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摘摘摘要要要

检索增强生成（Retrieval-Augmented Generation，RAG）是一种有效优化大语言
模型在工艺规范问答任务中性能的方法。然而，基于固定文本长度分块的朴
素RAG（Naive RAG）在构建工艺规范问答任务时表现不佳。主要原因在于工艺规范
是一类复杂的技术文档，采用固定文本长度分块会丢失工艺规范段落层级之间的结构
关系以及隐含的知识关联关系，导致输出结果质量下降。因此，本文提出了一种利用
工艺规范篇章段落间隐含的树结构关系来构建RAG的方法，该方法有效解决了固定文
本长度分块导致的段落之间的知识关联丢失问题。实验结果表明，树结构RAG在评价
指标上优于朴素RAG，其中ACC平均提升3.81%，ROUGE-L提升3.28%，BLEU-4提
升2.97%，验证了树结构RAG的有效性。

关关关键键键词词词：：： 检索增强生成 ；大语言模型 ；工艺规范 ；信息检索

A Tree-Structured Retrieval-Augmented Generation Method
for Manufacturing Specifications Document

Yuchen Jiang1, Peiyan Wang 1*, Yubo Feng 2, Zhuo Yu3, Guiyang Ji1
1School of Computer Science, Shenyang Aerospace University

2School of Computer Science and Technology, Dalian University of Technology
3Aviation Manufacturing Technology Research Institute,
COMAC Shanghai Aircraft Manufacturing Co., Ltd.

{jiangyuchen2,jiguiyang}@stu.sau.edu.cn, wangpy@sau.edu.cn

argmax@126.com

yuzhuo@comac.cc

Abstract

Retrieval-Augmented Generation (RAG) is an effective method for optimizing the per-
formance of large language models in question-answering tasks related to manufacturing
specifications. However, the Naive RAG, which relies on fixed-length text chunking,
performs poorly when applied to the construction of question-answering tasks for man-
ufacturing specifications. The main reason is that manufacturing specifications are
complex technical documents, and the use of fixed-length text chunking results in the
loss of structural relationships between paragraphs as well as implicit knowledge asso-
ciations, leading to a decline in the quality of the output. To address this issue, this pa-
per proposes a method that leverages the implicit tree-structured relationships between
sections and paragraphs in manufacturing specifications to construct RAG, effectively
solving the problem of lost knowledge associations between paragraphs caused by fixed-
length text chunking. Experimental results demonstrate that the tree-structured RAG
outperforms the Naive RAG across evaluation metrics, with an average improvement of
3.81% in ACC, 3.28% in ROUGE-L, and 2.97% in BLEU-4, validating the effectiveness
of the tree-structured RAG.
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1 引引引言言言

大语言模型（Large Language Models, LLMs）在众多自然语言处理任务中展现了卓越
的性能。随着LLMs规模的持续扩大，其参数中编码了大量事实信息(Chowdhery et al., 2023;
Kandpal et al., 2023)。因此LLMs 不仅在各类通用自然语言处理任务中表现出色，还满足了
多个专业领域的应用需求，例如医疗(Singhal et al., 2023)、金融(Zhang and Yang, 2023)、法
律(Fei et al., 2025)、教育(Bai et al., 2024) 和科学研究(Ma et al., 2024)。
工艺规范是对工艺过程中有关技术要求所做的一系列规定，主要包括工艺参数和工艺条

件(Li et al., 2024)。工艺规范覆盖了生产过程中的工艺方法、检验规则及质量控制等关键要
素，是企业工程文件的典型代表(Zhongjun et al., 2016)。因此选择工艺规范作为研究对象，
对于研究LLMs在企业工程文件中的应用具有重要的实践价值。尽管LLMs在预训练阶段通过海
量文本学习了广泛的知识，但其解决特定专业领域问题的能力仍然存在局限性。因此，通过
对LLMs的参数进行微调(Liu et al., 2022; Hu et al., 2022)，可以使模型重新学习并掌握特定领
域的相关知识。然而，LLMs的微调过程通常伴随着较高的算力成本、时间成本以及对训练数据
量的要求。在工艺规范数据有限的情况下，例如某型号客机仅有460本工艺规范，导致数据量难
以满足LLMs微调的需求。尽管基于工艺规范的知识注入方法(纪贵阳et al., 2024)在少样本参数
微调中显著提升了LLMs的性能，但该方法仍然面临训练成本高昂和知识更新滞后等挑战。

问题 CETS0004系列死接头利用热风枪安装时的加热温度是多少

朴素RAG 检索 Chunk1: 7.2 CETS0004系列的安装(Installation of CETS0004 series).
7.2.1 单芯导体屏蔽导线(Single core shielded cable)......

Chunk2: 7.4.2热风枪 A02（加热温度为399℃-427℃，需加反射器）从密
封套管中间开始加热。
Chunk3: 7.2.1.2 用热风枪从套管中间加热，然后再加热两端直至完全收

缩。注：该系列死接头安装加热温度为 399℃-454℃。

朴素RAG 输出 CETS0004 系列死接头利用热风枪安装时的加热温度为 399°C-427°C（（（错错错
误误误）））

Table 1: 朴素RAG在工艺规范问答任务中遇到的问题

Lewis等人(Lewis et al., 2020)提出了RAG方法，有效缓解了LLMs 在知识更新、处理长尾
数据以及高昂训练和微调成本方面的挑战。RAG 通过预训练的检索器获取与问题相关的领域
知识，从而提升模型生成答案的准确性。在该方法中，外部知识被划分为固定长度的文本块，
并以向量形式表示并存储于向量数据库中，这种RAG范式被称为朴素RAG(Gao et al., 2023)。
区别于其他的外部知识(Pratama et al., 2025)，工艺规范是一类复杂的技术文档，具有复杂的
段落结构关系以及隐含的知识关联关系。因此采用固定长度文档分块会丢失工艺规范段落层
级之间的结构关系以及隐含的知识关联关系，导致输出结果质量下降。如表 1所示：其中零件
号“CETS0004”作为特有的工艺知识，仅在工艺规范的二级段落中出现一次。然而，朴素RAG
采用固定长度文档分块，难以将零件号“CETS0004”与包含正确答案的文本块关联在一起并提
供给LLMs，因此会出现如表 1所示的错误。
为解决上述朴素RAG遇到的问题，本文提出利用工艺规范中段落层级之间的结构关系以及

隐含的知识关联关系来改善LLMs在工艺规范中的问答效果，本文主要有以下贡献：
（1）本文提出了一种基于工艺规范段落层级之间隐含的树结构关系的RAG方法。同时为

了更好地利用工艺规范中的树结构关系，本文将工艺规范从非结构化转化为结构化的树结构对
象。根据树结构对象的不同使用时机和方式，本文提出了四种不同的树结构RAG。

* 通讯作者
©2025 中国计算语言学大会
根据《Creative Commons Attribution 4.0 International License》许可出版
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（2）本文在8种LLM上进行了广泛的实验，实验证明，与朴素RAG 相比，树结构RAG
在ACC 指标上平均提升3.81%，在ROUGE-L 指标上平均提升3.28%，在BLEU-4 指标上平均提
升2.97%，证明了树结构RAG 能够改善LLMs 在工艺规范中的问答效果。

2 相相相关关关研研研究究究

2.1 基基基于于于查查查询询询的的的RAG

基于查询的RAG（Query-based RAG）(Zhao et al., 2024)是一种将检索后的内容与用户原
始查询整合后输入生成器以生成回答的方法。Lewis 等人(Lewis et al., 2020) 在BERT中提出
了RAG，旨在提升知识访问与操作的准确性、增强模型决策的可解释性，并解决知识更新的问
题。Guu 等人(Guu et al., 2020) 提出了REALM，该方法尝试在传统语言模型中引入一个神经
网络检索器。该检索器能够在推理阶段从大规模文本语料库中检索相关文档。Asai 等人(Asai
et al., 2024) 提出了一种名为SELF-RAG的方法，旨在生成过程中解决LLMs回答中事实不准
确的问题。具体而言，SELF-RAG能够使LLMs在推理阶段按需检索相关段落，并通过反思词
元对生成内容进行自我评估与优化。Shi 等人(Shi et al., 2024) 提出了一种名为REPLUG的方
法。该方法通过利用LLMs输出序列困惑度之间的KL散度来训练检索器，旨在解决RAG的适用
性问题并提升语言模型的性能。Wang 等人(Wang et al., 2024) 提出了一种名为KGP的方法，
专注于解决多文档问答问题。KGP采用知识图谱提示方法，通过构建知识图谱来辅助LLMs进
行MD-QA。Ram 等人(Ram et al., 2023)提出了一种名为ICRALM的方法。该方法在语言模型
生成后，基于当前已生成的文本序列作为查询，从外部知识库中检索一个或多个相关文档来改
善语言模型的输出结果。

2.2 树树树结结结构构构在在在RAG的的的应应应用用用

Kim 等人(Kim et al., 2023) 提出了澄清树（Tree of Clarifications, TOC）方法，旨在解
决用户经常提出的具有多义性的模糊查询问题。TOC 通过递归方式构建了一个树结构的澄清
问题框架，从而系统化地处理查询中的歧义性。Liu 等人(Liu and Liu, 2024) 提出了检索增
强思想树（Retrieval Augmented Tree of Thoughts，RAToT），旨在提升知识密集型多步问
答任务中对外部文档的检索性能。通过智能且灵活的文档检索机制，RAToT 有效降低了开放
域多步问答任务中生成错误答案的可能性。Hu 等人(Hu et al., 2024) 提出了一种名为自奖励
树搜索（Self-Rewarding Tree Search，SeRTS）的方法。该方法旨在解决生物医学领域中知识
检索性能次优的问题。SeRTS 是一种基于蒙特卡洛树搜索和自奖励范式设计的即插即用的检
索方法。Sarthi 等人(Sarthi et al., 2024) 提出了一种名为Raptor的方法。该方法旨在解决现
有大多数RAG方法只能检索较短文本块的问题，这一限制阻碍了LLMs对大规模语篇结构的利
用。Raptor设计了一种聚类算法对文本块进行聚类，并利用LLMs生成文本块的摘要，通过聚
类和摘要的反复迭代操作，构建文本块和摘要之间的摘要树结构。

本文的贡献在于探讨了在RAG构建过程中，面向复杂技术文档文档段落结构关系及隐含知
识关联对RAG效果的影响。然而，上述基于查询的RAG仅将外部知识文本切分为固定长度的文
本块，未能充分考虑其结构关系。尽管上述研究考虑了在RAG中应用树结构，但并未充分关注
外部知识中段落与篇章之间的树结构关系。因此本文提出了树结构RAG方法，该方法通过利用
外部知识中隐含的树结构，优化了RAG的生成效果。

3 方方方法法法

3.1 朴朴朴素素素RAG

朴素RAG 的目标是根据输入查询q，生成查询q对应的回答y。给定查询问题q ∈ Q 和外部
知识库Dc = {c1, c2, ..., cN}，Naive RAG的形式化定义如公式(1)所示：

y = LLM (p (q, retrieval (q, Dc))) (1)

{cm1, cm2, ..., cmk} = retrieval (q, Dc) (2)

在公式(1)中，y为朴素RAG的输出，LLM(·)为大语言模型(LLMs)，q为Q中的一个问
题，Dc为固定长度文本块集合，p(·)为提示函数。公式(2) 中，通过检索函数retrieval(·) 获
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取相似度最高的前Top k 个文本块，构成集合Ck = {cm1, cm2, ..., cmk}。最终，利用函数p(·) 将
查询q 与集合Ck 结合，作为提示输入到LLM(·) 生成输出。

B

LLMs
 7.1

 7.2.2

 7.2.2.1

 k

…

LLMs

A

 6.2 CETS0001

 7.2.1 

 7.2.2.2 

 Top k 

…

q

q

Figure 1: 工艺规范树结构RAG总体结构图，A部分为利用树结构获取工艺规范段落所属的不同
层级的段落信息来构建向量索引的方法，B部分为首先利用工艺规范中的全部段落构建向量索
引，随后通过树结构信息提取不同层级的段落信息的方法

3.2 树树树结结结构构构RAG

本文提出了一种树结构RAG方法TSR（Tree Structure Retrieval, TSR），旨在利用工艺规
范段落之间的树结构关系。根据树结构利用阶段的不同，树结构检索函数tsr(·)分为两种类型：
第一种tsr(·)方法通过树结构获取工艺规范段落所属的不同层级的段落信息来构建向量索引；第
二种tsr(·)方法则首先利用工艺规范中的全部段落构建向量索引，随后通过树结构信息提取不同
层级的段落信息。图1为TSR两种不同类型的总体结构，其中第一种tsr(·)方法的形式化定义如
公式(3)所示。

{s1, s2, ..., sk} = tsr (q,Ds) = retrieval (q,Ds) (3)

第一种tsr(·)的输入包括查询q以及工艺规范m中所有段落的最小子树对象集合Ds，其输出
为检索到的前Top k个最小子树对象集合{s1, s2, ..., sk}。其中sk表示最小子树对象，包含工艺规
范m中某一段落l的内容及其所属不同层级树结构中父段落节点或兄弟段落节点的内容。
第二种tsr(·)的输入包括查询q以及工艺规范m中所有段落的集合Dp，Tmk

为工艺规范m的
树结构对象，traverse(·)为树结构遍历函数，用于从树结构对象Tmk

中获取段落l所属不同层级
树结构中的父段落节点和兄弟段落节点的内容，具体的形式化定义如公式(4)所示：

{s1, s2, ..., sk} = tsr (q,Dp) = traverse (retrieval (q,Dp) | Tmk
) (4)

具体的运行流程如下，首先retrieval(·)函数根据输入查询q从工艺规范段落集合Dp中检索到
前Top k个相似段落，再利用执行traverse(·)函数从树结构对象Tmk

中获取前Top k个段落l所属
的最小子树对象组成集合{s1, s2, ..., sk}。

3.3 树树树结结结构构构对对对象象象的的的提提提取取取

在工艺规范中，由于不同层级段落分布着不同工艺知识，且各层次段落均有章节编号，
这使得工艺规范具有隐含的段落树结构关系，工艺规范的树结构示意图如图2所示。 为利
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7.2  CETS0004
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6.2.2 In-line splice
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XXX…
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6 

Figure 2: 工艺规范中树结构示意图

用工艺规范中的树结构关系，本文提取该结构并将其存储于树结构对象中。对于工艺规
范mk ∈ {m1,m2, . . . ,mn}，其中l ∈ mk，并将每个段落l视为树结构中的一个节点。其中树结构
对象为一个集合，包含工艺规范mk中每个段落l形成的最小子树对象s，其中s为一个四元组，
包含l所属的工艺规范名、父节点段落、兄弟节点段落，树结构对象的定义如公式(5)：

Tmk
= {si | i = 1, 2, . . . , k}, si = (rlk , plk , lk, blk) (5)

Tmk
为工艺规范mk的树结构对象，si为段落lk所属的最小子树对象，其中lk被视为叶子节点。

设R为工艺规范mk中所有段落l所属的工艺规范名集合，rlk ∈ R 表示R中存储的lk对应的工艺规
范名；设P为工艺规范mk中所有段落l所属的父段落节点集合，plk ∈ P 表示P中存储的lk的父节
点；设B为工艺规范mk中所有段落l所属的兄弟段落节点集合，blk ∈ B 表示B中存储的lk的兄
弟节点。对于工艺规范mk中的每个段落l，执行如公式(5)所示的操作，并将si存储至树结构对
象Tmk

中，其中Tmk
表示工艺规范mk的树结构对象。

为确定lk所属的工艺规范名rlk和父段落节点plk，以lk为起点进行遍历，其获取方式如公
式(6)(7)所示：

R(lk) = {lj ∈ A(lk) | λ(lj) = 0} (6)

P (lk) = ⟨lj ∈ A(lk) | λ(lj) < λ(lk) ∧ λ(lj) > 0⟩≺λ (7)

在公式(6)中，R(lk)表示工艺规范mk中每个lk所属工艺规范名的集合，A(lk)表示段落lk在
工艺规范mk中的所有前置段落的集合（以图2中的7.3.2 为例，7.3.1到工艺规范名之间的全
部段落即为7.3.2 的前置段落），λ(·)用于确定段落lk所属的层级，（例如工艺规范名的层级
为0，7.3.2 的层级为3。）对于前置段落集合A(lk)中的每一个段落lj，通过函数λ(·)判断其所属
层级，其中层级为0的段落即为lk所属的工艺规范名。

在公式(7)中，其中P是一个有序集合，用于从前置段落集合A(lk)中寻找段落lk所属的父段
落。具体方法是利用λ(·)寻找层级低于lk且λ > 0的段落，保留每一个第一次出现的段落级别小
于λ(lk)的段落作为父段落，并根据这些段落的层级λ按升序排序后存储到P。

在获取工艺规范名和父段落集合后，为利用lk所属的兄弟段落关系，以lk为起点在工艺规
范mk中进行遍历，从而获取与lk具有兄弟关系的段落。如图2中，段落7.1、7.2 和7.3处于相同
的段落层级，7.1和7.3即为7.2的兄弟段落，其获取方式如公式(8)(9)(10)所示：

Bup(lk) = ⟨lj ∈ mk | j < k, λ(lj) = λ(lk)⟩≺j (8)
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Algorithm 1: 树结构对象构建

1: Input: 工艺规范集合M = {m1,m2, . . . ,mk}
2: Output: 每个工艺规范对应的树结构对象Tmk

3: for each mk in M do
4: for each lk in mk do
5: R(lk)← Eq.6
6: P(lk)← Eq.7
7: B ← Eq.8, Eq.9, Eq.10
8: Tmk

← Eq.5
9: end for

10: end for

Bdown(lk) = ⟨lj ∈ mk | j > k, λ(lj) = λ(lk)⟩≺j (9)

B(lk) = Bup(lk) ∪Bdown(lk) (10)

其中，Bup表示以lk为起点向前搜索其所属兄弟段落集合，Bdown表示以lk为起点向后搜索其所
属兄弟段落集合，B为lk所属的全部兄弟段落集合。以公式(8)为例，首先在mk中获取lk的前置
段落lj，若lj与lk的段落层级相同，则将lj存入Bup，若lj与lk的段落层级不同则停止循环。类似
地，公式(9)的处理逻辑与之相同，用于以lk为起点向后搜索其所属兄弟段落，集合B(lk)包含
了lk所属的全部兄弟段落。
通过上述方法，本文将工艺规范从非结构化内容转化为结构化的树结构对象。提取树结构

对象的伪代码如算法1所示。

3.4 树树树结结结构构构检检检索索索方方方法法法TSR

本文根据树结构利用时机的不同以及树结构层次的利用方式的不同，提出了四种结合不同
检索时机与树结构层次的RAG方法，分别为TSRb、TSRp、TSRtb 和TSRtp。TSRb的核心思
想是在retrieval(·)函数检索前，利用树结构对象获取工艺规范中每个段落所属的工艺规范名、
父段落、兄弟段落内容，具体定义如公式(11)所示：

{sm1, sm2, ..., smk} = tsrb (q,Dsm) = retrieval (q,Dsm) (11)

其中Dsm = {sm1, sm2, ..., smn}为最小子树对象smn的集合，其中的每个最小子树对象包含
段落l所属的工艺规范名rl，父段落信息pl, 兄弟节点信息bl，最小子树对象的提取方法如公
式(12)所示：

smn = (rl, pl, l, bl) = traverse (l | Tmk
) (12)

在上述公式中，smn为段落l所属的最小子树对象，Tmk
为包含工艺规范名rl，父段落信息pl,

兄弟节点信息bl的树结构对象。traverse(·)为遍历函数，用于从树结构对象Tmk
中获取l所属

的rl，pl, bl。对工艺规范m中的每一个段落做上述操作，得到最终的最小子树对象集合Dsm =
{sm1, sm2, ..., smn}，其中包含了工艺规范m中从第一个段落到第n个段落中每个段落对应的最小
子树对象。

TSRp的核心思想是在retrieval(·)函数检索前，利用树结构对象获取工艺规范中除了兄弟节
点外的其它全部层级的段落内容，具体定义如公式(13)所示：

{sp1, sp2, ..., spk} = tsrp (q,Dsp) = retrieval (q,Dsp) (13)

其中Dsp = {sp1, sp2, ..., spn}为最小子树对象spn的集合，其中的每个最小子树对象包含段落l所
属的工艺规范名rl，父段落信息pl，spn的提取方法如公式(14)所示：

spn = (rl, pl, l) = traverse (l | Tmk
) (14)

在上述公式中，spn为段落l所属的最小子树对象，traverse(·)为遍历函数，用于从树结构对
象Tmk

中获取l所属的rl，pl。对工艺规范m中的每一行做上述操作，得到最终的最小子树对象集
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合Dsp = {sp1, sp2, ..., spn}，其中包含了工艺规范m中从第一个段落到第n个段落中每个段落对应
的最小子树对象。

TSRtb的核心思想是在retrieval(·)函数检索工艺规范中的段落后，利用树结构对象获取工
艺规范中每个段落所属的工艺规范名、父段落、兄弟段落内容，具体定义如公式(15)所示：

{sm1, sm2, ..., smk} = tsrtb (q,Dp) = traverse (retrieval (q,Dp) | Tmk
) (15)

在上述公式中，当retrieval(·)函数检索完成后，利用遍历函数traverse(·)从树结构对象Tmk
中

获取被检索到的段落l所属的工艺规范名rl，父段落信息pl, 兄弟节点信息bl，组成新的最小子树
对象sm。

TSRtp的核心思想是在retrieval(·)函数检索工艺规范中的段落后，利用树结构对象获取工
艺规范中除了兄弟节点外的其它全部层级的段落内容，具体定义如公式(16)所示：

{sp1, sp2, ..., spk} = tsrtp (q,Dp) = traverse (retrieval (q,Dp) | Tmk
) (16)

在上述公式中，当retrieval(·)函数检索完成后，利用遍历函数traverse(·)从树结构对象Tmk
中

获取被检索到的段落l所属的工艺规范名rl，父段落信息pl，组成新的最小子树对象sp。

4 实实实验验验

4.1 实实实验验验设设设置置置

数数数据据据集集集 实验中使用的问答对数据集来源于某型号飞机的5本工艺规范，涵盖零件、设备
和操作等各种类型的线束安装工艺。其中，零件类和设备类工艺规范明确了零件及工具适用或
应符合的工艺条件，而操作类工艺规范则对工艺过程中的工艺参数与工艺方法进行了规定和要
求。经过人工标注，共构建了311个问答对。

实实实 验验验 环环环 境境境 本 文 在 八 个LLM上 进 行 了 实 验 ， 包 括Yi1.5-9B-Chat、Llama3-8B-
Instruct、ChatGLM3-6B、GLM4-9B-Chat、Qwen1.5-7B-Chat、Qwen1.5-14B-Chat、Qwen2-
7B-Instruct和Gemma-2-9B-IT。实验GPU 采用NVIDIA A800 80G PCIe。向量表征模型采
用bge-large-zh(Xiao et al., 2024)，向量数据库采用FAISS(Johnson et al., 2021)。

4.2 评评评价价价指指指标标标

本文从准确性与流畅性两个维度对RAG系统的性能进行了评估。评估过程中采用概念准确
性（Accuracy of Concepts, ACC）指标衡量LLMs的输出质量，其中生成答案覆盖正确答案中
关键实体的数量越多，其准确性得分越高。本文通过正则匹配方法从人工标注的实体集合中提
取目标实体，并据此进行准确性计算。具体评估标准定义如公式(17)所示，其中Numcorrect为
输出答案中总实体数，Numtotal为正确答案中总实体数，N为问答对数量。流畅性本文使用生
成任务常用的BLEU-4 (Papineni et al., 2002)和ROUGE-L(Lin, 2004)评价指标进行评价。

ACC =

∑N
i=1(Numcorrect/Numtotal)

N
(17)

4.3 对对对比比比方方方法法法

为了验证本文提出的树结构RAG的有效性，本文将树结构RAG与另外四种方法进行对比，
这四种方法分别是：朴素RAG、LLMBase、Raptor(Sarthi et al., 2024)和SPC。

• LLMBase：将构建的问答对中的问题输入至未在该领域进行微调的LLMs中，记录其输出结
果并进行评估。

• 朴素RAG：基于LangChain(Topsakal and Akinci, 2023)框架，本文将工艺规范文档切分为
固定长度文本块。具体实现中文本块长度分别设置为250字符和750字符两种规格，并在相
邻文本块间保留50字符的重叠部分以维持上下文连贯性。

• RAPTOR: RAPTOR通过迭代执行文本块的聚类并生成层次化摘要树结构。该算法首先对
文本进行分块处理并聚类，生成每个聚类块的摘要；随后通过循环迭代聚类与摘要生成过
程，最终构建出具有层级关联的树形文本块架构。基于此结构，RAPTORTree采用自底向
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上的遍历策略：从摘要树底层开始，每层选取与查询向量相似度排名前k的文本块，迭代至
根节点层时终止遍历。RAPTORCol首先对摘要树进行展平处理，继而采用自下而上逐层
筛选，当累计选中的文本块总词元数达到LLMs预设的上下文长度阈值时，筛选过程终止。

• SPC：次级段落块（Secondary Paragraph Chunk, SPC）是基于工艺规范二级标题结构设
计的层级化分块策略。SPC以工艺规范的二级标题作为切分依据来生成文本块。SPCH将
一级段落信息与SPC块结合，形成一个SPCH块。类似地，SPCHD从SPCH 扩展而来，
在SPCH的基础上补充工艺规范名信息。

4.4 对对对比比比实实实验验验

本文将TSRb与对比方法进行比较，对比实验结果如表 2所示，从中可以得出三个结论。

大语言模型 Yi1.5-9B-Chat Llama3-8B-Instruct Chatglm3-6b GLM4-9b-Chat

方法 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4

TSRb 69.67 30.94 16.54 56.14 32.72 18.06 64.05 34.35 18.64 66.74 35.72 20.78
LLMBase 44.23 5.33 0.76 31.21 7.36 1.11 42.28 9.79 2.48 45.85 6.18 0.96
RAG250 65.35 27.55 13.91 49.57 30.46 15.98 62.83 32.79 17.24 62.92 32.24 17.48
RAG750 63.74 25.19 12.19 44.73 27.09 13.46 58.48 29.50 15.92 62.85 29.80 16.20
RaptorTree 62.84 25.26 10.73 59.98 28.40 13.26 55.27 27.06 12.06 59.98 28.40 13.26
RaptorCol 65.80 26.85 12.83 66.21 27.78 13.56 55.78 27.58 12.01 66.21 27.78 13.56
SPC 64.95 28.91 14.75 54.18 30.85 16.73 61.25 32.25 17.12 63.81 33.27 18.99
SPCH 70.08 27.35 13.58 52.31 30.02 16.08 62.31 32.50 16.72 66.19 34.69 20.01
SPCHD 67.59 29.39 15.72 54.09 29.72 15.76 62.00 33.84 18.02 66.58 35.16 20.80

大语言模型 Qwen1.5-7B-Chat Qwen1.5-14B-Chat Qwen2-7B-Instruct Gemma2-9b-it

方法 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4

TSRb 65.33 32.33 16.40 64.77 34.14 17.53 61.59 33.24 18.82 43.91 42.19 26.50
LLMBase 43.91 7.17 1.04 43.91 8.12 1.45 44.65 6.10 0.95 43.95 8.68 1.32
RAG250 63.15 31.00 14.55 64.20 30.28 14.50 58.11 28.60 14.66 35.69 36.42 21.19
RAG750 61.33 30.15 14.15 62.48 30.14 14.34 57.36 26.84 14.04 35.11 34.20 19.89
RaptorTree 62.84 25.26 10.73 33.23 20.20 5.17 55.27 27.06 12.06 41.61 37.37 21.99
RaptorCol 65.80 26.85 12.83 27.64 17.38 3.46 55.78 27.58 12.01 32.00 33.68 18.73
SPC 62.46 31.47 15.09 62.00 32.50 16.17 57.25 31.79 17.97 39.00 39.45 24.72
SPCH 63.50 31.63 15.15 63.02 34.09 16.66 59.66 32.03 18.48 39.72 39.18 23.76
SPCHD 64.44 31.69 15.95 63.74 34.29 17.05 58.52 32.07 18.45 41.50 40.77 25.21

Table 2: TSRb 与其他方法的对比结果

1. TSRb方法的表现优于其他对比方法，取得了最优的平均结果。与RAG250 相比，TSRb

在ACC 指标上平均提升了3.81%，在ROUGE-L 指标上提升了3.28%，在BLEU-4 指标上提
升了2.97%。此外，次优方法SPCHD 在ACC 指标上平均提升了1.72%，在ROUGE-L 指标
上提升了1.09%，在BLEU-4 指标上提升了0.79%，因此TSRb的有效性得到了验证。

2. LLMBase 的效果显著低于全部RAG方法，这表明实验中使用的LLMs并未在工艺规范领域
进行预训练。此外结果还可以验证利用RAG可以有效提升针对工艺规范的问答性能。

3. RaptorTree和RaptorCol方法的评价指标低于TSRb和RAG250。表明在工艺规范这种具有复
杂的段落结构关系以及隐含的知识关联关系的文档中生成摘要不准确，这表明为工艺规范
构建文本块生成摘要的方法不可行。

4.5 树树树结结结构构构RAG对对对比比比实实实验验验

为了进一步验证TSRb的有效性，本文将TSRb与不同参数的树结构RAG进行比较，实验结
果如表 3所示。

1. TSRb 相较于TSRtb，在ACC 上平均提升3.07%，在ROUGE-L 上平均提升3.02%，
在BLEU-4 上平均提升2.96%；而TSRp 相较于TSRtp，在ACC 上平均提升2.04%，
在ROUGE-L 上平均提升3.01%，在BLEU-4 上平均提升2.57%。这种性能差异源于利用
树结构的时机不同，其中TSRb 和TSRp 方法在检索前利用树结构信息构建向量索引。实
验结果表明，在向量表征过程中引入树结构关系能够显著提升RAG的生成质量。
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大语言模型 Yi1.5-9B-Chat Llama3-8B-Instruct Chatglm3-6b GLM4-9b-Chat

方法 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4

RAG250 65.35 27.55 13.91 49.57 30.46 15.98 62.83 32.79 17.24 62.92 32.24 17.48
TSRb 69.67 30.94 16.54 56.14 32.72 18.06 64.05 34.35 18.64 66.74 35.72 20.78
TSRp 65.63 29.49 15.65 54.08 28.96 14.43 62.06 34.29 17.76 62.51 34.59 19.16
TSRtb 65.33 26.32 13.01 53.76 31.43 16.44 62.2 31.88 16.28 65.67 32.62 17.67
TSRtp 65.62 24.75 11.68 50.28 27.86 13.00 59.95 31.07 15.11 62.66 31.86 16.82

大语言模型 Qwen1.5-7B-Chat Qwen1.5-14B-Chat Qwen2-7B-Instruct Gemma2-9b-it

方法 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4

RAG250 63.15 31 14.55 64.2 30.28 14.5 58.11 28.6 14.66 35.69 36.42 21.19
TSRb 65.33 32.33 16.4 64.77 34.14 17.53 61.59 33.24 18.82 43.91 42.19 26.50
TSRp 62.68 29.54 13.63 61.59 33.13 16.18 55.41 30.29 16.61 40.80 40.02 23.53
TSRtb 64 30.61 14.09 63.11 33.29 15.77 56.83 28.64 14.95 36.71 36.71 21.40
TSRtp 61.84 27.67 11.76 61.91 31.22 14.44 51.27 26.23 13.08 34.89 35.57 20.50

Table 3: 树结构RAG对比结果

2. TSRtb 相较于RAG250在ACC 上平均提升0.72%，在ROUGE-L 上平均提升0.27%，
在BLEU-4 上平均提升0.01%。尽管RAG250 和TSRtb 在检索过程中均未包含工艺规范
名、父段落及兄弟段落内容，但TSRtb 在构建提示时通过遍历树结构对象补充了这些信
息。虽然TSRtb 的评价指标低于TSRb，但其结果仍表明，利用树结构对象在检索后获取
工艺规范名、父段落及兄弟段落内容的方法能够有效提升生成结果的质量，也进一步证明
利用树结构的有效性。

3. TSRb对比TSRp在ACC 上平均提升3.43%，ROUGE-L 上平均提升1.92%，BLEU-4 上平均
提升了2.04%。TSRtb 对比TSRtp 在ACC 上平均提升2.40 %，ROUGE-L 上平均提升1.91
%，BLEU-4 上平均提升了1.65 %。其性能差异在于TSRb 和TSRtb 利用了树结构对象中的
兄弟段落内容，证明了同级段落间的内容和存在的知识关联关系能够显著提高生成质量。

4. 在实际应用中，TSRb 在评价指标上的表现优于其他树结构RAG方法，同时在上下文
长度和时间效率方面也较其他RAG方法取得了显著改进，具体实验结果详见第4.7节和
第4.8节。

4.6 消消消融融融实实实验验验

为了进一步验证TSRb中利用不同层级树结构的有效性，本文在TSRb的基础上进行消融实
验，其中TSRp(rl)为不使用父段落信息p、兄弟段落信息b的方法。TSRp(l)则为不使用工艺规范
名r、父段落信息p、兄弟段落信息b的方法。实验结果如表 4所示，由此可得出以下结论：

大语言模型 Yi1.5-9B-Chat Llama3-8B-Instruct Chatglm3-6b GLM4-9b-Chat

方法 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4

TSRb 69.67 30.94 16.54 56.14 32.72 18.06 64.05 34.35 18.64 66.74 35.72 20.78
TSRp 65.63 29.49 15.65 54.08 28.96 14.43 62.06 34.29 17.76 62.51 34.59 19.16
TSRp(rl) 65.09 22.26 9.58 46.09 28.11 13.53 59.53 31.46 15.55 60.74 31.90 15.69

TSRp(l) 61.63 25.46 12.43 46.45 28.24 13.92 57.70 32.01 15.51 58.20 30.02 14.82

大语言模型 Qwen1.5-7B-Chat Qwen1.5-14B-Chat Qwen2-7B-Instruct Gemma2-9b-it

方法 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4 ACC ROUGE-L BLEU-4

TSRb 65.33 32.33 16.4 64.77 34.14 17.53 61.59 33.24 18.82 43.91 42.19 26.50
TSRp 62.68 29.54 13.63 61.59 33.13 16.18 55.41 30.29 16.61 40.80 40.02 23.53
TSRp(rl) 62.53 28.03 11.85 60.87 31.10 13.97 49.38 25.55 11.93 36.59 36.85 21.42

TSRp(l) 61.07 27.75 11.84 60.20 27.85 11.45 47.45 24.80 11.69 33.62 35.47 20.67

Table 4: TSRb消融实验对比结果

1. TSRb在所有模型和指标上均显著优于消融版本。其性能差异在于TSRb利用了完整的树结
构信息，证明同时利用工艺规范名、父段落和兄弟段落内容能够实现最优的问答效果。

2. TSRp 相较于TSRp(rl)在ACC 上平均提升了2.99%，在ROUGE-L 上平均提升了3.13%，
在BLEU-4 上平均提升了2.93%。提升的主要原因在于工艺规范中部分工艺知识仅出现在父
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段落中并且仅出现一次。例如，零件号“CETS0001”出现在7.1 节中，而若回答“CETS0001
安装时剥掉导线绝缘层的长度为多少”这一问题时，其中“导线绝缘层的长度”则位于7.1.2.1
节中。因此，如果不考虑父段落内容，则无法准确回答此类问题。

3. TSRp(rl) 相较于TSRl在ACC 上平均提升了1.81%，在ROUGE-L 上平均提升了0.46%，
在BLEU-4 上平均提升了0.15%。提升的主要原因在于回答工艺知识具体出处的问题时需
要利用工艺规范名。例如，对于问题“剥去CETS0001 系列死接头外护套的参考文件是什
么”，如果不考虑工艺规范名则无法准确回答此类问题。

4.7 上上上下下下文文文长长长度度度实实实验验验

为探究提示词长度对生成结果的影响及不同RAG方法的词元消耗成本，本文设计了上下文
长度实验。通过LLM分词器对输入提示进行分词处理，统计各提示的平均词元数与最大词元
数。具体结果如表 5 所示，由此可得出以下结论：

1. TSRb 生成的外部知识文档质量最高，并且包含最多有用信息。在最佳结果的情况
下，TSRb 的平均词元数仅高于RAG250 和TSRp。这表明TSRb 在尽可能多地携带有用
信息的同时，减少了输入LLM上下文的长度。

2. 提示词长度的增加并不一定能够提升问答效果。在4.4节的对比实验中，TSRb 的表现优
于RAG750、SPCHD和RAPTOR 等提示词长度更长的方法。这表明提示词长度越长，可能
引入的混淆性信息越多，同时也证明了TSRb 在较短提示词的情况下仍能准确定位到包含
有效信息的文档。

大语言模型 Yi1.5-9B-Chat Chatglm3-6b GLM4-9b-Chat Qwen1.5-7B-Chat

方法 平均(Avg) 最大(Max) 平均(Avg) 最大(Max) 平均(Avg) 最大(Max) 平均(Avg) 最大(Max)

TSRb 894 2153 915 2222 823 2046 895 2208
RAG250 417 536 455 589 417 536 451 594
RAG750 1392 1658 1422 1691 1330 1579 1443 1730

RaptorTree 5356 6282 3367 3480 1533 1771 3561 4078
RaptorCol 3352 3515 3144 3898 3383 3458 3429 3549

SPC 1106 3661 1131 3715 1034 3434 1115 3697
SPCH 1160 3706 1185 3761 1077 3470 1168 3742
SPCHD 1181 3760 1209 3818 1095 3515 1187 3790
TSRtb 1058 2415 1083 2474 978 2281 1064 2442
TSRp 512 1289 523 1303 455 1160 500 1269
TSRtp 501 1186 513 1190 449 1055 494 1176

大语言模型 Qwen1.5-14B-Chat Qwen2-7B-Instruct Llama3-8B-Instruct gemma-2-9b-it

方法 平均(Avg) 最大(Max) 平均(Avg) 最大(Max) 平均(Avg) 最大(Max) 平均(Avg) 最大(Max)

TSRb 895 2208 895 2208 949 2368 907 2252
RAG250 451 594 451 594 476 638 452 597
RAG750 1443 1730 1443 1730 1534 1844 1423 1722

RaptorTree 2494 2823 4801 5254 5945 7100 2344 2587
RaptorCol 3429 3549 3398 3527 3383 3458 3390 3475

SPC 1115 3697 1115 3697 1212 4165 1142 3812
SPCH 1168 3742 1168 3742 1263 4207 1192 3854
SPCHD 1187 3790 1187 3790 1278 4252 1207 3896
TSRtb 1064 2442 1064 2442 1128 2801 1078 2545
TSRp 500 1269 500 1269 515 1409 509 1298
TSRtp 494 1176 494 1176 506 1256 500 1183

Table 5: 词元消耗数统计

4.8 时时时间间间效效效率率率实实实验验验

为探究TSRb 的运行效率，本文设计了时间效率实验。通过记录不同对比方法在数据集上
问答的具体时间进行比较，用时越短表明效率越高。实验结果如表 6 所示，由此可得出以下结
论：
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1. TSRb 的平均耗时为16.16 分钟，仅高于RAG250 的15.04 分钟，这表明TSRb 在效果最优的
同时仍能保持较高的运行效率。

2. 平均耗时和输入到LLMs中提示的长度呈正相关。在4.7节的上下文长度实验中，TSRb

的平均词元消耗数为897、而RAG250、SPCHD和RaptorCol的平均词元消耗数分别
为：446、1191、3363，其对应的平均耗时分别为15.04、16.85、19.34。证明了输入
到LLMs 中提示的长度越短，运行效率越高，同时进一步证明了TSRb的运行效率较高。

大语言模型 Yi1.5-9B-Chat Chatglm3-6b GLM4-9b-Chat Qwen1.5-7B-Chat

方法 时间(min) 时间(min) 时间(min) 时间(min)

LLMbase 28.93 11.23 12.44 14.88
RAG250 29.4 10.61 11.95 16.26
RaptorCol 35.63 15.04 18.83 23.25
SPCHD 34.56 13.84 13.52 18.23
TSRb 33.31 13.58 13.71 17.86

大语言模型 Qwen1.5-14B-Chat Qwen2-7B-Instruct Llama3-8B-Instruct gemma-2-9b-it

方法 时间(min) 时间(min) 时间(min) 时间(min)

LLMbase 24.8 20.43 19.97 3.78
RAG250 13.72 16.88 14.78 6.74
RaptorCol 14.01 21.04 18.83 8.05
SPCHD 14.92 15.95 16.65 7.11
TSRb 14.47 15.58 15.92 4.88

Table 6: 时间消耗统计

5 结结结论论论

本文研究了不同RAG方法对工艺规范领域问答构建的影响。其中朴素RAG采用固定长度的
文本分块，但这种方法会丢失工艺规范段落层级之间的结构关系以及隐含的知识关联关系，导
致输出效果不佳。本文提出了基于工艺规范树结构的RAG。实验结果表明，TSRb在不同参数
规模的LLMs上均表现最佳，并且具有较低的应用成本。这表明，在诸如工艺规范等复杂技术文
档中，考虑文档结构对构建其RAG具有积极影响。
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