifica-
tion, stance classification, and humor recogni-
tion. We propose a multimodal learning frame-
work that uses both textual and visual repre-
sentations, along with cross-modal attention
mechanisms, to classify content across all tasks
effectively.

1 Introduction

The prevalent use of text-embedded images, partic-
ularly memes, in social media has raised new chal-
lenges in detecting harmful content. Traditional
text-only methods are not effective in capturing se-
mantic context when images and text work together
to convey complex negative messages. Multimodal
approaches perform better than unimodal methods
in detecting harmful content, which often relies on
the interaction between visual and textual elements
(Kiela et al., 2020).

Previous editions of the multimodal hate speech
event detection shared tasks (Thapa et al., 2024,
2023) have addressed challenges in detecting hate
speech in text-embedded images related to socio-
political events. The Shared Task on Multimodal
Hate, Humor, and Stance Detection in Marginal-
ized Movement at CASE 2025 (Thapa et al., 2025;

'https://codalab.lisn.upsaclay.fr/
competitions/22463
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Hiirriyetoglu et al., 2025) introduces multimodal
classification with four subtasks, each targeting a
different aspect of online discourse: (A) detection
of hate speech, (B) classification of hate speech tar-
gets, (C) stance classification toward marginalized
movements, and (D) humor recognition. This pa-
per presents our system, which uses a multimodal
architecture combining text and image encoders
with cross-modal attention mechanisms to extract
relevant features.

2 Related Work

The detection of harmful or sensitive content in
text-embedded images has gained attention with
the rise of social media. Recent work highlights the
challenges in automating hate speech detection due
to complex linguistic cues and implicit expressions
of hate. (Parihar et al., 2021). Early work on hate
speech detection focused on textual data (Davidson
et al., 2017; Waseem and Hovy, 2016). However,
text-embedded images require a multimodal anal-
ysis of both textual and visual cues to understand
implicit meanings and cultural references common
in social media discourse (Kiela et al., 2020).

Prior research in stance classification focused on
deciphering explicit stance indicators in text (Mo-
hammad et al., 2016). More recent work leverages
transformer models for text (Kiiciik and Can, 2020)
to capture contextual nuances in stance detection.
Humor recognition requires an understanding of
context, cultural nuances, and figurative language
(Annamoradnejad and Zoghi, 2020). Recent work
has explored the use of contextual embeddings
and attention mechanisms to capture the subtle lin-
guistic patterns that characterize humorous content
(Weller and Seppi, 2020)

Visual deciphering of harmful content has used
convolutional neural networks such as ResNet
(He et al., 2016) to extract features from images.
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Transformer-based models such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) have
been used to extract contextual embeddings from
text. Cross-modal attention captures fine-grained
interactions between different modalities, such as
text and images (Chen et al., 2020; Li et al., 2019).
These attention-based fusion mechanisms are es-
sential for recognizing subtle forms of harmful con-
tent, sarcasm, or humor.

Misclassifications or errors in sensitive content
can lead to serious consequences, which needs ro-
bustness in multimodal classification systems (Lar-
son, 2017). Test-time augmentation (TTA) has
shown promise in computer vision (Wang et al.,
2019) but its application in multimodal applica-
tions have been limited.

Our work addresses the CASE 2025 Shared Task
by proposing a multimodal architecture designed
for hate speech detection, target identification,
stance classification, and humor recognition. The
multimodal system integrates transformer-based
text encoders (BERT and RoBERTa) with CNN-
based image encoders (ResNet variants). It uses
a cross-modal attention fusion mechanism to cap-
ture fine-grained interactions between text and im-
age features. We incorporate TTA to enhance pre-
diction stability and reduce errors on unseen data
across all tasks.

3 Dataset & Task Description

We have used the PrideMM dataset (Shah et al.,
2024). PrideMM is a dataset containing 5,063 text-
embedded images related to the LGBTQ+ move-
ment collected from Facebook, Twitter, and Reddit.
The annotation scheme was adopted from (Bhan-
dari et al., 2023). Table 1 presents the dataset size
for training, validation and testing for each task.

Subtask | Train | Val | Test
A 4050 | 506 | 507
B 1985 | 248 | 249
C 4050 | 506 | 507
D 4050 | 506 | 507

Table 1: PrideMM dataset sizes for each task

Data pre-processing included text cleaning (e.g.,
URL removal, normalization of whitespace and
punctuation, and conversion of hashtags and men-
tions) and image normalization using ImageNet
statistics.
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3.1 Subtask A: Hate Speech Detection

Hate Speech Detection involves binary classifica-
tion to determine the presence of hate speech in
text-embedded images. Given an image paired with
a textual description, the task requires the system
to classify the content as "No Hate” or ”Hate”. The
training dataset for subtask A has a nearly balanced
class distribution with 51.0% No Hate (2065 im-
ages) and 49.0% Hate (1985 images).

3.2 Subtask B: Target Identification

Target Identification involves classifying the tar-
gets in text-embedded hate speech content. Given
an image that has already been identified as con-
taining hate speech, the task requires the system
to classify the content into one of four target cate-
gories: “Undirected,” “Individual,” ”Community,”
or "Organization.” Undirected hate speech contains
hateful content without targeting specific entities.
The Individual, Community, and Organization cat-
egories require the system to distinguish between
personal attacks, group-targeted hate, and institu-
tional criticism, respectively. The training dataset
for subtask B contains 31.1% Undirected (617 im-
ages), 10.0% Individual (199 images), 46.9% Com-
munity (931 images) and 12.0% Organization (238
images).

3.3 Subtask C: Stance Classification

Stance Classification involves classifying stance
in text-embedded images. The task requires the
system to classify the content into three stance cat-
egories: ”“Neutral”, ”Support” and ”Oppose”. The
training dataset for subtask C contains 28.8% Neu-
tral (1166 images), 37.7% Support (1527 images),
and 33.5% Oppose (1357 images).

3.4 Subtask D: Humor Recognition

Humor Recognition involves binary classification
of text-embedded images to determine if the con-
tent contains humor, sarcasm, or satire. The task
requires the system to classify the content as "No
Humor” or "Humor”. The training dataset for sub-
task D contains 32.4% No Humor (1313 images)
and 67.6% Humor (2737 images).

4 Methodology

For all tasks, our multimodal architecture consists
of three main components: (1) text encoder (2) im-
age encoder and (3) cross-modal or self-attention
mechanism. We have used BERT, RoBERTa and



DialoGPT to extract text features, and ResNet to
extract image features. BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) are transformer-
based models designed to capture deep contextual
dependencies in text. DialoGPT (Zhang et al.,
2020) is a variant of GPT-2 fine-tuned on large-
scale dialogue datasets to better model conversa-
tional language. ResNet (He et al., 2016) is a deep
convolutional neural network that introduces resid-
ual connections to ease the training of very deep
models.

For Hate Speech Detection and Target Identifica-
tion, we used the RoBERTa-base model for the text,
with a maximum sequence length of 256 tokens and
the CLS token embeddings (768 dimensions) as the
primary feature representation. For the images, we
used a ResNet50 model pre-trained on ImageNet,
removing the final classification layer and extract-
ing a 2048-dimensional feature vector from the
global average pooling layer. Both text and im-
age features were projected into a 512-dimensional
space using linear transformations and then com-
bined using an 8-head multi-head attention mech-
anism. The fused features were passed through a
multilayer perceptron (MLP) classifier. The output
of Hate Speech Detection is a binary classification
of No Hate (0) or Hate (1). The output of Tar-
get Identification is Undirected (0), Individual (1),
Community (2), or Organization (3). The high-
level system design for Hate Speech Detection and
Target Identification is shown in Figure 1.

For Stance Classification, we used an ensemble
of multimodal classifiers to combine textual and
visual features. Each model in the ensemble pro-
cesses text and image modalities through separate
branches before fusing the features via a shared pro-
jection layer. For text, we use RoOBERTa-base and
BERT-base-uncased as our encoders, extracting
CLS token embeddings with a maximum sequence
length of 128 tokens. These embeddings are lin-
early projected to a 256-dimensional space for
cross-modal fusion. For images, we use ResNet18
and ResNet34 pretrained on ImageNet, from which
we extract global average pooled convolutional
features.These visual representations are projected
into the same 256-dimensional feature space. We
use a simple attention mechanism to learn dynamic
weighting between text and image features. The
fused representation is created by concatenating
the projected text and image features, followed by
classification through a fully connected layer. Fi-
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nal predictions are generated through probability
averaging. The output is Neutral (0), Support (1)
or Oppose (3). The high-level system design for
Stance Classification is shown in Figure 2.

For Humor Recognition, the text is processed
using DialoGPT-medium, chosen for its ability to
handle conversational and informal language in
social media humor. Tokenized sequences are trun-
cated or padded to a maximum of 196 tokens. From
the encoder, we extract token embeddings, apply
mean pooling over the sequence length, and project
the resulting representation into a 512-dimensional
feature vector. For images, we use the ResNet50
model. The extracted 2048-dimensional features
are projected to a 512-dimensional space for cross-
modal fusion. We applied self-attention mecha-
nisms independently on text and image features.
We then used cross-modal attention, where text fea-
tures act as the query and image features as the
key-value pairs. A gating mechanism adaptively
weights the text and image features. The final fused
representation, formed by combining gated text,
gated image, and cross-modal attention outputs (3
x 512 dimensions), is passed through a multi-layer
classifier with progressively reduced dimensions.
The output is a binary classification of No Humor
(0) or Humor (1). The high-level system design for
Humor Recognition is shown in Figure 3.

The choice of architectures for the subtasks was
guided by task-specific requirements and empiri-
cal performance. Subtasks A and B use ROBERTa
and ResNet50 for binary and multi-class classifica-
tion. Subtask C employs an ensemble strategy to
address the severe class imbalance in stance detec-
tion. For Subtask D, DialoGPT replaced RoBERTa
to capture conversational patterns and humor cues.

5 Results & Discussion

All experiments were conducted using the Hugging
Face Transformers library for access to ROBERTa-
base, BERT-base, and DialoGPT-medium models.
The multimodal architectures were implemented
in PyTorch 1.13 with NVIDIA CUDA support. F1
score is the primary evaluation metric for all the
tasks.

5.1 Experiment Setup

For hate speech detection and target identification,
we used focal loss (v = 2.0) to focus on hard-to-
classify samples, using AdamW optimizer (learn-
ing rate of le-5, weight decay of 0.01) and a linear
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ResNet34, and BERT-ResNet18) process multimodal features. Their output probability distributions are averaged to
produce the final stance prediction across the three classes: Neutral, Support, and Oppose.

warmup schedule followed by a linear decay. For
target identification, we used focal loss with class-
specific weighting to handle residual imbalance.
We trained the model for eight epochs with a batch
size of 12, applying gradient clipping (norm <
1.0) to stabilize updates. We also used a test-time
augmentation (TTA) strategy that generated five
variants of each test image (original, horizontal flip,
brightness/contrast, rotation, and color adjustment).
The softmax probabilities across all augmentations
were averaged before making a final prediction to
enhance classification.

For stance classification, we train three mod-
els. The first model uses RoBERTa-base with
ResNet18, the second model combines RoOBERTa-
base with ResNet34, and the third model uses
BERT-base with ResNetl8. These models are
trained independently with different random seeds
(42, 123, and 456) to encourage diversity within
the ensemble. We use a label-smoothing, class-
weighted cross-entropy loss to address the mod-
erate class imbalance in the dataset. The class
weights are computed inversely proportional to
class frequencies and applied during optimization.
All models are trained using the AdamW optimizer
with a learning rate of 2e-5, weight decay of 0.01,
and gradient clipping at a maximum norm of 1.0
for six epochs. To reduce overfitting, dropout is
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applied in the fusion layers (0.3) and the classifier
(0.15), while the embedding layers are partially
frozen during the initial training phases for stabil-
ity. We perform ensemble prediction by averaging
the probability outputs of the three trained models
and selecting the class with the highest probability.

For humor recognition, we used focal loss (a=1,
~v=2), which reduces the effect of class imbalance.
Optimization is performed with AdamW (learning
rate = le-5, weight decay = 0.01) and a cosine an-
nealing schedule for 15 epochs. We used a batch
size of 12 and gradient clipping (maximum norm
= 1.0) for stability. Regularization strategies in-
clude dropout (0.3 across layers), partial freezing
of DialoGPT embedding layers, and test-time aug-
mentation as described previously.

5.2 Results

Table 2 presents the evaluation results for all the
tasks on the test dataset.

Task | Recall | Precision | Fl1 Accuracy
A | 0.779 0.781 0.778 0.779
B 0.550 0.565 0.553 0.590
C 0.611 0.612 0.608 0.611
D | 0.648 0.700 | 0.658 0.733

Table 2: Evaluation results for tasks
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The hate speech detection task achieved an F1
score of 0.778, precision (0.781), recall (0.779),
and accuracy (0.779), suggesting that the multi-
modal architecture effectively captured the visual
and textual patterns. The target identification task
achieved an F1 score of 0.553, precision (0.565)
and recall (0.550). The lower F1 score may indicate
that the model struggles with certain class bound-
aries. The precision-recall gap of 0.015 suggests
conservative predictions. While our performance
falls short of recent shared task winner (Wang and
Markov, 2024) (CLTL: 87.27% and 80.05% re-
spectively) and the CLIP baseline (78.60% and
61.50%), our results demonstrate competitive per-
formance within the challenging multimodal clas-
sification domain. The performance gap highlights
the difficulty of these tasks and suggests directions
for future improvement in fusion mechanisms and
using pretraining strategies used by top-performing
systems.

The stance classification task achieved an F1
score of 0.608, with precision (0.612) and recall
(0.611), showing consistent performance across all
three stance categories (Neutral, Support, Oppose).
The low difference between precision and recall
suggests that our approach balanced the moder-
ately imbalanced class distribution (28.8% Neutral,
37.7% Support, 33.5% Oppose).

The humor detection task yielded an F1 score
of 0.658 with higher precision (0.700) than re-
call (0.648), indicating that our model is conserva-
tive in predicting humor, preferring to avoid false
positives. The accuracy of 0.733 reflects higher
classification performance, while the precision-
recall gap suggests that the focal loss strategy
and cross-modal attention mechanisms successfully
addressed the class imbalance (67.6% humor vs
32.4% no humor) by being more selective in hu-

mor predictions.

To wvalidate our task-specific architecture
choices, we compared multiple approaches
across subtasks. For hate speech detection,
RoBERTa+ResNet50 with cross-modal attention
achieved the best performance (F1=0.778), out-
performing ensemble methods (F1=0.726). Tar-
get identification showed similar patterns with
RoBERTa+ResNet50 (F1=0.553) exceeding en-
semble approaches (F1=0.547). For stance clas-
sification, systematic comparison showed that in-
dividual models struggled: RoOBERTa+ResNet50
(F1=0.559), DialoGPT+ResNet50 (F1=0.533), and
BERT-base+ResNet50 (F1=0.443). This per-
formance degradation led to adopting an en-
semble approach with simple attention, achiev-
ing F1=0.608. For humor detection Di-
aloGPT+ResNet50 (F1=0.658) outperformed both
RoBERTa+ResNet50 (F1=0.646) and ensemble
methods (F1=0.630).

5.3 Error Analysis

Figures 4-7 show the error patterns across the sub-
tasks, based on the varying complexity of each
classification challenge. Subtask A (Hate Speech
Detection) achieved 188/258 (72.9%) correct ”No
Hate” predictions and 206/249 (82.7%) correct
“Hate” predictions. The primary error pattern
shows 70 false positives, where non-hateful con-
tent was misclassified as hateful, suggesting that
the model may be sensitive to certain linguistic
patterns or visual elements associated with hate
speech. For example, ”gay marriage shouldn’t ex-
ist, it should just be considered marriage” has been
incorrectly classified as Hate.

The model for Subtask B (Target Classification)
struggles with distinctions between target cate-
gories. The ”Individual” class shows the poorest
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Figure 4: Confusion Matrix for Hate Speech Detection

performance (10/25, 40% accuracy), frequently
confused with "Community” (10 misclassifica-
tions) and "Undirected” (3 misclassifications). This
suggests the model may have difficulty in distin-
guishing between personal attacks and broader
community-targeted content. The ”"Community”
class achieves the best performance (82/117, 70.1%
accuracy) but shows confusion with ”Undirected”
(21 misclassifications), indicating challenges in de-
termining whether hate targets specific communi-
ties.
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Figure 5: Confusion Matrix for Target Identification

Subtask C (Stance Classification) ensemble
achieves good performance on the "Neutral” class
(101/146, 69.2% accuracy) and “Oppose” class
(118/169, 69.8% accuracy), but struggles with the
”Support” class (98/191, 51.3% accuracy). There
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are 60 instances where supportive content was in-
correctly classified as neutral. The model has dif-
ficulty in distinguishing between implicit support
and neutral stance. Support is the most challeng-
ing class, with nearly half of supportive instances
(93/191, 48.7%) being misclassified.

Confusion Matrix - Subtask C
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Figure 6: Confusion Matrix for Stance Classification

Subtask D (Humor Detection) shows a clear
class separation. The model correctly identifies
305/342 (89.2%) humorous content and 67/165
(40.6%) non-humorous content. The error pattern
reveals 98 false positives (non-humor classified
as humor), suggesting the model may detect hu-
morous elements in content intended to be serious.
For example, "LGBTQ inclusive education, what
conservatives think it is: here are 50 pronouns to
memorize” has been incorrectly classified as Hu-
mor.

5.4 Ablation Study

To evaluate the contribution of test-time augmen-
tation (TTA), we compared model performance
with and without TTA across the subtasks. Hate
speech detection showed the largest gain from
F1=0.591 without TTA to F1=0.778 with TTA,
while target identification improved from F1=0.510
to F1=0.553, and stance classification increased
from F1=0.581 to F1=0.608. These results indi-
cate that TTA provides significant performance
benefits, with the largest improvements observed
in binary classification tasks, while the more mod-
est improvements in multi-class tasks reflects the
complexity of distinguishing between fine-grained
categories.
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6 Conclusion

In this work, we introduced a multimodal frame-
work for Shared Task on Multimodal Hate, Humor,
and Stance Detection in Marginalized Movement.
We achieved F1 scores of 0.778 (hate speech de-
tection), 0.553 (target identification), 0.608 (stance
classification), and 0.658 (humor detection), which
reflects the classification challenge in each of the
subtasks. For hate speech detection and target
identification, our RoBERTa-ResNet50 architec-
ture with cross-modal attention performed better.
While stance classification with ensemble strategies
and conservative regularization, to prevent overfit-
ting, gave us better results. Humor recognition
required more advanced cross-modal attention and
gating mechanisms with DialoGPT for conversa-
tional language understanding. The application of
focal loss for class imbalance, test-time augmen-
tation for robustness contributed to reliable perfor-
mance across all tasks. Future work can explore
ablation studies to evaluate the impact of different
attention mechanisms and loss functions. Further
research will focus on exploring vision-language
transformers (e.g., CLIP), hierarchical attention
mechanisms, and semi-supervised learning on un-
labeled multimodal data.

Limitations

Some limitations emerged from our analysis that
may affect the generalizability and performance
of our system. First, the dataset ranges from
1,985—4,050 samples per task which can increase
the risk of overfitting, particularly for deeper ar-
chitectures like ResNet50 or complex attention
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mechanisms. This constraint may limit the model’s
ability to capture diverse visual and textual pat-
terns. Techniques like semi-supervised learning
could help with data scarcity. Second, annotation
of humor and stance is subjective, making perfor-
mance evaluation challenging for borderline cases.
Additionally, the computational cost of ensemble
models and cross-modal attention mechanisms re-
stricts real-time deployment. Finally, despite using
focal loss and weighted sampling, our models are
sensitive to class imbalances.
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Abstract

This study describes our submission to the
CASE 2025 shared task on multimodal hate
event detection, which focuses on hate detec-
tion, hate target identification, stance determi-
nation, and humour detection on text embedded
images as classification challenges. Our sub-
mission contains entries in all of the subtasks.
We propose FIMIF, a lightweight and efficient
classification model that leverages frozen CLIP
encoders. We utilise a feature interaction mod-
ule that allows the model to exploit multiplica-
tive interactions between features without any
manual engineering. Our results demonstrate
that the model achieves comparable or superior
performance to larger models, despite having
a significantly smaller parameter count. The
source code and model checkpoints are avail-
able at github.com/sushant-k-ray/FIMIF

1 Introduction

The landscape of digital communication has
evolved dramatically with the widespread adoption
of social media platforms, fundamentally trans-
forming how individuals express opinions and
share content. This evolution has brought signifi-
cant challenges in content moderation, particularly
in the detection of hate speech that increasingly
manifests in the form of memes, which are im-
ages with text embedded in them used to convey
a message. The CASE (Challenges and Applica-
tions of Automated Extraction of Socio-political
Events from Text) series has consistently addressed
these challenges, with recent editions expanding
from text-only analysis to encompass multimodal
content understanding (Thapa et al., 2023, 2024).
Building upon the success of previous CASE
workshops, the multimodal hate event detec-
tion task at CASE 2025 (Thapa et al., 2025a;

fCorresponding author.

123

Hiirriyetoglu et al., 2025) represents a natural pro-
gression toward addressing more complex multi-
modal hate speech detection scenarios.

In this paper, we introduce FIMIF (Feature In-
teraction for Multimodal Integration and Fusion),
a model conceptually similar to MemeCLIP (Shah
et al., 2024). We utilise modified residual units to
leverage the capabilities of deep neural networks
while keeping the performance stable. We intro-
duce a feature interaction module that automat-
ically learns exponential and multiplicative rela-
tionships between features, enabling the model to
capture higher-order interactions. While Meme-
CLIP is designed for general downstream tasks
on meme images, our model specifically targets
meme classification. Our approach relies on ag-
gressive compression of multimodal embeddings to
very low dimensions, followed by a multiplicative
module that allows for richer feature interactions.
We provide comprehensive experimental evaluation
demonstrating the effectiveness of our approach.

2 Related Works

Hate Speech Detection: The task of hate speech
detection has progressed from lexicon-based or
shallow machine learning approaches (Burnap and
Williams, 2015; Waseem and Hovy, 2016; David-
son et al., 2017) to deep learning models (Parihar
et al., 2021). The advent of large pre-trained lan-
guage models brought significant improvements in
hate speech detection. BERT (Devlin et al., 2019),
RoBERTza (Liu et al., 2019), and DistilBERT (Sanh
et al., 2020) introduced contextual embeddings that
improved performance on social media hate speech
detection. These models have achieved state-of-
the-art results on benchmarks such as: HateXplain
(Mathew et al., 2021), Offensive Language Identifi-
cation Dataset (OLID) (Rosenthal et al., 2021), Gab
Hate Corpus (Kennedy et al., 2022), and Storm-
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front dataset (de Gibert et al., 2018). These lan-
guage models are very efficient and powerful in
terms of language understanding.

Multimodal Tasks: As harmful content increas-
ingly appears in multimodal forms like memes, re-
search has shifted toward models that process both
text and images. Datasets such as Facebook’s Hate-
ful Memes (Kiela et al., 2020) and MMHS 150K
(Gomez et al., 2020) have been instrumental in ad-
vancing this field. Some recent multimodal hate
speech detection datasets include Harm-C (Pra-
manick et al., 2021a), Harm-P (Pramanick et al.,
2021b), DisinfoMeme (Qu et al., 2022), and Cri-
sisHateMM (Bhandari et al., 2023). Early multi-
modal systems use separate encoders (e.g., ResNet
(He et al., 2016) for images and BERT for text)
and combine features through concatenation or at-
tention. Later models rely on fusion strategies to
combine these different representations.

Vision Language Models: Vision-Language
models aim to learn joint representations of visual
and textual inputs, typically trained on large-scale
image-text pairs. These models are broadly divided
into two categories: Dual-encoder models, and Fu-
sion models.

Dual-encoder models, such as OpenAI’s CLIP
(Contrastive Language-Image Pre-training) (Rad-
ford et al., 2021) and Google’s ALIGN (Jia et al.,
2021), encode images and text separately and align
their embeddings using contrastive loss.

CLIP, in particular, has gained popularity due to
its strong zero-shot performance and generalisation
ability. Trained on 400 million internet image-text
pairs, it can embed both modalities into a shared
semantic space.

Low-Rank Multimodal Fusion: One of the key
challenges in multimodal learning is the integration
of information from multiple modalities. While
tensor based fusion methods offer powerful and ex-
pressive means of capturing interactions between
modalities, they are often computationally expen-
sive and suffer from a rapid increase in parameters,
particularly when modelling higher-order interac-
tions across multiple input sources (Zadeh et al.,
2017).

To mitigate these challenges, Low-rank Multi-
modal Fusion (LMF) (Liu et al., 2018) has emerged
as a scalable and efficient paradigm. Rather than
modelling the full tensor representation, LMF ap-
proximates it using modality specific low rank pro-

jections, which are then combined using element-
wise operations. This dramatically reduces the pa-
rameter count and computational overhead while
still retaining cross-modal interactions. LMF scales
linearly with the number of modalities, in contrast
to the exponential growth in traditional fusion ap-
proaches. We adapt a similar principle with the use
of additive and multiplicative layers.

Highway And Residual Networks: Highway
networks (Srivastava et al., 2015) and Residual net-
works (He et al., 2016) are widely used to improve
training stability and depth in deep learning mod-
els. Residual layers mitigate vanishing gradients
by adding skip connections, while highway layers
introduce trainable gates to control information pas-
sage. These ideas motivate our use of lightweight
residual projections to preserve essential features
without over-fitting.

Multiplicative Modules: The Neural Arithmetic
Logic Unit (NALU) (Trask et al., 2018) introduces
a mechanism for learning arithmetic operations in
neural networks using log-space computations to
model multiplicative relationships. Several variants
of NALU have been proposed to improve stabil-
ity and expressiveness in different settings (Schlor
et al., 2020; Madsen and Johansen, 2020; Heim
et al., 2020). We extend NALU to multimodal
classification in a residual framework to maintain
flexibility while modelling higher-order relation-
ships.

3 Dataset And Tasks

Shah et al. (2024) released a novel multimodal
dataset, PrideMM consisting of text embedded im-
ages for classification of various aspects of hate
against marginalised LGBTQ+ movement, and
community in online discourse through images,
particularly memes. The dataset is divided into
four classification tasks: hate detection, hate target
identification, stance determination, and humour
detection.

The multimodal hate task at CASE 2025 utilises
the PrideMM dataset, focusing on discrimination
and hate against the LGBTQ+ community. The
dataset is divided into an 80/10/10 train-validation-
test split. This is different from the PrideMM
dataset, where the split is 85/5/10. OCR of the
images is provided as supplementary material to
aid in the process of classification.
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The following table shows the distribution of the
training samples:

Task Label Samples %
Hate No Hate 2065 50.99%
Hate 1985 49.01%
Target Undirected 617 31.08%
Individual 199 10.03%
Community 931 46.90%
Organization 238 11.99%
Stance Neutral 1166 28.79%
Support 1527 37.70%
Oppose 1357 33.51%
Humour  No Humour 1313 32.42%
Humour 2737 67.58%

Table 1: Distribution of the training samples in the
shared task dataset.

3.1 Tasks

The PrideMM dataset focuses on following four
subtasks:

Subtask A: Hate Detection. This task aims to
identify instances of hate speech in the images.
This task focuses on identifying whether the im-
ages intentionally convey hateful sentiments. The
training data is balanced (1.04 : 1), and contains a
total of 4050 data samples.

Subtask B: Hate Target Identification. This
task focuses on identifying the targets of hate in
hateful images. There are four categories: Undi-
rected, Individual, Community, and Organization.
Images are labeled ‘Undirected’ when they tar-
get abstract topics, societal themes, or ambiguous
targets. Hateful images targeting specific people
are labeled ‘Individual’. The label ‘Community’
is used for instances of hate in images targeting
broader social, ethnic, or cultural groups. Images
targeting corporate entities, institutions, or similar
organizations are labeled ‘Organization’.

The training data is extremely imbalanced (3.1
: 1:4.7:1.2), and contains data samples for only
those images which convey hate. As a consequence,
only 1985 data samples are available for training.

Subtask C: Stance Determination. This task
aims to determine the stance that the image is try-
ing to convey towards the topic. There are three
categories: Support, Oppose, and Neutral. The
‘Support’ label is given to images that express sup-
port for the goals of the movement, agree with
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efforts to promote equal rights for LGBTQ+ indi-
viduals, or promote awareness of the movement.
The ‘Oppose’ label is given to images that express
disagreement with the goals of the movement, deny
the problems faced by individuals who identify as
LGBTQ+, or dismiss the need for equal rights and
acceptance. The ‘Neutral’ label is given to images
that are contextually relevant to the movement but
exhibit neither support nor opposition towards the
movement.

The training data is fairly well balanced (1 : 1.31
: 1.16), and contains a total of 4050 data samples.

Subtask D: Humour Detection. This task aims
to detect whether the image showcases any form of
humour, sarcasm, or satire related to the LGBTQ+
pride movement regardless of whether it presents a
light-hearted or insensitive perspective on serious
subjects.

The training data is imbalanced (1 : 2.08), and
contains a total of 4050 data samples.

4 Methodology

In this section, we describe FIMIF (Feature In-
teraction for Multimodal Integration and Fusion),
our proposed model for meme classification. We
utilise the CLIP vision-language model to extract
multimodal embeddings that effectively encode the
semantic content of memes. Figure 1 illustrates
the overall architecture of our model. Below, we
describe each component in detail.

Pre-Trained CLIP Model: Similar to Meme-
CLIP, we leverage CLIP encoders for their strong
zero-shot generalisation and effective transfer learn-
ing capabilities. The CLIP model consists of
an image encoder (E7) and a text encoder (E7).
We freeze the weights of both encoders to retain
the knowledge acquired during pre-training. We
utilise CLIP ViT-L/14 image encoder pre-trained
on 336x336 images instead of 224x224. 336x336
images can better represent high-frequency infor-
mation than their 224x224 counterparts. Figure 2
presents an example. Note that the use of 336px
variant of CLIP’s image encoder does not increase
the parameter count of the encoder. The unimodal
image and text representations X7, X7 € R768 ef-
fectively encode the semantic content of a meme
and are defined as:

X;=E[(I); Xr=Er(T) (1
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Figure 1: Architecture of our proposed model. Trapeziums are used to represent dimensionality compression.
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Figure 2: Meme at various resolutions (a) Original reso-
lution (2314x1191) (b) Image downscaled to 336x336
(c) Image downscaled to 224x224. The downscaling
and upscaling method used is bicubic interpolation.

where [ is the image and T is its corresponding
OCR text.

4.1 Linear Residual Projection Layer

Although CLIP is trained to maximise similarity
between aligned image-text pairs, the inherently
contrastive nature of memes, where visual and lin-
guistic elements often convey conflicting messages,
calls for additional adaptation of the embedding
space. We hypothesise that only a small subset of
elements within the embeddings significantly in-
fluence the classification outcome. To capture this,
we utilise a modified residual module scheme that
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effectively compresses the embedding spaces. A
regular residual layer is defined as:

R(X)

= AX)+ X )

where A is typically a non-linear function. Our
modified residual module, although similar to the
one described above, performs better in compress-
ing high-dimensional spaces, particularly when
combined with lasso regularisation (Tibshirani,

1996). Our residual module is defined as:
R(X)

A(X) + B(X) 3)

where A is a non-linear function and B is a lin-
ear function. The domain and co-domain for both
functions are R7%® and R”, respectively, where h
is a very small number (generally 8, or 16).

a
A\

Figure 3: Our Modified Residual Module.



We use a ReLLU activation function for A. We
utilise this modified residual model for both modal-
ities and combine them to extract linear relations
between image and text embeddings. These pro-
jection layers result in the bimodal projection
X € RP. Such alayer allows us to leverage the
benefits of deep neural network layers while still
having the flexibility to use a shallower architecture
when required. Our final bimodal residual network
is defined as:

Xuvm = Ri(Xr) + Re(X7)
= (Ar(X1) + Br(Xy)) +
(Ar(Xr) + Br(Xr))

4)

4.2 Feature Interaction Module

Since the hidden dimension (h) of the layers is
much smaller than CLIP’s embedding dimension,
we would have difficulty fusing the text and image
representations. To capture the non-linear feature
interactions in a compact space, we require a multi-
plicative network. Conceptually, we would like to
have a following module:

(&)

where,

(6)

This module is very generic in nature and can
be used for automated feature selection. A mod-
ule like this, however, would suffer from unsta-
ble training due to gradient issues. We design a
multiplicative module inspired by Neural Arith-
metic Logical Unit (NALU). Rather than directly
applying exponentials, we utilise linear arithmetic
between inputs in log-space followed by exponenti-
ation. Mathematically, the multiplicative layer can
be represented by the following relation:

M(X) = B(exp(Win(ReLU(A(X))4+¢))) (7)

where A and B are some linear transformation
function with both, domain and co-domain, in R”.
Since logarithm of non-positive numbers is unde-
fined, we use ReLU along with some ¢ (10~° in our
case). This strictly positive condition, however, pre-
vents us from multiplying a positive and a negative
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number. While several variants of the NALU, such
as iNALU (Schlor et al., 2020) and NAU (Madsen
and Johansen, 2020), introduce complex modifica-
tions to address this, we propose a simpler alter-
native that leverages multiple multiplicative layers.
We call this the Feature Interaction Module (FIM).
Mathematically, it is defined as follows:

®)

The Feature Interaction Module is shown in the
following diagram:

FIM(X) = My(X) - My(X)

Ma

Mp

Figure 4: Feature Interaction Module.

We add a residual unit to the FIM in order to
allow the network to bypass multiplicative layers if
required. The complete residual FIM is defined as:

= Mo(Xnm) - Mp( X)) + A(Xnar)
9
where A is a linear transformation function with
domain and co-domain in R”,

4.3 Miscellaneous

Classifier: We apply layer normalisation on the
outputs of the residual FIM (Fs5s) before passing
it through the classifier. The classifier is a linear
transformation function from R” to R¢, where ¢ is
the number of categories in the given subtask. A
softmax function maps the final hidden represen-
tations to their respective class probabilities. The
predicted class corresponds to the highest probabil-
ity score.

Class Imbalance: There is a heavy class imbal-
ance in the dataset. To get around this issue, we
utilise weighted cross-entropy loss. Further, we
utilise minority-class deterministic oversampling
for subtask B, where there is an extreme class im-
balance. The intuition behind this is to expose the
model to more samples from minority classes in
order to better classify them. Compared to the high
dimensionality of the image and text embeddings



Method # of trainable Hate Target Stance Humour
Parameters | Accuracy ~ F1 | Accuracy ~ Fl | Accuracy  Fl | Accuracy  Fl
Gradient Boosting - 78.90 78.90 59.44 57.39 61.54 60.52 76.13 70.60
FIMIF (submission) 25k - 51k 81.85 81.85 63.05 60.57 62.92 62.91 79.68 76.83
FIMIF (best) 25k - 51k 81.85 81.85 64.66 64.61 64.89 64.32 79.68 76.83

Table 2: Classification performance of different models on shared task dataset across two evaluation metrics:
Accuracy, and F1 score. The hidden dimension of the FIMIF model for subtask A is set to 16, while a reduced

hidden size of 8 is used for all other subtasks.

Method # of trainable Hate Target Stance Humour
Parameters Acc. AUC Fl | Acc. AUC Fl | Acc. AUC Fl | Acc. AUC F1

MemeCLIP 2.6M 76.06 84.52  75.09 | 66.12 81.66 58.65 | 62.00  80.11 57.98 | 80.27 8559 77.21

FIMIF (ours) 25k 78.11 83.99 7643 | 6842 7597 62.63 | 63.31 79.84  59.52 | 80.47 8554  77.54

Table 3: Classification performance of different models on PrideMM dataset across three evaluation metrics:
Accuracy, AUC, and F1 score. Performance metrics for MemeCLIP is sourced from its corresponding paper. The

best performance is highlighted in bold.

from the CLIP encoders (768 dimensions each),
the size of the training set for subtask B is rela-
tively small, consisting of only 1985 samples. This
type of high-dimensional data struggles to gener-
alise. Algorithm 1 presents the pseudocode used
for upsampling the minority class.

Algorithm 1 Deterministic Class-wise Upsam-
pling.
Require: Dataset D of (z,y) pairs, number of

classes C'
. Initialise class_samples[0...C — 1] «
empty lists
for all (z,y) € D do

Append (z,y) to class_samples[y]
end for
M« maxeq,..c-1)
class_samples|c]
upsampled_dataset < empty list
forc=0toC' — 1do

samples < class_samples|c]

n < length of samples

r < |[M/n]

fori =1tordo

Append all elements of samples to
upsampled_dataset

13:  end for
14: end for
: Shuffle upsampled_dataset
16: return upsampled._dataset

length of

Y % 3D

10:

12:

Weight Initialisation: All weights and biases
in our model are initialised using the Kaiming-
Uniform distribution (He et al., 2015), which helps
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maintain a stable gradient flow during the initial
phases of training. However, for the weight ma-
trix W in eq. 7, we instead use the identity matrix
as the initial weights. By using this initialisation,
we ensure that the multiplicative interactions in-
troduced by the FIM initially behaves in a linear
and interpretable manner. This allows the model to
gradually learn multiplicative behaviour only when
it is beneficial, rather than being forced into a multi-
plicative domain from the beginning. This identity
initialisation improves the performance and train-
ing time by converging in the early training stages.
We use the identity and zero matrices as layer-norm
initial weights and biases, respectively.

5 Results

We provide results of our model on the test set of
the respective subtask in table 2. We use weighted
gradient boosting as a baseline for its excellent gen-
eralisation capability with high dimensional data.

Method | Acc. AUC F1

CLIP 81.62 88.87 79.89
BERT 80.43 88.08 78.90
RoBERTa 7727 87.95 75.38
DeBERTaV3 | 7945 8794 77.71

Table 4: Classification performance on subtask A
(hate) validation set with our model on CLIP’s ViT-
L/14@336px image encoder and different text encoders.

Along with our submission results, we have also
provided the best results we have encountered so
far in order to demonstrate the viability of these
very low parameter models. Table 3 compares our
results on PrideMM dataset against MemeCLIP



Method Hidden Hate Target Stance Humour
Dim. Acc. AUC Fl | Acc. AUC Fl | Acc AUC Fl | Acc AUC F1

CLIP ViT-L/14 8 7787 8670  75.82 | 3871 6477 3627 | 6146 79.80 59.64 | 7885 8494  71.87
(Image Only 224x224) 16 79.84 8740 7840 | 55.65 68.67 48.66 | 5850  79.33 5596 | 80.04 8478  74.82
CLIP ViT-L/14@336px 8 79.05 87.62  77.12 | 39.92 6551 3741 | 6344 81.06 6020 | 78.46  85.54  74.05
(Image Only 336x336) 16 81.03 8790 7939 | 56.85 6931 49.16 | 61.46 81.14  59.60 | 79.64 8528  75.85
CLIP ViT-L/14@336px + 8 8320 8872 8175 | 6048 70.77 51.06 | 64.03 81.65 62.10 | 79.45 85.02 7475
OCR Text 16 81.62 8887  79.89 | 47.58 6643 4327 | 6403 8120 61.68 | 79.64 8445  74.65

Table 5: Our experiments with the use of CLIP’s image encoders on the validation set of shared task dataset. We use
three evaluation metrics: Accuracy, AUC, and F1 score. The best performance is highlighted in bold.

Method Hidden Hate Target Stance Humour
Dim. | Acc.  AUC Fl | Acc.  AUC Fl | Acc.  AUC Fl | Acc.  AUC F1
FIMIF 8 8320 8872 8175 | 6048 70.77 51.06 | 6403 81.65 6210 | 73.72  84.86  70.69
16 | 81.62 8887 79.89 | 4758 6643 4327 | 6403 8120 61.68 | 81.23 8503  75.77
-FIM 8 79.05  89.18 7698 | 59.68 7076  50.28 | 62.65 8173  60.45 | 76.68 8522  73.34
16 | 8123 8951 7959 | 59.27 7043 5152 | 6344 8154 60.89 | 76.68 8501  73.03
- Upsampling 8 79.05 89.18 7698 | 5847 7116  50.84 | 63.44 8133 6091 | 7510 8507 7117
16 | 81.23  89.51 7959 | 60.48 7144 5021 | 6146 8124 5872 | 77.87 85.12  73.08
- Weighted 8 78.66  89.04 7654 | 6048 7226  51.87 | 61.66 8122 5775 | 80.63 8522  73.92
Loss 16 | 8202 8945 8025 | 58.87 71.64 49.10 | 60.08 8134 57.26 | 79.64 8547 7446
Table 6: Ablation experiments performed on the validation set of given shared task dataset.
Hidden Dim. | Acc.  AUC F1 Method | Acc. F1
4 81.23 88.75 79.24 MOMENTA 83.82  82.80
8 83.20 88.72 81.75 (Pramanick et al., 2021b)
16 81.62 88.87 79.89 PromptHate 84.47 -
32 7727 88.86 7541 (Cao et al., 2022)
64 81.03 89.22 79.10 Pro-Cap 85.03 -
128 80.24 88.31 78.64 (Cao et al., 2023)
256 68.77 89.11 63.14 MemeCLIP 84.72 83.74
(Shah et al., 2024)
Table 7: Classification performance on the subtask A FIMIF (ours) | 87.01 83.94

(hate) validation set across different hidden dimensions
of our model. The best performance is highlighted in
bold.

on all four subtasks. We compare CLIP’s text en-
coders with other large language models in table 4.
These models are trained in a deterministic man-
ner (having no randomness) in order to compare
different methods. CLIP’s text encoder, despite
having a shorter context length of 77 tokens, per-
forms better than BERT, RoBERTa, and DeBER-
TaV3 (He et al., 2023), each supporting a context
length of up to 512 tokens. Table 5 compares the
results of our model on CLIP ViT-L/14 224px and
336px image encoders on the validation set of the
shared task dataset. Table 7 presents a comparison
of our model across different hidden dimensions,
showing little to no improvement as the dimension
size increases, possibly due to over-fitting. Table 8
reports results on the HarMeme-C dataset (Praman-
ick et al., 2021a), where our model is compared
against several state-of-the-art approaches.

129

Table 8: Performance comparison of meme classifica-
tion models on the HarMeme-C dataset (binary classifi-
cation). The best performance is highlighted in bold.

5.1 Ablation Study

We have performed our ablation study on the valida-
tion set. We compare our model with the one where
feature interaction module has been replaced with
a linear transformation layer having a non-linear
ReLU activation function. The findings in table 6
suggest that the CLIP embeddings of PrideMM
dataset is very linear in nature. Due to its residual
design, our implementation of feature interaction
module is very generic. It can perform just as well,
if not better, than a residual module even when the
data does not exhibit multiplicative relationships.
The difference between these architectures is likely
due to the overhead incurred by having a larger
number of parameters (3.5 times that of a resid-
ual module). Use of upsampling does not seem
to have a significant improvement in performance.



Our upsampling scheme should not have any effect
on subtasks A and C, where the worst class ratio
is less than 2:1. Any difference is likely due to a
different shuffling than their non-upsampling coun-
terparts. The use of weighted loss seems to degrade
the performance in tasks B and D. However, the
difference is not significant.

6 Conclusion

We present FIMIF (Feature Interaction for Mul-
timodal Integration and Fusion), a lightweight
parameter-efficient model that leverages CLIP en-
coders for multimodal meme classification on
PrideMM dataset. Our approach relies on aggres-
sive dimensionality compression. A key finding
from our ablation study is that the classification
problem becomes mostly linear in nature after this
compression, indicating that the dimensionality re-
duction itself is a critical component of our model’s
success. Our work highlights the potential of low-
dimensional fusion as a viable path toward creating
more efficient and sustainable models for complex
multimodal tasks.

7 Limitations

Dependence On OCR Quality: The textual in-
put relies heavily on the quality of the OCR. Errors
in OCR, such as misread words or missing charac-
ters, are directly passed to the text encoder without
correction or filtering. Moreover, CLIP’s text en-
coder has a maximum context length of 77 tokens.
This severely limits our model’s ability to classify
text-heavy memes. However, Table 5 indicates that
the model achieves comparable performance even
without OCR.

Lack Of Future Proofing: The world of memes
on the Internet evolves rapidly. Words, images, and
cultural references can shift in meaning over time.
Since our model heavily relies on the frozen CLIP
embeddings, it severely limits the ability of our
model to adapt to emerging slangs, visual styles,
and evolving socio-cultural contexts. This static
representation may cause the model’s performance
to degrade over time.

8 Ethical Considerations

Environmental Impact: Training deep learning
models can have a significant environmental im-
pact, mainly due to high energy consumption and
the resulting carbon emissions. To address this,
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we designed our model with a very low parameter
count, which helps reduce the overall computa-
tional load. In practice, the most time-consuming
step is the extraction of CLIP embeddings, while
the actual training phase is relatively quick and
lightweight. Our fine-tuning approach helps the
model adapt quickly to new datasets, reducing the
need for repeated or prolonged training.

Potential For Misuse: Any technology designed
to understand and identify a specific type of content
can potentially be used for malicious purposes. A
model that learns the constituent elements of hate-
ful memes could be used to generate new, more
effective hateful content to systematically find loop-
holes in other detection systems.

Societal Impact Of Automated Moderation:
The integration of automated moderation systems
into digital platforms introduces several ethical con-
cerns with severe societal implications. While such
systems enable scalable and timely identification
of harmful content, they also risk amplifying exist-
ing biases and disproportionately impacting certain
user groups (Thapa et al., 2025b). Models trained
on imbalanced or culturally narrow datasets may in-
advertently silence marginalised communities, mis-
classify context-dependent expressions, or fail to
generalise across linguistic and cultural boundaries.
Automated moderation often lacks transparency
and interpretability, limiting users’ ability to under-
stand or contest moderation decisions. This opacity
can undermine fairness and accountability, partic-
ularly in high-stakes environments where content
removal may affect public discourse or individual
reputation.
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Abstract

Memes and other text-embedded images are
powerful tools for expressing opinions and
identities, especially within marginalized socio-
political movements. Detecting hate speech in
this type of multimodal content is challenging
because of the subtle ways text and visuals in-
teract. In this paper, we describe our approach
for Subtask A of the Shared Task on Multi-
modal Hate Detection in Marginalized Move-
ment@CASE 2025, which focuses on classify-
ing memes as either Hate or No Hate. We tested
both unimodal and multimodal setups, using
models like DistilBERT, HateBERT, Vision
Transformer, and Swin Transformer. Our best
system is the large multimodal model Qwen2.5-
VL-7B-Instruct-bnb-4bit, fine-tuned with 4-bit
quantization and instruction prompts. While
we also tried late fusion with multiple trans-
formers, Qwen performed better at capturing
text-image interactions in memes. This LLM-
based approach reached the highest F1-score
of 0.8086 on the test set, ranking our team 5th
overall in the task. These results show the value
of late fusion and instruction-tuned LLMs for
tackling complex hate speech in socio-political
memes.

1 Introduction

Social media has become a fast-paced platform
where content spreads instantly, with memes play-
ing a big role in communication. But they are also
used to spread harmful messages, including hate
speech targeting marginalized groups. This kind
of content can make online spaces unsafe.Since
it is impossible to manually keep up with every-
thing being shared, an automated system has be-
come essential for managing such content. This
paper addresses Subtask A of the Shared Task on
Multimodal Hate Detection in Marginalized Move-
ment@CASE2025, focusing on binary classifica-
tion ('No Hate’ vs. ’Hate’) across a dataset of
4,675 text-embedded images. We draw inspiration

{u2004068, u2004029, u1904077,u1804128}@student.cuet.ac.bd, muhammad_ikhan@cuet.ac.bd

from (Parihar et al., 2021), which explores natural
language processing for identifying harmful con-
tent, shaping our approach to this challenge. To
address this challenge, we developed a practical ap-
proach by fine-tuning transformer models such as
DistilBERT and HateBERT to capture textual nu-
ances, and enhancing it with late fusion to integrate
visual data, where Qwen2.5-VL-7B-Instruct-bnb-
4bit showed strong capability in interpreting the
socio-political nuances of memes. This aligns with
(Thapa et al., 2025b), which highlights LLM poten-
tial in social science, and builds on (Thapa et al.,
2023) and (Chhabra and Vishwakarma, 2024) for
multimodal insights. Through this work, we hope
to contribute towards more scalable and fair con-
tent moderation solutions. Our main contributions
are as follows:

* A systematic comparison of unimodal, late-
fusion multimodal, and LLM-based architec-
tures for meme hate speech detection.

* An efficient fine-tuning strategy that combines
LoRA with 4-bit quantization to adapt a large
multimodal LLM under resource constraints.

* Empirical analysis of model predictions, il-
lustrated with representative examples drawn
from different regions of the confusion matrix.

2 Related Works

Previous research on multimodal hate speech detec-
tion has explored many creative ways to tackle the
challenges of online conversations, especially in
complex social and political contexts. Early work
like (Parihar et al., 2021) used natural language pro-
cessing to spot hate speech by looking at language
patterns that show harmful intent. Later studies,
such as (Kashif et al., 2023), used ensemble learn-
ing to combine features from different data types
for better results. Similarly, (Sahin et al., 2023) im-
proved text analysis by adding syntactic and entity-
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level information with transformer models. In an-
other approach, (Aziz et al., 2023) proposed a hier-
archical fusion method with separate transformer
encoders, and (Chhabra and Vishwakarma, 2024)
developed a scalable multilevel attention frame-
work that has influenced our work. While these
studies built a strong base for cross-modal hate de-
tection, many still require heavy computation and
can be hard to interpret, especially when handling
satire or cultural references in memes.

Shared tasks have also helped shape this field
by providing benchmarks and valuable datasets.
The Shared Task on Multimodal Hate Detection in
Marginalized Movement@CASE2025, described
in (Thapa et al., 2025a), focuses on binary hate clas-
sification, with insights from (Hiirriyetoglu et al.,
2025) showing how it has grown. The CASE 2024
shared task (Thapa et al., 2024) featured partici-
pants demonstrating the utilization of transformer
models like BERT, RoBERTa, and XL Net, as well
as effective approaches such as vision transform-
ers and CLIP, which contributed to the outstanding
outcomes in hate event detection. The CASE 2023
shared task (Thapa et al., 2023) laid the ground-
work for multimodal hate speech detection by com-
bining textual and visual features in text-embedded
images

Our dataset comes mainly from (Shah et al.,
2024) and its CLIP-based representations, sup-
ported by (Bhandari et al., 2023)’s CrisisHateMM
work, which highlights the value of careful data
curation. Finally, (Thapa et al., 2025b) discusses
how large language models can help in social sci-
ence research, encouraging us to tackle ongoing
challenges like telling satire apart from hate in fast-
changing socio-political memes.

3 Task and Dataset Description

We have utilized the dataset provided for Subtask
A of the Shared Task on Multimodal Hate Detec-
tion in Marginalized Movement@CASE2025, as
outlined in (Thapa et al., 2025a), focusing on de-
tecting hate speech in text-embedded images. The
dataset is divided into training, validation, and test
sets with 3,662, 506, and 507 samples, respectively,
primarily comprising memes and similar online
images. Each image is labeled with a binary tag:
‘Hate’ or ‘No Hate’, as detailed in Table 1. This
dataset, curated for the 2025 task, serves as our
primary resource, with its development informed
by (Shah et al., 2024) for CLIP-based representa-
tions and supplemented by (Bhandari et al., 2023)

for CrisisHateMM analysis, which also shapes the
annotation schema.

Table 1: Distribution of images for Subtask A meme
hate speech detection.

Dataset | No Hate | Hate | Total
Train 1930 1732 | 3662
Val 258 248 506
Test 258 249 507

The relatively small dataset size presents chal-
lenges for training transformer models, as it in-
creases the risk of overfitting, which motivated our
use of data augmentation.

4 Methodology

4.1 Preprocessing

As this is a multimodal task, we have preprocessed
both text and image. For the text, we have removed
URLs, HTML tags, emojis, and extra whitespace
to reduce noise, and converted all text to lowercase
for consistency. On the image side, all samples
were converted to RGB, resized to 224x224 pixels,
and normalized using ImageNet mean and stan-
dard deviation to match the input requirements of
pretrained models. In total, we have found that
3,662 out of 4,050 training samples had images
that matched the text, and we have discarded the
rest. All 506 validation samples and all 507 test
samples had no missing images.

4.2 Augmentation

To improve model generalization and reduce over-
fitting, we have applied data augmentation tech-
niques during training. Each image was randomly
flipped horizontally and cropped with padding to
introduce variation while preserving semantic con-
tent. These augmentations were applied only to the
training set, while the validation and test sets were
left unchanged to ensure consistent evaluation.

4.3 Transformer-based Approach

4.3.1 Unimodal Approach

For the unimodal text classification task, we fine-
tuned two transformer-based models: DistilBERT-
base-uncased and GroNLP/HateBERT. We selected
these models for their pretrained knowledge of gen-
eral language and hate speech domains. Text se-
quences were tokenized with a maximum length
of 128 tokens. We included a dropout rate of 0.2
in the hidden and attention layers to help prevent
overfitting. We trained the models using the Adam
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Figure 1: Transformer-based multimodal late fusion architecture for meme hate speech detection

optimizer with a learning rate of 2 x 10~°, a weight
decay of 0.01, and ran the training for 10 epochs
on the provided training set. We tokenized the vali-
dation and test sets in the same way for evaluation.

For the image-only models, we experimented
with Vision Transformer (ViT-base-patch16-224)
and Swin Transformer (Swin-T-patch4-window7-
224), both of which were first trained on ImageNet.
We resized the input images to 224x224, normal-
ized them with standard ImageNet statistics, and
converted them to tensors. Each model extracted
a 768-dimensional feature vector from the images.
We added a dropout layer and a classification head
to predict binary labels for Hate and No Hate.
Both models were trained for 10 epochs using the
AdamW optimizer with a learning rate of 2 x 107
and a batch size of 16.

4.3.2 Multimodal Approach

Building on the unimodal baselines, we developed
two multimodal architectures that combine both
text and images: Swin Transformer with Distil-
BERT, and HateBERT with Vision Transformer
(ViT). In both configurations, 768-dimensional em-
beddings were extracted separately from the image
and text inputs. We combined the embeddings us-
ing a late-fusion approach by simply concatenating
them. This was followed by a dropout layer to
reduce overfitting and a final linear layer for classi-
fication. Among the two, the Swin + DistilBERT
combination consistently achieved the best perfor-
mance on the test set.

Late fusion performed better as it enabled the
model to process images and text independently
before combining their representations, allowing
each modality to contribute its strengths. This sep-

aration allowed each type of data to focus on its
strengths, like visual features from the image and
contextual meaning from the text. Combining them
later helps the model pick up on subtle clues that
come from both. This is really important in hate
speech detection, where sometimes the meaning
hides in the image, sometimes in the text, and often
in both together.

4.4 LLM-Based Approach

We employed a multimodal large language model,
Qwen2.5-VL-7B-Instruct-bnb-4bit, fine-tuned
using the Unsloth framework with 4-bit quantiza-
tion to improve training efficiency. The goal was
to detect hate speech in memes by analyzing both
their visual and textual content together. Each train-
ing instance was structured as a chat-style conver-
sation, where the user provides an instruction along
with a meme image, and the assistant outputs either
0 or 1, indicating the absence or presence of hate
speech, respectively.

We fine-tuned the model over 7 epochs with a
batch size of 32. We used LoRA-based fine-tuning
(Low-Rank Adaptation) with a rank of 128 applied
to both vision and language components. During
inference, we applied a zero-shot prompting strat-
egy by employing the same instruction without any
meme-specific customization and constrained the
model to generate a single classification token.

Our approach achieved a test F1-score of 0.8086,
demonstrating efficient performance without re-
lying on handcrafted prompts. This highlights
how effective and scalable instruction-tuned multi-
modal large language models are for detecting hate
speech.
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Figure 2: Prompt provided to Qwen2.5-VL-7B-Instruct-
bnb-4bit for meme hate speech detection.

We selected Qwen2.5-VL because it is open-
source with efficient fine-tuning support, provides
strong multimodal reasoning comparable to larger
closed-source models such as GPT-4V, and sup-
ports quantized training, where we adopted 4-bit
due to hardware limitations with 8-bit.

5 Results and Analysis

5.1 Comparative Analysis

Between the two unimodal text classifiers, Hate-
BERT outperformed DistilBERT-base-uncased,
achieving a higher F1-score of 0.7810 compared
to 0.7424. This indicates that HateBERT is more
effective for hate speech detection on meme texts,
likely because it is pretrained specifically on hate
speech data. For the unimodal image models, Swin
Transformer outperformed ViT, achieving 0.6668
compared to 0.6166, indicating stronger visual fea-
ture extraction.

In the multimodal setups, we adopted a late fu-
sion strategy to combine textual and visual repre-
sentations. Using this approach, Swin Transformer
+ DistilBERT achieved an Fl1-score of 0.7790,
slightly outperforming the ViT + HateBERT model
which scored 0.7576. These results highlight how
late fusion enables each modality to contribute its
strengths independently before combining them for
final prediction, leading to better performance than
unimodal baselines.

Finally, the best overall performance was ob-
tained by fine-tuning Qwen2.5-VL-7B-Instruct-
bnb-4bit using the Unsloth framework. This model

Confusion Matrix

Actual
No Hate

Hate
'

] y
No Hate Hate

Predicted

Figure 3: Confusion matrix showing the proposed
model’s binary classification performance for meme
hate speech detection.

achieved an Fl-score, precision, and recall of
0.8086. These results highlight the strong potential
of large-scale instruction-tuned multimodal mod-
els in capturing subtle and cross-modal patterns in
hateful memes, outperforming both traditional and
multimodal baselines. The results are detailed in
Table 2.

5.2 Error Analysis

To better understand the limitations of our best
model, we examined its confusion matrix. The fine-
tuned Qwen2.5-VL-7B-Instruct-bnb-4bit model
correctly predicted most instances in both classes,
but some misclassifications remain. It falsely la-
beled 48 non-hateful memes as hateful and misclas-
sified 49 actual hateful ones.

These errors suggest that while the model per-
forms well overall, it occasionally struggles with
subtle or ambiguous cases where hateful intent is
not explicit.

5.3 Quantitative Analysis

The confusion matrix shows a fairly balanced distri-
bution of errors, with 48 false positives and 49 false
negatives. This indicates that the model is not heav-
ily biased toward one class. However, the nearly
equal misclassifications suggest that the model may
still be relying on surface-level features, such as
specific keywords or visual patterns, rather than
understanding the deeper context. Exploring tech-
niques like attention visualization or feature attribu-
tion could help reveal what the model is focusing
on and guide improvements in handling more nu-
anced or borderline cases.

5.4 Qualitative Analysis
To further investigate the model’s decision patterns,
we sampled representative examples from each con-
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Table 2: Performance comparison of different models for meme hate speech detection.

Classifier P R F1 Accuracy
Unimodal (Text)
HateBERT 0.7810 0.7811 0.7810 0.7811
DistilBERT-base-uncased 0.7424 0.7424 0.7424 0.7424
Unimodal (Image)
Vision Transformer (ViT) 0.6166 0.6116 0.6085 0.6134
Swin Transformer 0.6668 0.6661 0.6660 0.6667
Multimodal
Swin Transformer + DistilBERT (Late Fusion) 0.7790 0.7768 0.7792 0.7792
ViT + HateBERT (Late Fusion) 0.7576 0.7576 0.7579 0.7579
LLMs
Qwen2.5-VL-7B-Instruct-bnb-4bit 0.8086 0.8086 0.8086 0.8087

fusion matrix category:

Table 3: Example predictions illustrating each category
of the confusion matrix.

Category Example (Image)
True Positive (TP) 1040.png
True Negative (TN) 1155.png
False Positive (FP) 1011.png
False Negative (FN) 1002.png

As shown in Table 3, the model performs well
when hateful intent is clear and explicit. For in-
stance, it correctly labels a public gathering with
signs promoting fairness and unity as No Hate, and
it also identifies explicit hostility in text-based im-
ages, such as content expressing negativity toward
a music genre.

The model struggles more with memes that are
ambiguous or context-dependent. A false posi-
tive example, a meme satirizing corporate behav-
ior during awareness campaigns, was incorrectly
flagged as Hate, showing difficulty in separating
satire from genuine hostility. Similarly, a false neg-
ative case, a humorous meme about dating, was
misclassified as No Hate, reflecting the challenge
of detecting humor that may conceal harmful un-
dertones.

Overall, these patterns highlight the need for
stronger cross-modal reasoning and better inter-
pretability to handle subtle and context-driven
cases.

6 Conclusion

In this study, we tackled the challenge of detect-
ing hate speech in text-embedded images as part
of the Shared Task on Multimodal Hate Detection
in Marginalized Movement@CASE2025, focus-
ing on Subtask A. We used a fine-tuned Qwen2.5-
VL-7B-Instruct-bnb-4bit model combined with a
late-fusion strategy to merge textual and visual fea-
tures. This approach achieved a solid F1-score of
0.8086 on the test set, highlighting the model’s abil-
ity to capture subtle interactions between modali-
ties for spotting hate speech in complex memes and
socio-political contexts. When compared with uni-
modal and other multimodal baselines, our method
showed clear improvements, especially when hu-
mor and harmful messages are mixed together.
Overall, our findings provide a useful approach for
handling multimodal content, particularly where it
relates to marginalized groups.

7 Limitations

We selected Qwen2.5-VL with 4-bit quantization
because it is openly available, resource-efficient,
and feasible within our computational constraints.
However, stronger models (e.g., BLIP-2, LLaVA,
GPT-4V) and higher-precision training could po-
tentially yield better results. A single fixed prompt
was used for simplicity, though alternative prompt-
ing strategies or retrieval-based methods may im-
prove robustness. We adopted late fusion for ef-
ficiency, but more advanced cross-modal fusion
techniques could capture interactions more effec-
tively. Finally, the dataset (4,675 samples) is rela-
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tively small, which may limit generalization and re-
duce coverage of subtle or context-dependent hate
speech, highlighting the need for larger datasets in
future work.

8 Ethics Statement

We have been committed to ethical practices in
developing a system to detect hate speech in im-
ages related to marginalized movements. We under-
stand the risks of mislabeling content and worked
to balance false positives and negatives, achieving
a strong F1-score. Using a public dataset without
extra annotation, we respected privacy and data
guidelines. Our goal is to promote safer online
spaces by reducing harmful content, while recog-
nizing that human oversight is needed to handle
context and avoid bias.
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Abstract

Identification of hate speech in images
with text is a complicated task in the scope
of online content moderation, especially
when such talk penetrates into the spheres
of humor and critical societal topics. This
paper deals with Subtask A of the Shared
Task on Multimodal Hate, Humor, and
Stance Detection in Marginalized Move-
ment@CASE2025. This task is binary
classification over whether or not hate
speech exists in image contents, and it ad-
vances as Hate versus No Hate. To meet
this goal, we present a new multimodal ar-
chitecture that blends the textual and visual
features to reach effective classification. In
the textual aspect, we have fine-tuned two
state-of-the-art transformer models, which
are RoBERTa and HateBERT, to extract
linguistic clues of hate speech. The im-
age encoder contains both the EfficientNet-
B7 and a Vision Transformer (ViT) model,
which were found to work well in retriev-
ing image-related details. The predictions
made by each modality are then merged
through an ensemble mechanism, with the
last estimate being a weighted average of
the text- and image-based scores. The
resulting model produces a desirable F1-
score metric of 0.7868, which is ranked 10
among the total number of systems, thus
becoming a clear indicator of the success
of multimodal combination in addressing
the complex issue of self-identifying the
hate speech in text-embedded images.

rashfi2@04@gmail.com, {u1904077, u1804128}@student.cuet.ac.bd, muhammad_ikhan@cuet.ac.bd

1 Introduction

The emergence of online platforms and social
media has changed the channels of communica-
tion and sharing of ideas basically. At the same
time, this unprecedented liberty of speech
has triggered a worrying rise in online hate
speech—a message through which a person or
group of people are verbalized and violated be-
cause of their identity (Schmidt and Wiegand,
2017; Fortuna and Nunes, 2018). Hate speech,
especially that carried in the form of images
embedded in text (memes), presents a signifi-
cant challenge for content moderation and on-
line discourse (Gomez et al., 2020). This com-
bination of the textual and the visual mode of
presentation makes detection extremely diffi-
cult because in many cases when both textual
and visual contents are taken together, they can
greatly alter their meaning. With the growing
complexity of the phenomenon, there has been
a trend of automated hate speech detection in
research, which has identified both possible
applications and limitations in this area, partic-
ularly in Natural Language Processing (NLP)-
based methods (Parihar et al., 2021).

It is even more difficult to detect hate speech
when humor, satire, or coded language are used
in memes to mask hateful intentions. The com-
bination of cultural background and rapidly
adapting trends online makes it even more dif-
ficult and necessitates the usage of multimodal
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explanations that encompass both explicit and
implicit indications. The Shared Task on Mul-
timodal Hate, Humor, and Stance Detection
in Marginalized Movement@CASE?2S5, in par-
ticular, subtask A, which aims to detect the
existence of hate speech in images embedded
in texts, is a relevant site of discussing these is-
sues (Thapa et al., 2023). Recent work shows
that large language models (LLMs) are reshap-
ing computational social science and discourse
analysis, while posing key methodological and
ethical challenges (Thapa et al., 2025b).

This work presents our approach to Subtask
A, where we combine state-of-the-art models
from both Natural Language Processing (NLP)
and Computer Vision (CV) to create a multi-
modal system for hate speech detection. The
framework has three elements:

1. The textual features are extracted using
RoBERTa and HateBERT transformers
and classified.

2. EfficientNet and Vision Transformer
(ViT) models are used to study the visual
content of an image, allowing the identi-
fication of visually harmful or offensive
content.

3. A scheme of ensemble learning is used
to combine the predictions made by any
individual modality and thus makes use
of complementary information across do-
mains and enhances accurate overall pre-
dictions.

The following GitHub repository con-
tains the complete implementation details:
https://github.com/RashfiTabassum/
Multimodal-Hate-Speech-
Detection/tree/main.

2 Related Works

Research on the detection of hate speech in
multimodal settings has gone down several

approaches with their own limitations. (Pa-
mungkas et al., 2020) achieved 75-80% preci-
sion in misogyny detection through the use of
machine learning but without visual data. (Der-
bentsev et al., 2022) concentrated only on text-
based methods, whereas (Fortuna and Nunes,
2018) acknowledged that there are few pow-
erful multimodal techniques. (Rawat et al.,
2024) explored recent trends, but their tech-
niques struggled with diverse linguistic and vi-
sual contexts, reducing generalization. (Kiela
et al., 2021) reached an F1 score of 0.80 with
the Hateful Memes dataset, which dealt with
problems of contextual heterogeneity and un-
even distributions. (Cuervo and Parde, 2022)
Cuervo and Parde used CLIP to do standard-
ization but had a problem of OCR noise and
low flexibility. (Jahan and Oussalah, 2023) re-
stricted their systematic review to NLP-only
detection. Meanwhile, (Aluru et al., 2025) in-
troduced a deep-learning framework, yet de-
pendence on the unbalanced information and
non-described fusion methods limited its uni-
versality.

The CASE shared works have contributed
a lot in this field. CASE 2023 (Thapa et al.,
2023) was focused on the Russia-Ukraine cri-
sis through the CrisisHateMM dataset, with
new subtasks related to hate speech identifica-
tion and target identifications with multimodal
fusion. The scope of CASE 2024 (Thapa et al.,
2024) was extended to radicalism, adopting
transformer-based NLP and vision models like
CLIP and ViT with fusion mechanisms to take
into account context, bias, and covert hate such
as humor and sarcasm. These two shared tasks
provided the foundation for our study.

3 Task and Dataset Description

The Shared Task on Multimodal Hate, Hu-
mor, and Stance Detection in Marginalized
Movement@CASE2025 (Thapa et al., 2025a;
Hiirriyetoglu et al., 2025) has three differ-
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ent datasets in Subtask A: Detection of Hate
Speech. It contains 3,662 images, including
1,732 hate images and 1,930 no-hate images.
The validation entails 506 images, including
248 labelled as Hate and 258 labelled as No
Hate. The test set consists of 507 images, and
249 of them are labeled as Hate, whereas 258
belong to No Hate.

Table 1: Distribution of data for Hate and No Hate
categories.

Sets Hate | No Hate | Total
Train | 1985 2065 3662
Val 248 258 506
Test 249 258 507

The dataset is based on the Memeclip
corpus (Shah et al.,, 2024) and the Cri-
sisHateMM (Bhandari et al., 2023) dataset,
whose annotation schema was modified for
this task. These are the core of the CASE 2025
dataset curation.

4 Methodology

The task objective is to determine the occur-
rences of hate speech in images embedded with
text; thus, a multimodal deep learning method-
ology to be able to utilize the interaction be-
tween the visual and linguistic domains is re-
quired. To do this, our method uses a multi-
modal deep learning architecture that combines
CNN-based models for images and pretrained
transformer models for text, then employs a fu-
sion strategy that capitalizes on the advantages
of both modalities.

4.1 Preprocessing

The preprocessing of the textual data is done
by removing the URLs, mentions, non-ASCII
characters, digits, and excessive white spaces;
all tokens will be automatically transformed to
lowercase. Comments that are empty are sub-
stituted with an already defined placeholder.
Pictures will be resized to 224 x 224 pixels and
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augmented (additional attempts) by rotations,
flipping horizontally, color jittering, and crop-
ping of random parts of images. The images
are center-cropped, and the statistical parame-
ters of ImageNet are used to normalize them in
a consistent way during validation and testing.

4.2 Text-Based Modeling

For the text modality, we fine-tune two pre-
trained transformer models, RoBERTa-base
and HateBERT (GroNLP), to classify text as ei-
ther Hate or No Hate. They then tokenized the
input text via their respective ROBERTaTok-
enizer and HateBERT Tokenizer with their total
length truncated to a maximum of 256 tokens.
The AdamW optimizer was used with the learn-
ing rate of 1 x 1077, and training was done in
seven epochs. To handle class imbalance, the
class weights were calculated using the scikit-
learn function compute_class_weight. To get
the final probability of prediction of the text
modality, the results of both fine-tuned models
were averaged:

TextProb = 0.5 xRoBERTa+0.5xHateBERT.

Text

Tokenization
(RoBERTa &
HateBERT)

Model
Inference

Ensemble
Averaging

Preprocessed
Texts

L, Probabilities
(Softmax

+
i

Outputs)

Figure 1: Unimodal Architecture for Text Classi-
fication using RoBERTa and HateBERT, followed
by Ensemble Averaging.

4.3 Image-Based Modeling

In the case of the image modality, we applied
two convolution-based and transformer-based
networks: EfficientNet-B7 and Vision Trans-
former (ViT-B/16). Both of them were pre-
trained on ImageNet and then fine-tuned on
the target dataset, where data augmentation,
i.e., horizontal flipping, rotation, color jitter-
ing, and random cropping, was used to enable



them to generalize better on unseen data. The
training was carried out in 7 epochs using the
Adam optimizer at the rate of 1 x 1075 and
1 x 10~ of ViT and EfficientNet, respectively.
After convergence, the models produced prob-
abilities at the class level; the individual ones
were averaged to arrive at the final image pre-
diction:

ImageProb = 0.5 x EfficientNet + 0.5 x ViT.

Model Image

Encoding
+
Batching

Ensemble
Averaging

Inference
(EfficientNet-B7

Preprocessed
Images

L Probabilities
(Softmax

& VIT-B16) Outputs)

Figure 2: Unimodal Architecture for Image Clas-
sification using EfficientNet-B7 and ViT-B16, fol-
lowed by Ensemble Averaging.

4.4 Multimodal Fusion

We use a late-fusion architecture considering
complementary textual and visual data. Tex-
tual modalities provide, on average, stronger
cues to hate speech as analyzed through the val-
idation procedure, which is empirical. In order
to balance the two modalities, we used experi-
ments that changed weights of text-image ele-
ments, viz. (0.5, 0.5), (0.7, 0.3), (0.8, 0.2) and
(0.9, 0.1). These weight configurations were
systematically tested on the validation set in
terms of Accuracy, Macro F1, ROC-AUC and
class-wise F1 scores. The weighting scheme
with 0.7 and 0.3 respectively to textual and vi-
sual modality returned the highest Macro F1
and was thus used as the final weighting. The
resulting fusion is given as:

FinalProb = 0.7 x TextProb+0.3 xImageProb.
Predictions are made by applying a 0.5 thresh-

old on the final probability, classifying the im-
age as Hate or No Hate.

Text Probabilities
(Ensembled ﬁ
Output) Final
‘Weighted Prediction
Fusion Layer (Threshold at
0.5)

Image Probabilities
(Ensembled

Output)

Figure 3: Fusion Layer for Multimodal Predic-
tion using Text and Image Probabilities with Final
Thresholding.

5 Experiments and Results

The comparative outputs of various models in
terms of macro-averaged Precision (Pr), Re-
call (Re), and Fl-score (F1) have been pro-
vided in Table 2. RoBERTa became the best
among the text-based models with a macro
F1-score of 0.7505, exceeding the results of
HateBERT 0.7494. Additional improvement
of precision to 0.7990 was made by the ensem-
ble model (RoBERTa + HateBERT), which
shows the high ability to combine both mod-
els to achieve greater performance. In the
image-based models, ViT performed better
compared to EfficientNet-B7 with a Macro F1-
Score of 0.6351, which is higher than 0.5757
obtained by EfficientNet-B7. The combination
of EfficientNet-B7 & ViT had a Macro F1-
Score of 0.6311, which shows that two mod-
els are more advantageous. The Multimodal
Fusion Model, which unites RoOBERTa, Hate-
BERT, EfficientNet-B7, and ViT using weights
of 70 percent text and 30 percent image, was
able to surpass all past models by a big margin.
Among all the classification models, the Fusion
Model generated the max value of Macro F1-
Score (0.7868), Precision (0.7870), and Recall
(0.7868).
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Table 2: Performance Comparison of Unimodal
and Multimodal Models on the Test Dataset

Classifier Precision Recall Macro F1-Score

Unimodal (Text)

RoBERTa
HateBERT
Ensemble (RoBERTa + HateBERT)

0.7709
0.7460
0.7990

0.7028
0.7430
0.6546

0.7505
0.7494
0.7466

Unimodal (Image)
EfficientNet-B7

ViT (Vision Transformer)
Ensemble (EfficientNet-B7 + ViT)
Multimodal (Late Fusion)
Fusion of RoOBERTa, HateBERT,

EfficientNet-B7, and ViT
(70% Text, 30% Image)

0.5691
0.6212
0.6220

0.5622 0.5757
0.6586 0.6351
0.6345 0.6311

0.7870  0.7868 0.7868

6 Error Analysis

Figure 4, a confusion matrix, indicates some
essential misclassification patterns and gives
many insights concerning the behavior of the
model and its limitations. The multimodal fu-
sion model shows strong results (204 total true
negatives and 189 true positives), but there is
a tendency to misclassify "No Hate" content
as "Hate" (54 false positives) and "Hate" con-
tent as "No Hate" (60 false negatives). Such
mistakes indicate that the model fails to dif-
ferentiate between subtle differences in hate
speech and other non-hate content. The fact
that the false positive rate is relatively high sug-
gests that there might be an over-prediction of
hate speech by the model, including instances
when surface-level indicators of text and im-
ages, such as aggressive words or other visual
markings that appear harmful but are not, lead
to incorrect predictions. Misclassifications
could also be connected to the fact that the
model has trouble recognizing humor, satire,
or irony, particularly in memes. False negatives
emphasize the difficulty of identifying subtle
hate speech, including microaggressions and
coded speech, which require more context.

Confusion Matrix for Hate & Non-Hate Detection (After Fusion)
200

- 180

No Hate

- 160

- 140

- 120

True Label

- 100

Hate

' y
No Hate Hate
Predicted Label

Figure 4: Confusion Matrix for Hate and Non-Hate
Detection after Multimodal Fusion

7 Conclusions

In our study, we designed a multimodal fu-
sion approach to identify hate speech in im-
ages with text, reaching an F1 score of 0.7868,
ranking among the top 10 of all systems in the
Multimodal Hate Detection Subtask A Shared
Task at CASE2025. Fine-tuning the state-of-
the-art models such as RoBERTa, HateBERT,
EfficientNet-B7, and ViT helped the model
take both text and image features into consider-
ation when the model was classifying them to
increase the accuracy. Although these are im-
pressive performances, the model suffered with
both false positives and false negatives, mainly
because it relied on superficial clues and was
unable to pick up more subtle manifestations
of hate speech, like microaggressions. The fol-
lowing suggestions are intended to improve the
context of the subject and the training data and
include adding explainability mechanisms to
the model to improve precision and minimize
false classifications. The paper suggests the
possibilities of using multimodality in the iden-
tification of hate speech and sets the framework
for future developments.
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Limitations

We have a number of limitations in our ap-
proach. First, the model has trouble identi-
fying subtle and implicit expressions of hate
speech, such as microaggression and coded
language, because it uses only superficial cues
in both text and images. These cues are good
against hate speech done on the surface but
fail at calling out nuanced forms that need a
more in-depth contextualization. Second, the
data set is well balanced, but little diversity is
provided in hate speech examples that might
restrict the model application to generalizing
real-world data. Finally, the visual representa-
tions used to extract features of images, such as
EfficientNet-B7 and ViT, may overlook evolv-
ing or symbolic visual symbols in memes and
reduce the performance of the model to capture
dynamic hate speech.

To address these issues, future improve-
ments could include -

* Increasing the capacity of the model to
pick up contextual and implicit cues, per-
haps using attention control or context-
sensitive fusion.

* Increasing the training data to also have
more varied and nuanced data points of
hate speech

* The application of explainability tools
such as LIME or SHAP might assist
in recognizing and correcting these mis-
takes, thereby resulting in increased pre-
cise classification and a lower number of
false positives and negatives.
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Abstract

Social media memes have become a power-
ful form of digital communication, combin-
ing images and text to convey humor, social
commentary, and sometimes harmful content.
This paper presents a multimodal approach us-
ing a fine-tuned CLIP model to analyze text-
embedded images in the CASE 2025 Shared
Task. We address four subtasks: Hate Speech
Detection, Target Classification, Stance Detec-
tion, and Humor Detection. Our method ef-
fectively captures visual and textual signals,
achieving strong performance with precision
of 80% for the detection of hate speech and
76% for the detection of humor, while stance
and target classification achieved a precision of
60% and 54%, respectively. Detailed evalua-
tions with classification reports and confusion
matrices highlight the ability of the model to
handle complex multimodal signals in social
media content, demonstrating the potential of
vision-language models for computational so-
cial science applications.

Keywords: Social Media, Memes, Multimodal
Analysis, Hate Speech, CLIP

1 Introduction

The explosive rise of social media has transformed
memes into powerful tools for both expression and
controversy. Memes, text-embedded images that
fuse humor, sarcasm, and social commentary, at-
tract millions of users and play an important role
in digital culture Arya et al. (2024). They often
reflect public sentiment, amplify social trends, and
spark dialogue but their layered meanings can also
mask harmful intent, making them difficult for
researchers to analyze accurately. Studies have
shown that even as memes entertain, their content
is laden with nuanced signals, necessitating fresh
research approaches that integrate visual and lin-
guistic analyses Arya et al. (2024). Recent biblio-
metric analysis highlights an increasing research
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interest in the study of memes, underlining their
cultural significance and the need for systematic
investigation Kamath and Alur (2024). In addi-
tion, research on generational humor emphasizes
that memes do more than amuse. They also shape
identity and social behavior, thus offering valuable
insights into emerging cultural dynamics Aronson
and Jaffal (2021). This complexity and cultural
impact underscore the urgent need for more com-
prehensive studies that can unravel the multifaceted
messages embedded in memes.

To address these complexities, the CASE work-
shop series introduced shared tasks focused on mul-
timodal analysis of socio-political discourse. Our
team participated in the CASE 2025 shared task
(Thapa et al., 2025a), which included four subtasks:
Hate Speech Detection (A), Target Classification
(B), Topical Stance Classification (C), and Intended
Humor Detection (D). These build on previous edi-
tions, including CASE 2023 (Thapa et al., 2023)
and CASE 2024 (Thapa et al., 2024), emphasizing
the importance of understanding multimodal online
content (Hiirriyetoglu et al., 2025). Each subtask
addresses different challenges in the interpretation
of complex messages, requiring models to combine
textual and visual information for better detection
and analysis.

To tackle these challenges, we built on the
strengths of modern vision-language models.
Specifically, we fine-tuned the openai/clip-vit-
large-patch14 model (Radford et al., 2021) to suit
each subtask better. This helped the model pick
up on subtle signals like sarcasm, implied hostil-
ity, and humor which are things that can easily be
missed when looking at just text or images alone.
By adapting a general-purpose model to these spe-
cific tasks, we created a flexible approach for under-
standing the complex and layered messages found
in multimodal online content.
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2 Dataset and Task

The experiments described in this paper utilized
the dataset provided as part of the CASE 2025
Shared Task on Multimodal Understanding of On-
line Discourse. This dataset specifically focuses on
text-embedded images, such as memes, related to
marginalized movements, requiring a nuanced mul-
timodal understanding of the expressions conveyed.
The complexity arises from the potential for hu-
mor and harm to be intertwined, challenging tradi-
tional content moderation approaches. The dataset
was created using resources from the Memeclip
study (Shah et al., 2024) and earlier multimodal
hate speech datasets such as CrisisHateMM (Bhan-
dari et al., 2023), which also contributed to the
annotation approach used.

Table 1: Dataset Overview for CASE 2025 Shared Task
Subtasks

Subtask Label Count %
Non-Hate (0) 2065 51.0
ST-A Hate (1) 1985 49.0
Undirected (0) 617 31.1
STB Individual (1) 199 10.0
Community (2) 931 46.9
Organization (3) 238 12.0
Neutral (0) 1166 28.8
ST-C Support (1) 1527 37.7
Oppose (2) 1357 335
ST-D No Humor (0) 1313 324
Humor (1) 2737 67.5

2.1 Subtask A: Detection of Hate Speech

This subtask aimed to identify the presence of hate
speech within text-embedded images. It is framed
as a binary classification problem with labels: Non-
Hate (0) and Hate (1). The dataset contains a to-
tal of 4050 samples, with 2065 (51.0%) labeled
as Non-Hate and 1985 (49.0%) labeled as Hate,
indicating a relatively balanced distribution (see
Table 1).

2.2 Subtask B: Classifying the Targets of Hate
Speech

Given an image containing hate speech, the goal
of this subtask was to classify the specific target
of that hate. This is a multi-class classification
problem with four labels: Undirected (0), Indi-
vidual (1), Community (2), and Organization (3).
The dataset includes 1985 samples with notable
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imbalance: Community targets dominate with 931
samples (46.9%), followed by Undirected (617,
31.1%), Organization (238, 12.0%), and Individual
(199, 10.0%) (see Table 1).

2.3 Subtask C: Classification of Topical
Stance

This subtask required classifying images based on
their stance toward the marginalized movement,
with three labels: Neutral (0), Support (1), and Op-
pose (2). The dataset consists of 4040 samples dis-
tributed as follows: Support leads with 1527 sam-
ples (37.7%), followed by Oppose at 1357 (33.5%)
and Neutral at 1166 (28.8%) (see Table 1), showing
a fairly balanced distribution.

2.4 Subtask D: Detection of Intended Humor

The objective here was to identify images con-
veying humor, sarcasm, or satire related to the
marginalized movement. This binary classification
task includes labels: No Humor (0) and Humor (1).
The dataset is skewed towards humor, with 2737
samples (67.5%) labeled as Humor and 1313 sam-
ples (32.4%) labeled as No Humor (see Table 1).

3 Methodology

Our approach across all subtasks was built
around the CLIP (Contrastive Language-Image Pre-
training) model (Radford et al., 2021), fine-tuned
to effectively capture multimodal cues present in
text-embedded images. Figure 1 illustrates the
overall architecture of our CLIP-based multimodal
pipeline, which remained consistent with minor
adjustments for each subtask.

3.1 Data Preparation

Each dataset was first parsed and cleaned to
ensure valid label mappings according to the
task definitions. Text inputs were padded or
truncated to CLIP’s maximum token length of
77, and images were resized and normalized as
per CLIP’s preprocessing requirements using the
CLIPProcessor.

3.2 Dataset and DataLoader

We implemented a custom PyTorch Dataset
class that dynamically loads paired (image, text) ex-
amples and applies the required CLIP-compatible
transformations. Batched data was served using
a DataLoader with shuffling enabled for train-
ing and deterministic loading for validation/testing
phases.
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Figure 1: CLIP-Based Multimodal Model Architecture used across all subtasks.

3.3 Model Architecture

The core model utilized the pretrained ViT-L/14
variant of CLIP, where image and text modali-
ties are projected into a shared embedding space.
These embeddings were concatenated and passed
through a lightweight classification head composed
of fully connected layers with ReLU activations
and dropout. This head outputted logits over the
subtask-specific label set. The architecture is visu-
ally depicted in Figure 1.

3.4 Training Procedure

We trained the model using the AdamW opti-
mizer with different learning rates for the back-
bone and the classification head to facilitate stable
fine-tuning. A linear learning rate scheduler with
warm-up was used. Training was conducted over
5 epochs with a batch size of 16 using a Tesla T4
GPU. Table 2 summarizes our hyperparameter set-
tings.

3.5 Evaluation and Inference

Performance was monitored using accuracy, pre-
cision, recall, and F1-score, with validation con-
ducted at the end of each epoch. The best model
checkpoint (based on validation F1-score) was used
for generating final predictions on the test set,
which were formatted according to the competi-
tion submission schema.

3.6 Subtask-Specific Adaptations

While the base setup remained consistent across
subtasks, we made targeted modifications where
needed. For Subtask B (Target Classification), we
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Table 2: Hyperparameters and Training Configuration

Parameter Value

Model Backbone openai/clip-vit-
large-patch14

Max Token Length 77

Batch Size 16

Epochs 5

Optimizer AdamW

Learning Rate (Backbone) 1 x 1076

Learning Rate (Classifier 1 x 107

Head)

Device GPU (Tesla T4)

Loss Function Cross-Entropy

applied over-sampling to address class imbalance.
Subtask C (Stance Detection) benefited from a
deeper 3-layer classifier and a cosine learning rate
scheduler instead of linear. For Subtask D (Hu-
mor Detection), we used a higher dropout rate and
class-weighted loss to handle imbalance. Subtask
A (Hate Speech) followed the standard configura-
tion without additional changes.

4 Results and Discussion

4.1 Overview

We present evaluation results across CASE 2025
subtasks, with detailed metrics in Table 3 and con-
fusion matrices highlighting common misclassifi-
cations. The model performs better on binary tasks
like hate speech and humor detection, while multi-
class tasks such as stance and target classification
remain challenging. These findings reflect known



difficulties in hate speech detection and social me-
dia analysis (Parihar et al., 2021).

4.2 Subtask Evaluation
4.2.1 Subtask A: Hate Speech Detection

The model achieved an accuracy of 80% on the
binary hate speech detection task, with balanced
precision and recall across both classes. As shown
in Table 3, the macro-averaged F1-score was 0.80,
indicating consistent performance. Class 0 (non-
hate) had slightly higher recall (0.82), while class
1 (hate) showed comparable precision (0.81), sug-
gesting cautious detection of hate speech. The
confusion matrix in Figure 2 confirms these results,
with 212 correctly classified non-hate instances and
194 correctly classified hate instances, alongside
46 false positives and 55 false negatives. Overall,
the model performs reliably with minimal bias on
this subtask.
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Figure 2: Confusion Matrix for SubTask-A.

4.2.2 Subtask B: Target Classification

For the multi-class classification of hate speech
targets, the model achieved an accuracy of 54%
as reported in Table 3. Performance varied across
classes, with the Community class (2) having the
highest recall (0.69) and the Individual class (1)
showing the lowest. The confusion matrix in Fig-
ure 3 reveals common misclassifications, especially
between the Non-Directed (0) and Community (2)
classes, indicating some overlap in features. The
model handles the imbalanced classes moderately
well but struggles with less frequent targets. These
results highlight the challenge of fine-grained target
detection in hate speech.
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Figure 3: Confusion Matrix for SubTask-B.

4.2.3 Subtask C: Stance Detection

For the multi-class classification of stance, the
model achieved an accuracy of 60% as reported
in Table 3. Performance varied across classes, with
Neutral (0) having the highest recall (0.69), while
Support (1) and Oppose (2) were more frequently
confused with Neutral. The confusion matrix in
Figure 4 shows substantial misclassifications of
Support (1) and Oppose (2) as Neutral (0), reflect-
ing the challenge of distinguishing subtle stance
differences. Misclassifications between Support
(1) and Oppose (2) are also observed, indicating
overlap in their features. These results highlight
the complexity of stance detection in multimodal
online discourse.
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Figure 4: Confusion Matrix for SubTask-C.

4.2.4 Subtask D: Humor Detection

For the binary classification of humor detection,
the model achieved an accuracy of 76% as shown



Table 3: Classification Reports for CASE 2025 Subtasks

(a) Subtask A (Hate Speech)

(b) Subtask B (Target Classification)

Class (ID) Precision Recall Fl-score Support Class (ID) Precision Recall Fl-score Support
Non-Hate (0) 0.79 0.82 0.81 258 Undirected (0) 0.50 0.32 0.39 77
Hate (1) 0.81 0.78 0.79 249 Individual (1) 0.58 0.44 0.50 25
Accuracy 0.80 Community (2) 0.54 0.69 0.61 117
Macro Avg 0.80 0.80 0.80 507 Organization (3) 0.55 0.57 0.56 30
Weighted Avg 0.80  0.80 0.80 507 Accuracy 0.54
Macro Avg 0.54 0.51 0.52 249
Weighted Avg 0.53 0.54 0.53 249
(c) Subtask C (Stance Detection) (d) Subtask D (Humor Detection)
Class (ID) Precision Recall Fl-score Support Class (ID) Precision Recall Fl-score Support
Neutral (0) 0.45 0.69 0.54 146 No Humor (0) 0.61 0.68 0.65 165
Support (1) 0.77 0.56 0.65 191 Humor (1) 0.84 0.79 0.82 342
Oppose (2) 0.68 0.56 0.62 170 Accuracy 0.76
Accuracy 0.60 Macro Avg 0.73 0.74 0.73 507
Macro Avg 0.63 0.61 0.60 507 Weighted Avg 0.77 0.76 0.76 507
Weighted Avg 0.65 0.60 0.61 507

in Table 3. As seen in the confusion matrix in Fig-
ure 5, the model often confuses Humor (1) with No
Humor (0), misclassifying 71 humorous instances.
This suggests the model is conservative in predict-
ing humor, likely due to the subtle and context-
dependent nature of humor in online content.

Confusion Matrix for Task D

-175

Actual

-150

-125

-100

-75

Predicted

Figure 5: Confusion Matrix for SubTask-D.

4.3 Limitations and Future Enhancements

While the models demonstrate solid performance,
several challenges remain. The confusion matrices
highlight difficulty in distinguishing semantically
similar or nuanced classes, reflecting the limits of
current embedding and classification approaches
in capturing subtle context, sarcasm, or implicit
meanings. Although our approach used multimodal
signals via CLIP, improvements could come from
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better integration techniques that more effectively
fuse text and image information. Incorporating
large language models (LLMs) for generating pre-
dictions or augmenting data could enhance under-
standing of complex language patterns and improve
classification accuracy (Thapa et al., 2025b). Addi-
tionally, experimenting with larger pretrained mod-
els or ensembling strategies may boost robustness.
Exploring advanced data augmentation or synthetic
data generation to address class imbalance and rare
cases could also enhance performance. Finally,
incorporating domain-specific knowledge or inter-
pretability techniques would help understand and
mitigate systematic biases and errors.

5 Conclusion

In this work, we presented a unified multimodal
framework based on the CLIP model to address
multiple subtasks related to hate speech, target
classification, stance detection, and humor detec-
tion. Our approach demonstrates strong perfor-
mance across these classification challenges, effec-
tively leveraging both textual and visual informa-
tion. While results indicate potential, especially
for hate speech and humor detection, challenges
remain in handling subtle distinctions and class im-
balances. Future improvements may involve deeper
integration of multimodal cues and the use of large
language models to better capture context and nu-
ance. Overall, this study contributes to advanc-
ing robust, multimodal methods for understanding
complex social content in online platforms.



References

Pamela Aronson and Islam Jaffal. 2021. Zoom memes
for self-quaranteens: Generational humor, identity,
and conflict during the pandemic. Emerging Adult-
hood.

Greeshma Arya, Mohammad Kamrul Hasan, Ashish
Bagwari, Nurhizam Safie, Shayla Islam, Fatima
Rayan Awad Ahmed, Aaishani De, Muhammad At-
tique Khan, and Taher M. Ghazal. 2024. Multimodal
hate speech detection in memes using contrastive
language-image pre-training. leee Access.

Aashish Bhandari, Siddhant B Shah, Surendrabikram
Thapa, Usman Naseem, and Mehwish Nasim. 2023.
Crisishatemm: Multimodal analysis of directed and
undirected hate speech in text-embedded images
from russia-ukraine conflict. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1994-2003.

Ali Hiirriyetoglu, Surendrabikram Thapa, and Hristo
Tanev. 2025. Findings and insights from the 8th
workshop on challenges and applications of auto-
mated extraction of socio-political events from text.
In Proceedings of the 8th Workshop on Challenges
and Applications of Automated Extraction of Socio-
political Events from Text (CASE 2025).

Charunayan Kamath and Sivakumar Alur. 2024. Re-
search trends in memes: Insights from bibliometric
analysis. Information Discovery and Delivery.

Anil Singh Parihar, Surendrabikram Thapa, and Sushruti
Mishra. 2021. Hate speech detection using natural
language processing: Applications and challenges.
In 2021 5th International Conference on Trends in
Electronics and Informatics (ICOEI), pages 1302—
1308. IEEE.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision.

Siddhant Bikram Shah, Shuvam Shiwakoti, Maheep
Chaudhary, and Haohan Wang. 2024. Meme-
clip: Leveraging clip representations for multimodal
meme classification. pages 17320-17332.

Surendrabikram Thapa, Farhan Ahmad Jafri, Ali
Hiirriyetoglu, Francielle Vargas, Roy Ka Wei Lee,
and Usman Naseem. 2023. Multimodal hate speech
event detection-shared task 4. In CASE 2023-
Proceedings of the 6th Workshop on Challenges
and Applications of Automated Extraction of Socio-
Political Events from Text, associated with 14th Inter-
national Conference on Recent Advances in Natural
Language Processing, RANLP 2023, pages 151-159.
Association for Computational Linguistics.

Surendrabikram Thapa, Kritesh Rauniyar, Farhan Ah-
mad Jafri, Hariram Veeramani, Raghav Jain, Sandesh

151

Jain, Francielle Vargas, Ali Hiirriyetoglu, and Usman
Naseem. 2024. Extended multimodal hate speech
event detection during russia-ukraine crisis-shared
task at case 2024. In 7th Workshop on Challenges
and Applications of Automated Extraction of Socio-
Political Events from Text, CASE 2024, pages 221—
228. Association for Computational Linguistics.

Surendrabikram Thapa, Siddhant Bikram Shah, Kritesh
Rauniyar, Shuvam Shiwakoti, Surabhi Adhikari,
Hariram Veeramani, Kristina T. Johnson, Ali
Hiirriyetoglu, Hristo Tanev, and Usman Naseem.
2025a. Multimodal hate, humor, and stance event
detection in marginalized sociopolitical movements.
In Proceedings of the Sth Workshop on Challenges
and Applications of Automated Extraction of Socio-
political Events from Text (CASE 2025).

Surendrabikram Thapa, Shuvam Shiwakoti, Sid-
dhant Bikram Shah, Surabhi Adhikari, Hariram
Veeramani, Mehwish Nasim, and Usman Naseem.
2025b. Large language models (Ilm) in computa-
tional social science: prospects, current state, and
challenges. Social Network Analysis and Mining,
15(1):1-30.



CUET NOOB@CASE 2025: Multimodal Hate Speech Detection in
Text-Embedded Memes using Late Fusion with Attention Mechanism

Tomal Paul Joy, Aminul Islam, Md. Saimum Islam, Md. Tanvir Ahammed Shawon,
Md. Ayon Mia, Muhammad Ibrahim Khan
Department of Computer Science and Engineering
Chittagong University of Engineering and Technology, Bangladesh

Abstract

Memes and text-embedded images have rapidly
become compelling cultural artifacts that both
facilitate expressive communication and serve
as conduits for spreading hate speech against
marginalized communities. Detecting hate
speech within such multimodal content poses
significant challenges due to the complex and
subtle interplay between textual and visual el-
ements. This paper presents our approach
for Subtask A of the Shared Task on Multi-
modal Hate Detection in Marginalized Move-
ment@CASE 2025, focusing on the binary clas-
sification of memes into Hate or No Hate cat-
egories. We propose a novel multimodal ar-
chitecture that integrates DistilBERT for tex-
tual encoding with Vision Transformer (ViT)
for image representation, combined through
an advanced late fusion mechanism leverag-
ing multi-head attention. Our method utilizes
attention-based feature alignment to capture nu-
anced cross-modal interactions within memes.
The proposed system achieved an F1-score of
0.7416 on the test set, securing the 13th posi-
tion in the competition. These results under-
score the value of sophisticated fusion strate-
gies and attention mechanisms in comprehend-
ing and detecting complex socio-political con-
tent embedded in memes.

1 Introduction

Social media platforms have revolutionized
communication, with memes emerging as a
dominant form of expression that combines
visual and textual elements to convey complex
messages (Shah et al., 2024). However, this
multimodal format has also become a vehicle
for spreading hate speech, particularly targeting
marginalized communities and socio-political
movements (Bhandari et al., 2023). The challenge
of detecting hate speech in memes is compounded
by the subtle and often implicit ways that text
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and images interact to create meaning (Parihar et
al., 2021; Chhabra and Vishwakarma, 2024).This
paper addresses Subtask A of the Shared Task
on Multimodal Hate Detection in Marginalized
Movement@CASE2025 (Thapa et al., 2025a),
focusing on binary classification of text-embedded
images as either containing hate speech or not.
The task involves analyzing 4,675 memes across
training, validation, and test sets, requiring systems
to understand both explicit and implicit forms
of hate speech that emerge from the interaction
between visual and textual modalities (Thapa
et al., 2023, 2024).To tackle this challenge, we
developed a sophisticated multimodal architecture
that leverages the strengths of transformer-based
models for both text and image processing.
Our approach combines DistilBERT for textual
understanding with Vision Transformer (ViT)
for visual feature extraction. The key innovation
lies in our late fusion strategy, which employs
multi-head attention mechanisms to effectively
align and integrate features from both modalities
before making the final classification decision
(Chhabra and Vishwakarma, 2024), building on
multimodal fusion approaches demonstrated in
Aziz et al. (2023) and Sahin et al. (2023). Our
contributions are threefold: (a) We propose a novel
attention-based late fusion architecture for multi-
modal hate speech detection fusion (b) We provide
comprehensive analysis of multimodal interactions
in hate speech detection, achieving competitive
performance on the shared task dataset. This work
contributes to the growing body of research on
computational social science applications (Thapa
et al., 2025b) and extends previous multimodal
hate speech detection efforts (Kashif et al., 2023).
More details on our implementation are available
at https://github.com/890sunny/Shared-Task-on-
Multimodal-Hate-Detection-in-Marginalized-
Movement-CASE2025.
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2 Related Work

2.1 Multimodal Hate Speech Detection

Previous research in multimodal hate speech detec-
tion has explored various approaches to combine
textual and visual information. Early work focused
on simple concatenation of features from differ-
ent modalities, but more sophisticated approaches
have emerged, including hierarchical fusion meth-
ods (Aziz et al., 2023) and ensemble learning tech-
niques (Kashif et al., 2023).Recent advances in
transformer architectures have significantly im-
proved multimodal understanding. Studies like
Chhabra and Vishwakarma (Chhabra and Vish-
wakarma, 2024) developed scalable transformer-
based multilevel attention frameworks, while Sahin
et al. (Sahin et al., 2023) enhanced text analysis by
incorporating syntactic and entity-level information
with transformer models. The work of Bhandari et
al. (Bhandari et al., 2023) provided comprehensive
analysis of directed and undirected hate speech in
text-embedded images, particularly in the context
of socio-political conflicts.

2.2 Shared Tasks and Benchmarks

Shared tasks have played a crucial role in advanc-
ing multimodal hate speech detection by providing
standardized datasets and evaluation frameworks.
The CASE workshop series has been instrumental
in this regard, with Thapa et al. (Thapa et al., 2023)
establishing early benchmarks for multimodal hate
speech event detection. This work was extended by
Thapa et al. (Thapa et al., 2024) during the Russia-
Ukraine crisis, demonstrating the adaptability of
detection systems to evolving socio-political con-
texts. The current work builds upon the foundation
established by Thapa et al. (Thapa et al., 2025a),
which focuses on hate, humor, and stance detection
in marginalized sociopolitical movements.

2.3 Attention Mechanisms in Multimodal
Learning

Attention mechanisms have proven crucial for ef-
fective multimodal fusion. Cross-modal attention
allows models to focus on relevant features across
different modalities, improving the understanding
of complex interactions between text and images.
The application of attention mechanisms to multi-
modal hate speech detection has shown promising
results, particularly in scenarios where the hate-
ful content emerges from the subtle interaction be-
tween visual and textual elements rather than from
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Dataset No Hate Hate Total Y% Hate
Train 1930 1732 3662 47.3
Validation 258 248 506 49.0
Test 258 249 507 49.1

Table 1: Distribution of samples in the dataset with
percentage of hate class.

either modality alone. Recent approaches have
demonstrated the effectiveness of sophisticated at-
tention frameworks (Chhabra and Vishwakarma,
2024) in capturing these complex multimodal rela-
tionships.

2.4 Vision Transformers and Multimodal
Models

Vision Transformers have revolutionized image
processing by applying transformer architectures
to computer vision tasks. ViT models treat images
as sequences of patches, enabling the application
of attention mechanisms that have been successful
in natural language processing to visual data. Re-
cent work by Shah et al. (Shah et al., 2024) has
specifically explored the application of CLIP rep-
resentations for multimodal meme classification,
demonstrating the effectiveness of vision-language
models for this domain.

3 Task and Dataset Description

We utilized the dataset provided for Subtask A of
the Shared Task on Multimodal Hate Detection in
Marginalized Movement@CASE2025, as outlined
by Thapa et al. (Thapa et al., 2025a). The dataset
focuses on detecting hate speech in text-embedded
images, primarily comprising memes and similar
online content.

4 Methodology

4.1 Preprocessing

Our preprocessing pipeline handles both textual
and visual components of the memes. For tex-
tual content, we perform standard NLP preprocess-
ing including removal of URLs, HTML tags, spe-
cial characters, and excessive whitespace. All text
is converted to lowercase for consistency, and se-
quences longer than 128 tokens are truncated.For
visual preprocessing, all images are converted to
RGB format and resized to 224x224 pixels to
match the input requirements of the Vision Trans-
former. We apply ImageNet normalization with



mean [0.485, 0.456, 0.406] and standard deviation
[0.229, 0.224, 0.225] to ensure compatibility with
pre-trained models.

4.2 Model Architecture

Our proposed architecture consists of three main
components: text encoding, image encoding, and
multimodal fusion with attention.

4.2.1 Text Encoding

We employ DistilBERT-base-uncased as our text
encoder, which provides a balance between perfor-
mance and computational efficiency. The model
processes tokenized text sequences and outputs
768-dimensional contextualized embeddings. We
extract the [CLS] token representation as the
sentence-level text feature. This approach builds
upon recent advances in transformer-based text pro-
cessing for hate speech detection (Parihar et al.,
2021).

The text features are projected to a 512-
dimensional space using a linear transformation:

h; = Linear(DistilBERT(x;)) (1)

where x; represents the input text tokens and h; €
R512 is the projected text representation.

4.2.2 Image Encoding

For visual feature extraction, we utilize Vision
Transformer (ViT-base-patch16-224), which di-
vides input images into 16x16 patches and pro-
cesses them through transformer layers. We extract
the [CLS] token and project it to a 512-dimensional
space:

h, = Linear(ViT(x,)) (2)
with x, as the input image and h, € R>'2.

4.2.3 Attention-Based Late Fusion

We stack the text and visual representations and
apply multi-head attention with 8 heads, following
approaches similar to those used in recent mul-
timodal frameworks (Chhabra and Vishwakarma,
2024):

F = stack([hy, h,]) € R?*512 (3)

F,. = MultiHeadAttention(F, F,F) (4)

The attended features are concatenated and passed
through fully connected layers with dropout:

h fused = concat(Fatt[0], Fou[1])  (5)

Followed by an MLP with ReLU and dropout
(p=0.3):
g = MLP(hfused) (6)

Component Removed F1-Score

None (Full Model) 0.7416
Multi-head Attention 0.7094
Projection Layers 0.7156
Class Weighting 0.7234
Gradient Clipping 0.7389

Table 2: Ablation study showing the contribution of
different model components.

4.3 Training Configuration

We train for 10 epochs using the AdamW opti-
mizer (learning rate 2 x 10~°, weight decay 0.01),
CrossEntropyLoss with class weights, a batch size
of 16, and gradient clipping (max norm 1.0). A
linear warmup (500 steps) is applied. This training
configuration is informed by best practices estab-
lished in recent multimodal hate speech detection
work (Sahin et al., 2023; Kashif et al., 2023).

5 Results and Analysis
5.1 Main Results

The results in Table ?? demonstrate the advan-
tage of our attention-based late fusion model over
unimodal and simpler multimodal baselines. The
model achieves an F1-score and accuracy improve-
ment of approximately 3 percentage points com-
pared to the next best method, indicating that so-
phisticated fusion and cross-modal attention mech-
anisms significantly enhance hate speech detection
in memes. These results are consistent with recent
findings in multimodal hate speech detection (Aziz
et al., 2023; Bhandari et al., 2023), which high-
light the importance of effective fusion strategies
for capturing complex text-image interactions.

5.2 Ablation Study

Table 2 summarizes the impact of removing model
components. Multi-head attention contributes the
most, with a drop of over 3 points in F1-score when
removed. This highlights attention’s critical role
in aligning and integrating multimodal representa-
tions effectively.

5.3 Training Dynamics

The model converges well within the first few
epochs, reaching peak validation performance
around epoch 3. Although minor overfitting is ob-
served in later epochs despite regularization strate-
gies, overall training stability is enhanced by the
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Figure 1: System architecture illustrating the multimodal attention-based late fusion approach.

use of gradient clipping and learning rate warm-
up. This training behavior aligns with observations
from recent multimodal hate speech detection stud-
ies (Sahin et al., 2023), which emphasize the im-
portance of regularization in preventing overfitting
in complex multimodal architectures.

5.4 Error Analysis

Our error analysis reveals that the model performs
robustly across both "Hate’ and *No Hate’ classes,
with balanced false positives and false negatives.
Common failure modes include challenges that
have been consistently reported in multimodal hate
speech detection literature (Bhandari et al., 2023;
Thapa et al., 2025b):

a. Subtle Context: Memes where hate speech
is implicit and depends on cultural or contex-
tual inference. b. Satirical Content: Diffi-
culty distinguishing satire or irony from gen-
uine hate speech, a challenge highlighted in
previous work (Parihar et al., 2021). c. Visual
Ambiguity: Images that require textual con-
text for accurate interpretation. d. Domain-
Specific Knowledge: Memes reliant on cur-
rent events or niche cultural references, par-
ticularly relevant in marginalized movement
contexts (Thapa et al., 2025a).

5.5 Attention Visualization

Visualizing the attention weights in the late fusion
layer demonstrates that the model dynamically al-
locates focus depending on content, similar to find-
ings reported in recent attention-based multimodal
frameworks (Chhabra and Vishwakarma, 2024):

a. Text-heavy memes receive higher atten-
tion on textual embeddings. b.Image-centric
memes show elevated attention weights on vi-
sual features. c. Ambiguous cases exhibit a
more balanced attention distribution.
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This behavior confirms the model’s adaptive ca-
pability to leverage the most informative modality
for each meme, which underpins its improved per-
formance. The dynamic attention allocation sup-
ports the effectiveness of late fusion approaches
over simple feature concatenation methods (Aziz
et al., 2023; Kashif et al., 2023), demonstrating
the value of sophisticated cross-modal attention
mechanisms in multimodal hate speech detection.

6 Discussion

Our results demonstrate that an attention-based late
fusion approach is highly effective for detecting
hate speech in text-embedded memes. Leverag-
ing DistilBERT for text understanding and Vision
Transformer (ViT) for visual encoding allows the
model to capture the complementary nature of mul-
timodal content (Chhabra and Vishwakarma, 2024;
Aziz et al., 2023). Multi-head attention at the fu-
sion stage dynamically aligns and weights features
across modalities, which is particularly advanta-
geous for memes where meaning emerges from
subtle cross-modal cues, yielding higher F1-scores
than unimodal baselines (Sahin et al., 2023; Kashif
et al., 2023). Training strategies such as mod-
erate batch size, class-weighted loss, and mixed
precision enabled efficient experimentation with
limited resources, achieving stable convergence
without overfitting (Parihar et al., 2021). The val-
idation Fl-score of 0.7416 with balanced preci-
sion and recall indicates effective modeling of the
language-imagery interplay in hate memes. While
competitive with comparable methods, the binary
classification framework and dataset scope high-
light the need for fine-grained, real-world testing
(Thapa et al., 2023, 2024, 2025a). Future work
should explore context-sensitive approaches and
larger meme corpora, leveraging large language
models (Thapa et al., 2025b) and vision-language
models like CLIP (Shah et al., 2024) to enhance



Model Pooling Strategy Performance Metric
Pr Re F1
Unimodal Models (Notebook)

DistilBERT (Text) - 0.7424 0.7424 0.7424
ViT (Image) - 0.6250 0.6267 0.6250
Multimodal Fusion Models (Notebook)

Simple Concatenation - 0.7128 0.7133 0.7128
Early Fusion - 0.6993 0.7000 0.6993
Attention-based Late Fusion Multihead Attention 0.7416 0.7417 0.7416

Table 3: Performance metrics (Precision (Pr), Recall (Re), F1-score) of unimodal and multimodal models from the

notebook experiments.

socio-political understanding.

7 Limitations

Despite the promising results achieved, our ap-
proach is subject to several limitations that must
be acknowledged. First, the dataset size used for
training and evaluation remains relatively modest,
limiting the model’s ability to generalize across
diverse socio-cultural contexts and emerging forms
of hate speech. This constraint may reduce robust-
ness when encountering novel or region-specific
linguistic and visual expressions, a challenge that
has been consistently reported in multimodal hate
speech detection literature (Bhandari et al., 2023;
Thapa et al., 2025a).Second, the binary classifi-
cation scheme adopted does not capture the nu-
anced spectrum of hate speech, including vary-
ing intensities, targets, or categories (e.g., hate,
offense, or derogatory language). This simplifica-
tion restricts the model’s applicability in settings
where fine-grained understanding is critical. Previ-
ous work in hate speech detection has highlighted
the importance of multi-class and hierarchical clas-
sification approaches(Parihar et al., 2021), sug-
gesting that binary frameworks may oversimplify
the complexity of online hate phenomena.Third,
the subtleties inherent to natural language such
as slang, sarcasm, and irony, as well as complex
visual metaphors and symbolism, pose persistent
challenges. These phenomena often require deep
contextual, cultural, and pragmatic knowledge that
remains difficult for current multimodal models
to represent effectively. Similar challenges have
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been identified in recent multimodal frameworks
(Sahin et al., 2023; Chhabra and Vishwakarma,
2024), particularly when dealing with satirical or
context-dependent content.Fourth, while our fusion
strategy enhances modality interaction, limitations
exist in leveraging external world knowledge or
up-to-date sociopolitical information, which could
improve detection accuracy. The rapidly evolving
nature of memes and hate speech in marginalized
movements (Thapa et al., 2025a) requires models
that can adapt to contemporary events and cultural
shifts, a capability that current approaches strug-
gle to address effectively.Finally, our approach re-
lies on relatively static pretrained models that may
not capture the dynamic evolution of hate speech
patterns and emerging linguistic phenomena. As
highlighted by recent work on large language mod-
els in computational social science (Thapa et al.,
2025b), there is significant potential for more adap-
tive and context-aware approaches that can better
understand evolving socio-political contexts.Future
work will focus on addressing these issues by ex-
panding datasets to improve representational di-
versity, adopting advanced multimodal pretraining
strategies, developing multi-label and fine-grained
classification frameworks, and integrating external
knowledge sources and context-aware understand-
ing mechanisms to better capture complex, real-
world hate speech phenomena. Additionally, incor-
porating insights from recent advances in vision-
language models (Shah et al., 2024) and ensemble
learning approaches (Kashif et al., 2023) may pro-
vide pathways to overcome current limitations and
enhance model robustness across diverse contexts.



8 [Ethics Statement

The deployment of automated hate speech detec-
tion systems poses significant ethical challenges
due to the nuanced nature of language and im-
agery in online content. Our work is guided by
the principle that such technology should support,
not replace, human judgment to uphold freedom of
expression while mitigating harm.We exclusively
utilize publicly available datasets, ensuring trans-
parency and reproducibility without compromising
privacy. Recognizing the risk of algorithmic bi-
ases, especially those that may disproportionately
impact marginalized or underrepresented groups,
we rigorously evaluate our methods to minimize
unfair treatment and false positives or negatives.

9 Conclusion

In wrapping up, our work introduces a straightfor-
ward yet effective late-fusion system for spotting
hate speech in text-embedded memes. By blending
DistilBERT and ViT encoders with a smart OCR-
aware preprocessing pipeline and a lightweight
multi-head attention module, we’ve created a tool
that’s both powerful and practical for shared-task
participants. Our tests on the CASE2025 dataset
show it holds its own against more complex models
while being easier to run. Through ablations, we
learned that including OCR, fine-tuning projection
dimensions, and applying gentle class-weighting
make a big difference. Looking ahead, we’re ex-
cited to dive into deeper cross-modal transformers,
adapt to evolving meme trends, and weave in exter-
nal knowledge to better grasp cultural and topical
nuances.

Our model incorporates mechanisms to adap-
tively balance precision and recall, reducing unwar-
ranted censorship of legitimate content and limiting
the proliferation of harmful speech. We emphasize
the importance of continuous monitoring and up-
dating of hate speech detection systems in response
to evolving language, culture, and societal con-
texts.Furthermore, we advocate for inclusive stake-
holder engagement, involving domain experts and
affected communities, to guide responsible design
and deployment. We acknowledge the limitations
of automated approaches and the ethical impera-
tive for human oversight, transparent reporting, and
accountability to foster safer and fairer online envi-
ronments.Our work aspires to contribute positively
to the broader efforts combating hate speech, pro-
moting respect, dignity, and inclusivity in digital
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spaces without undermining fundamental rights.
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