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Abstract

Commonsense reasoning refers to the task where a model leverages everyday knowledge
to infer implicit information, thereby understanding and predicting plausible scenarios
in the real world. A prevailing research trend is to incorporate external knowledge
bases to enrich background information. However, existing commonsense reasoning
models often suffer from inaccurate retrieval and insufficient integration of external
knowledge, which limits their practical effectiveness. To address these issues, we pro-
pose A Two-Stage Commonsense Reasoning Approach Based on Retrieval Augmented
Generation(TSCR). Specifically, we construct a large-scale knowledge base containing
6.28 million Wikipedia articles, and employ a retrieval-augmented generation frame-
work to provide the model with semantically relevant contextual information to support
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reasoning. Furthermore, to improve efficiency in terms of time and resources, we intro-
duce a two-stage reasoning strategy that delegates simple questions to a smaller model
and assigns complex ones to a larger model. Experimental results on several datasets,
including OpenBookQA, demonstrate that the proposed method exhibits superior per-
formance. Moreover, it is adaptable to different backbone networks and large models,
making it plug-and-play.

Keywords: Commonsense Reasoning , Retrieval Augmented Generation , Question
Answering System , Large Language Model
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ERBIENRERT, MERGEEREERS MEICS, B ER R ZRELE
BRI RETE - T AR EIRARB AL SR (CZHikand FiBEL 2018), [FIERGHE
BB AN F] RN TR LS & AN F RS . AR SREE RAIR o XMEEMEEIR BANER
BE@# T BMESHFEASIE WU . £ Tk, HiR#EM (Bhargava and Ng, 2022)1
FNIBTAE, FERNRI A B E VLA AL @ 8~ REMATTE - MR E oI 4hiE
SEA AR R KRB RE S RA (Large Language Model, LLM) , #B&RHIZE
55 RAGT BT FHEFERE /] (Touvron et al., 2023) -

fERTIIZRE SR A & PBE AR MERE R 2 NS EE RN, rTESES
BRIMEEE ST - (BFUIZE S REAE SWAIRES ESHEMX, B MERNINIRE SH
FEXTEZE, TRIERIF s AN SR H R R P B R R, AR R AT X & RS i
RO [ R 48 2 L) - R A 2 AR A 7 A0 3 20 e (R 20 I, s (R R0 5 e T 2 e o AR B
BAERER, MITES ARG ESRTNGEISORAT, i LR o 2K, R
il 7T HARS WA, ML E RIEEESS (Liu et al., 2021) -

LLMAHEL, #Esh T BRE S OB #H— 2 &R, 7T DA AER KRR R, 1R
HIETRS, HAMBERERES - EMFSERY, LLMYRRIFARZERR S, mEAR iR
T S XA 25 45 SIE AR R BIFEIR , ANl 82 & 2 Bl S5 e m i & — KR - [Fif, LLM
HTHEEAEFANEE, SHREMEIE, SECEHT TR AR S - o, BAn{A iR
HIFAAI FH CA F1R B2 [ 2 2 BT ST A E A

FEXE bR mI@, ASCHE T R TR R A AP B R IERE TS (A Two-Stage Com-
monsense Reasoning Approach Based on Retrieval Augmented Generation, TSCR) - TSCRZ:
TWikipedia (Napoles and Dredze, 2010)#% 7 %6.28ME XL EM M ZRERE, HFHEE
RARGIMA)FRRGIPINERT|, KT EMAERE - AT REAFEHLLMAEE, KI0%
1T /NME SR HEFREESE (Small Language Model Reasoning, SLMR) FIKIE 5 M fEFR R L
(Large Language Model Reasoning, LLMR) - 7 T SN S50 #EHE , TSCRIE T B (5 2 W
PR, RFEMERSES WD PR A EASLMRIER FE, HHEHEERERFE /N
TE{Ee, M{EHALLMRAFXRMER, RAZTREULLMRIEE R i - TSCRAE T & BIRAEIN,
fem VREIEEAUR, el R EOR, Wik TR AT AERNE . Rtz 4, TSCRiEM
TARRIE T MEFILLM, FIEEIRIERIE, BE BRI R . RSO FZEormkan

o T Wikipedialt & T 15 6.28ME LEM AKMBE M ERRE, Hixit T XERS A FHD

WERGIEM, BERATE RIS N -

o i TSLMRSLLMRFIA-ESE, I3t B MRS AT MBI R, SCO T Hesmic

SWERZREERTT, RIS TR B SR B -

o R TTSCRTVE, HAMIRS T HIRMEEARS FMEREFIALE, LG 98 T B8 1Y A g

%, FE&RIFFEAERREE, SCFRIHERTA -

2 MXIfE
2.1 FT BN 2 B 5 S ik

EHEIAEEES Y, REE - WHRENTEMHABERT (Devlin et al., 2019) K% H Z
254, WRoBERTa (Liu et al., 2019)« ALBERT (Lan et al., 2019)~ DeBERT (He et al.,
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2020) ~ SentiBERT (Yin et al., 2020) + KnowBERT (Peters et al., 2019)& #1743, Ela[H
BHEBESITERRI . B R TTIEREET D M HTIZRE S EA R FRAGE S, B/ MRS
FHIFIRER, LR REEAES - teoh, RREFRA—ENE, T8 R B 1
AN, BEWINIGRANAERITE - RN, — iP5 R m i g 28 R T0IZRE S AT
WEAESHUE, nT5 (Raffel et al., 2020) ~ BART (Lewis et al., 2019)% - Lan et al. (2019)%%
tHUnifiedQA T %, R [RAFTA 885 R B BE WA THRATY 22 5] WEI A P S B Bok &
RCERRRESRE - ZhuS§ A (Zhu et al., 2019)7EYIZRMT B R AR I 2R B IS R T T o S
Z1LRE

2.2 FIASMPRAREE IR T

NSRRI CAE S RAEIRZ MR RILRE, HE N BRTES PEERE ARG
WE (KERN) | SRR EERXLMEE - TR R, SR E BT 5T
ATINSNERENRE, HEEARBCELZ B RINR, R HIRNEETE T, HaEEm KN
HRIRN - RIEBIRRIELTTZC, SMERAIREEH 7 W B ARSI PR 2 -

i WIEER L ENIR 276 Wikidata ~ ConceptNet (Liu and Singh, 2004)%, iXEeR1IHZE RS
FENSEMEERINR, RELUFHREREREA I DUk EER,  Lin et al. (2019)3&H T —
NET ConceptNet I SCARHEIRNEZE, il GONS B IR B ETEE LS R F Bl T @i 5 1
HLAL; Wang et al. (2020)38 15 fiy 44 SEAR IR AR B[R] #0576 50 1 195244, ZEConceptNet H1 5%
FARENLIEE SREZ BREIIRBRS, HH45 6 BUH AR RNGIE R ILHI S ALBERTSwi%as, SCPLH
R, Feng et al. (2020)FF £ Bk ARIEHRER G| ATHYIGREREL, 8 1 & 1) 2 Bk 2 e A
REEFER, SR HERe i HRHERE,  Yasunaga et al. (2021)8 T [F2 B HfILE—
TRQA ENHMEIEMER, 7l — SR & 2R 7 EQA-GNN, HiEdg 2 B & 5
AR AT R -

i B AESS AL AN IR OpenMindCommonSense (OMCS)  (Singh et al., 2002) ~ Simple
Wikipedia (Napoles and Dredze, 2010) ~ Wikipedia%s, %38 AR FE ML T 58 55 MR
HERER, AHERNFIRAIRFNIE, FEEEHTHERE . Li et al. (202)MAHETIE X
IR REAR, ROMCSH B R SR AR TR FL I8 /5 5 ARE , E R HEE RN 7215
&;  Chen et al. (2020)i# 1 ERBREREEFLERFETRELR, R T ERERRM
TR IIRMEMATT; Xu et al. (2020)RrE0R B BAGRIURE SCHEECR, LAEANFE 40 H3C
AIERBIENEA; Lv et al. (2020)i8 1T ZEConceptNet FIWikipediaH 43 51| il B & 2574 1 SUAAS
B, FIHGCNZRIGATATE, XLNETHIGIA, R/GHT GAT#HT ZESHER .
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BEERE, FIEEGR T A 5 5 B RE A MRATRRIAN TS « SR, SEALAIRE
HH R B BIRES, REEMIANIRIN 5 5 AR « ARIFIRERIF AT S Ko
R, MFL—BIREILE . Bib, RAREEREN SRS ZRRNER, HESATNE
BT -

3 TSCRAE

TSCRAEEFE =], WE 1R, 83 MR LI URER - /IMEB R AR
o PSR RELIBENRI S IRE, HSHERTIBAERE L/ MERL, S
BRI 1 BRI E o KRR - 7EM K BN SRR ER 4>, TSCRE T Wikipediaf i | — 18
6. 28M L EMEIHRE, RANERSATFRNERTIEN . BAEMS, RESEHIT Faiss5e
ROCEGE VR, FIAERMEMELE; B CESF, WEARET, R_ESRH
BRI LT, HTFREZESIENPromptii A KIE SR « ZEHEHT S, TSCREH B ER
BESR AR, HEEEREE R EMA TSRREI A - BB/ MER T, ZHE
KEGEEBITe, MERBHEER, BNPRFERC N HMERE", BRI S0 . 2RI
RIEVEFRZR I EIRT, ARGE IR A, AR -

3.1 MXELPFXRRENA

09T EHBNAR LI A% R R R SUREE A Oy (R R A - R L Fy, Set T
R, BHSHFEARBEXNZRER, 46 XE L TXEE—FH#EE, HYTRHAES
RN FEHR, —ERE LEB T R - 3017 3R E R M S R R P48 g
PEROR SR, EEURERIE T E, 8 IR Wikipedia ¥ #e i VF h BB kL 7R T B AR
LA, FATRHWikiExtractortf [FIAEIEAATIE DL, EFRIFIESTNZE (AT HER - B -
BIESE) |, RESWILEBIE, RIERIBUE; EMRAIRE R =MRRE, A% HSentence
Transformers TN R, #H—PH HFaiss BV WERG| CCERMA]TR) . HERIIH
Bl AfHER) (XLEER) DIRIREME, ET0mEF, 18R, %2 Top-k 3L
E5Top-kAI THRREE, 45618 UHLIEHTHERA R, FfRIRIEAHEIAR) N CR &K
MHAE R . BAREMeRSEINE 257 -

(1)f# FSentence Transformers (Reimers and Gurevych, 2019) R [a]#FIWikipedia L ZFF #:
JEmbedding)5 . i HFaissBIE RG] . [, A TRERREER, EHERCENH —AEE
R LEAHE -

(2) i HFaissBHUTIH UHMUER R, BER&EETRESHERERMAKE LE, HRKE
Xk LEM A, #HABling Fire LE (Microsoft, 2019)F L E S EI R AT -

(3) K EIEHA) T N Embedding, B MR T HHITIE SUHRMHR R, LGS
R top-kAH K A]F -

Z ERRAERRIMER LT, FTLLR R - ik BRI RS Ak, HIEHATH
A, AT DU 4 Prompt FIRARILLM, FIFXLE EFXER, ERE B Z BT
BUPERIEIE, Ty F P SR AN AT R A E S

3.2 /IMERIER

FE/NERIHEBIR BE, AN 3% $E T DeBERTaV3  (He et al., 2021)fLargehfi 2 1 1 L AE
Ao HATEEIE SCRERE N ME B RN E R BRIESESFRE TH I3 - FRf, HHEAESE
PETTH R EEIN, RN ARIOR TR AT EMEIZ LR .

2T M B ) E LN Y[CLS] context #### question [SEP] choice* [SEP]”, H
HHcontext N M FIIREEH IR E|AIFE K R 3L, question WAL T15 8., choice*F/RKT R BT «
XA A A G5 B TS B A o PR (P R AT AR . RRALHAT RS . @i softmax /3 —1L
BEF NIRRT o E— D BIfHe, WWRBEHERPHHEIRRERTZEE, 250
AR M2 N R T E AR R 25 5, R KRN T BIE, RGNPR R ERIC R
WXERAH , SRE T — P P R AR R A o X — KB HIE % BE] T a0 HE K]
ARy, RO EAR RUEVER T A RN S ot A T E BT - B 1R PR PR -

3.3 KRR
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Figure 2: R LT RRRIE

H, AF R — O B R A [EIAT, PRC H R A . 5 R B KA, R B — P B
10 PRI R ] 7

RIEFEQwen (Bai et al., 2023)1E N ABE T | %A IF R AR S TAER 45 & PR RE
IEF R IR KIBE S BAL (Contributors, 2023), 7 By ZL R (Wi H IE#RE RV E 5],
A~ B~ C- D. [HIt, ACFPromptixitF: “Output an index of the correct answers based
on the questions and options, and do not output anything other than the index.”, [RFf, AT

LM — P Hf#EPrompt K& X, I 3-shot/DIHEATRIR « BAAPrompt Rl W1E 1777 -
4 TRERE S
4.1 SRR
AROCAEDY S W IR AR 88 B T 5250, X EEEGR R 1R IR S R AU R 8, BTE
ZREE HE RA T B EEE T - BIREERKERNE 2R -
CSQA (Talmor et al., 2018)7&—"MFH T H IRHEI A AL B LR L, WE ZHEH .
X6 (R RE B N — R RS R E A, ESRARIE EIRFR AT HE RS H B A 2 -
OBQA (Mihaylov et al., 2018):&—"FH T H U AR 2 ) E &R 5, X L8 n] 86 5 5
THEFNE, ZSRRE AR IRENR A TR A RS R -
ARC-EasyMARC-Challenges&2 ARC (AllenAl, 2018)5(3EE B M AT FE, AES
NEEEREBIEEE B UL . ARC-Challenge 584 1 (7] BIU7E B AN 38 2 TH BVE 3
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Prompt

Output an index of the correct answers based on the questions and options, and do not output
anything other than the index.

Here are three examples:

Context: context

Question: What are you waiting alongside with when you’re in a reception area?
Options: A:motel B:chair C:hospital D:people E:hotels  output: D

Context: context
Question: Where could a person avoid the rain?
Options: A:bus stop B:tunnel C:synagogue D:fairy tale E:street corne  output: C

Context: context

Question: What has someone who had finished their undergraduate done?

Options: A:graduated B:masters C:postgraduate D:phd E:professor  output: A

Here are the questions you need to answer, and you can use the contextual information at your
discretion:

Context: context

Question: question

Options: A: choicel B:choice2 C:choice3 D:choiced E:choiced output:

Table 1: Prompt7~{5]

R -

QASC (Khot et al., 2020)FH/IN2E ) HH 2 A ZERHARL 22 84 A - BB 8 H BLA 8 5k
ER, RIEHARME LT — M E190077 4 RIS RIAE -

PR ESATIE S iEES i [AIRPES I

Ko (&) KN () R () #HE () KE G KE ()
CSQA 8500 1221 1241 5 13.17 1.89
OBQA 4957 500 50 4 10.44 3.06
ARC-E 2241 567 2365 4 19.44 3.71
ARC-C 1117 295 1165 4 22.45 4.93
QASC 7320 814 926 8 8.07 3.28

Table 2: #IEEIFHMEERE

4.2 SEBEE KIEM e

TR Py TorchfEZESEER, (FH Adam WAL 28 BEHTEAIANE , % B FIEPLHIE =I5k
WME o NRUESESE A PSS R —8E, g L5 7E — 3K Tesla V100-SXM2-32GB_E5E AL,
Fig e M E RRENLA - BIA BARSCES S EANER 3R -

BRI (accuracy, Ace) TERVEIIIRIR, TERIHRIREGRSE T ERILE S RO
B AEFTERERMLG), 7L Ace — ERERERIEATH
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SWi; Batch|Early o | eS| BRI |BEVL[)IZR| )&
S| EPOch|” Lo | gop [PropOut| TR B BUNK | gan s o 1 v i i | s e

KN 50 8 5 0.1 |3e05| 001 | 01 | 8 256 |2023|fpl6| cosine

Table 3: FEAISLEGSEL

W

4.3 X HIREE A AP RE

N T AEB AR S TAERIE R, AR SCESE T 20174 LISRL7/ /] A F 8 iR #E B g A
FECSQAFIOBQAM MR £ Lt 1T T X, SR WE 4R, Ef«rRREIR URAEZ
BORSE FAATIE, W SIS A R AR AL R

CSQA OBQA
dev  test dev  test
RN (Santoro et al., 2017) 74.57 69.08 67.00 65.20
RGCN (Schlichtkrull et al., 2018)  72.69 68.41 64.65 62.45
RoBERTa (Liu et al., 2019) 68.92 71.88 67.80 64.47

KagNet (Lin et al., 2019) 73.47  69.01 / /
GeonAttn (Wang et al., 2019) 72.61 68.59 66.85 64.75
ALBERT (Lan et al., 2019) 60.62 59.32 54.50 49.27
UnifiedQA (Khashabi et al., 2020) 55.28 61.34 70.40 68.40
MHGRN (Feng et al., 2020) 7445 T71.11 68.10 66.85
QA-GNN (Yasunaga et al., 2021)  76.54 73.41 68.27 67.80
GSC (Wang et al., 2021) 79.11 74.48 / 70.33
JointLK (Sun et al., 2021) 77.88 74.43 / 70.34
GenMC (Huang et al., 2022) 73.22 72.28 70.60 67.20

CoSe-Co (Bansal et al., 2022) 78.15 72.87 / /
CORN (Guan et al., 2022) 79.58 T74.43 7235 71.30
GreaseLM (Zhang et al., 2022) 78.50 74.20 / 66.90
DRAGON (Yasunaga et al., 2022) / 76.00 / 72.00
EMKG (Frliand E£0HK, 2025) 78.62 7445 /  70.69
TSCR (AITE) 82.64 77.36 82.40 83.40

Table 4: [FIZRTTVATECSQAFIOBQAKUEE LI IEMAZENS I
RN (Santoro et al., 2017): F&H T —FPRIERIH A/ MESR TR — LT 5 RIEHEAY

(A1 -

RGCN (Schlichtkrull et al., 2018): {#FHGCNEE R RTEIEIE,  KFE0IR 217 BE B 70 A
Lk, ATHTHRAZE . FRERE NS -

RoBERTa (Liu et al., 2019): BT FFkNext Sentence Prediction{E:55 < {5 K H#t & F0
Homa, DINEREEIZ, BERA TEUEEZHNLPAES ERRI -

KagNet (Lin et al., 2019): MConceptNetH j3 & F R H 12, FIHLSTMA HIRE, &
REEG RIS ARE R T -

GeonAttn (Wang et al., 2019): {1 ConceptNet{E RSN AIRTE, A E A7 B A L
fl, RGHAMAEDE SIS MER, 56 CRERFR B IRE S HEE R -

ALBERT (Lan et al., 2019): Bt ZEEHEMEGHE B RS EfR, £ EERDSEERIFR
RF T ZIWNLPESERE -

UnifiedQA (Khashabi et al., 2020): 8 RF Z2 #n]& £S5 — N ORBISURREE, HHE
TSI AT Z AL S5 IR, SEIAE AN RIAS =AY Al B U 48 _E SR RAIZ (LEE A — B AE -

TR EEE SRS SE, FI6T-5169T, W, TE, 202548 H11HE14H.
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MHGRN (Feng et al., 2020): MARTFEFHITL S ZRAMHE, HIHE A FRAHEE

QA-GNN (Yasunaga et al., 2021): &3t | —Ffl & FH(E BB m2im R & S8, @ o
FHEZE B It S EN AT AR P R

GSC (Wang et al., 2021): f#HSparse VD (Molchanov et al., 2017)% #1/5 GNN#H4T8I 4%,
HETRI - FRUIGNNARSR G , (5 A PP R R 3R [P R

JointLK (Sun et al., 2021): AW AFER @S SCRFEISEHER, RGBT
%, BERAMHERTT A

GenMC (Huang et al., 2022): & | —FAERIGRMZIEEEFE 7%, @i e4 i
FRRFRM LN AR, AR RENER, MR EIIAE L I% 5 (A E P iR -

CoSe-CO (Bansal et al., 2022): FFEAZM AN 57 LB IIZGREGE , GG AT ERS %€
AR KA FARE R, TR N S5 P AgAmiR -

CORN (Guan et al., 2022): FEHAUIZRESEEGRIEIORMER, (EH EHEM %505 K 45
MEREBHAHE, FHMLPHEIIRAT RS

GreaseLM (Zhang et al., 2022): 7ERRFNKFEF, HmII—DET A, HUEEEH
AMEGERER, LETAZIENRG, ARSI G i 5 21 [7]— > 2518 -

DRAGON (Yasunaga et al., 2022): 7EGreaseLM A _E 20, it HHi -+ & 540
AFRILRAESS -

EMKG (Fiftand LMK, 2025) 81 @& [FIR_E N S #HEEE AREIERR, 5IAERK
ML SEN ST L], SR8 RIT BvERaTE .

R 49 Al R0, ARSCHR B T IAFECSQAMOBQAR -4 5 LA 2] 1 Je K -
FEMEE F . WRESOTAS 7/ Hi1.36%F111.4% - 434 B4 5 22 BF 1Y) JR R 2 CS QAT 72 THI 2
7, RRIMEEMENRE, REWSEANTT, FRHEEOE I PR BN E B ARE 2 i
AGETER B, TOBQAZ AR, RS, R RBEIED] -

4.4 BESHT
4.4.1 5 B{E R R B MR RS BT

ARC-Easy  ARC-Challenge

NERER 2365 1165
RoBERTa-Base  1648(69.68%)  818(70.21%)
RoBERTa-Large  571(24.14%) 651(55.87%)

Table 5: A IR B (E N AN FIEESE AR E X Lt

R4y M A B E A B O ) A, RSB SRR S e AR R B E,
FERoBERTaM A fE ARC-Easy FIARC-Challenge 5 /N EUHE 2 b 7H47 T 5258 - ¥ MBI N EUTE
EYPRETYITE RS, SERFMER, WEAR, fF65E55%0. SRR INE SR -

S E R E R, LIRoBERTa-Large i, 7E[RFERIMERE B{E T, ARC-Challenge™! B ¥
& N55.87%, TTTARC-Easy H A ME R (5 AN 824.14%; [FIES, ZEARC-Challenge#§ #i& £
', RoBERTa-Baselt.RoBERTa-LargeXft il Lt {5 /5 Hi14.34% - 150 BH {3 F B (B S 4] W & B X &
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4.4.2 BB SERSE R
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(1)+Context: FEE T ML AN LT IR,

(2)+LLM: 7EHTFM% EMAKIBESER, 17 H 0 B,

(3)+Context+LLM: R b F 3T TE 5 AL RN AR .

ETFIRRESRMERE: ERRRRESRE, SAEE RN EURSE LB AR HIL
HHE NF%, LIDeBERTa-V3-LargeM 45 FIARC-EasyZEE WH, E7 FTMEH A LT XER
&, IEFRZIEE T3.09% - Ui BRI ZE SR = SMERRITR SCHE AR DL e LU S5 A 1] R i HH
B3 . M2 T, BIA L PR REREESE AETIRRFEFEENIRE R, ARde A
B, B TR A (M B R T A B2 -

PR B E AR A R . 75 ALL M-8 F R o BOfe B 7 V6 5 e 2 MR 26 b
S T HEMMAMERERI, FEELIDeBERTa-V3-Large M4 FIARC-Easy B E W, EH T ML
FAINALLMIEF R H G, IEFRERE 73.17%. M A — KSR AR RIRIEFE, P Bt
HHRAHESOITESIR, FERFEEFRRMERRA THESCR, BRIUE T IZERE L H
UINIER

BRI, MIBRPE AR R S T PR R AR, KRR InAZ 5, A
HRESEE BRI LN SUE B FHLLMAEFE X T AR R B G 35, T HAEiE

B E R E T EE S RS E, 1565516970, BrEE, FE, 20255E8H11HZE14H,
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CSQA OBQA ARC-E ARC-C QASC

RoBERTa-Base 57.78  54.60 46.81 31.16 30.67
+Context 57.94  55.80 59.58 33.91 45.36
+LLM 58.18  55.80 48.71 32.36 35.85
+Context+LLM 58.18 57.20 61.18 36.39 46.76
RoBERTa-Large 58.10  52.60 49.68 38.88 34.45
+Context 69.70  68.40 67.78 40.34 60.80
+LLM 59.31 53.00 69.09 39.57 49.89
+Context+LLM 69.78 70.00 69.09 41.46 62.31
DeBERTa-V3-Base 69.70  67.80 67.36 43.00 58.64
+Context 71.23 72.60 71.75 43.00 63.28
+LLM 70.51 71.80 71.71 43.35 59.07
+Context+LLM 71.88 73.20 74.80 44.21 64.04
DeBERTa-V3-Large 77.28  80.40 82.03 63.69 67.60
+Context 77.36  83.00 85.12 63.61 71.49
+LLM 77.68 81.00 85.20 64.12 70.84
+Context+LLM 77.36 83.40 86.39 64.72 72.57

Table 6: VH Bl L4645 5

WK o ARORFEARIEE VA D E A FE—ERFNRENERL, 458 ZEMAREITHER .
ARICTTIEF BT SUE B FILLMAERR IEIFRT RGX A KB, BT ATSCRIZITH L -

4.6 BRI

EEISBEAMNEREMR S, MABERATGET AN FE . it —D 0 i Bk
HRA R, KEE T BH MR E M WBaichuan2 (Yang et al., 2023)~ DeepSeek (Bi et al.,
2024) ~ Mistral (Jiang et al., 2024)FIQwen VU F I KA (55— L F HT7B-Chathi 4 ) ,
A Prompt 1T BMAERE, AT EHAMEREAIRLR - SHREERINE THR -

CSQA OBQA ARC-E ARC-C QASC

Baichuan2 (Yang et al., 2023) 179/22.56  84/43.20  447/63.13  222/48.58  150/27.21

DeepSeek (Bi et al., 2024) 198/29.01  74/29.40  340/41.95 181/37.17  172/28.73
Mistral (Jiang et al., 2024) 657/20.23 256/27.60 1132/24.99 614/22.58  460/13.07
Qwen (Bai et al., 2023) 263/63.34 111/66.40 537/81.65  302/61.80  234/62.20
TSCR(AXTTI) 48/77.36 22/83.40 277/86.38 44/64.72 118/72.57

Table 7: {XLLMAERE RIS (8] MERZRXSH (R RAFD, BANE &N Eis By #EmnT )

7E #8 FIPrompt & , A [FILLM#E 2 ¥ §8 fH £ 8 K . W FEARC-Challenge%§ 1 %
I, Baichuan2#E P8 B 8] 222F) , M i & N48.58%, 1 QwendE ] [B] Hy302F» , i &
H161.80%, QwenF¥EE T BHKFINSE], BUE T 5 &AERME . BT AU E R B,
T B A RN T EELLMOR AR, [RISE PR A BE 4T . WRALEERNRE, LLMHAH B LR,
., HAEFENS AR S B ERALAE —E £, FEHA —PHRUALLMETRENXER 5 225 .

4.7 Ml

T H—BHERRRE R LN SOMETIEI R B, AN CSQAMIHESE F ik T #:451
PEATSRGR T, BARGERIIR PR

FEGIL A B (e AR X ) B, P DUBR BT IR 6 A R 30, #R AT LIS £ H IE#E (D)
army - Wi LN UG BFHF A RBER  AERARAER (B0 SO R -

BRI 27 BRI R 2SR TT “facial sign”, FFIREERAIRIN - WAL B F3CH, %8
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[ 7 REFEEER 4ER
What requires a very 1. Leader authorization and employee
strong leader? attitudes. ) DeBERTa-V3-Large:
(A) grocery store 2 A strongman is a type of an author- (D) army +/
1 | (B) country itarian political %eader. .
(C) organization 3. Tbe autocramc' leadership style works TSCR:
(D) army well if the leader is competenF and (D) army +/
(E) pack knowledgeable enough to decide about
each and every item under their control.
1.Smiling, on the other hand, iseasily
What is a facial sign recognized as an expression of happiness,
of having fun? but even here there is a distinction between| DeBERTa-V3-Large:
(A) laughter cheek-raising or Duchenne smiles and (A) laughter x
2 | (B) pleasure non-emotional smiles,which are
(C) smiling thought to be used mainly as social signals. TSCR:
(D) being happy 2.Gelotophilia describes the joy of being (C) smiling v/
(E) showing teeth laughed at.
3.The Psychology of Facial Expression.
1.Finally, another approach often cited in
What might learning debates (;f scientific slieli)ticism against con-
: troversial movements like ”” creation
?E;) e seience lead science”” is methodological naturalism. DeBERT%L—VB—Large:
(A) new ideas 2.If the hypothesis survived testing, it may (A) new ideas v/
3 (B) experiments become adopted into the framework of
(C) invent a scientific theory, a logically reasoned,self- TSCR: .
(D) accidents consistent model or framework for describ- | (E) atheism x
(E) atheism ing the behavior of certain natural events.
3.Thus, it is argued that science is better
learned through experiential activities.

Table 8: CSQA H B

T 58T H “have fun” &I HI(A) laughter, (HRFEILRAE, ANZHBE RN, LA
P LN3CHS, AT LUE B — 2% B R3OS — A2 IR & “Smiling” ﬁmﬂu%ﬁﬂﬁ4
AT AR R SUE B AT DO R T #Eﬂwam PRI 9% HH IE AR

FEBI3H R REARR 5, BT LURTLAER LR SCTFRIIE oL N, Iama ﬁT%&Ki T
A LG REAREERRIE - R LN SUE B TR R AN SR FARIE R H, FRZEhn LARR
i, RUEAZ AR E A TER R, X R AR AR ZRE R A (PR -

5 Z5ip

SRR RIS R AR S O RE A 5 A BISNERE BN R ERIRS & AN e B, AR
SRR T —FhEE TR FR A 55 AR A R B IR T VATSCR - A2 QI T E R G R IER R
IRERVERL B, SO T BT - ZIEERESIE T TSCRAMEEESS 7 B0 A Rt A& H
Mo VHRRSCIERI, B UEBMARIE SRR G AXTHEERCRE B 5T - HEERCR T,
BT BRI RO D T AR E AT R RRIERE - SARE, TSCREMRE - MR SEFHNHAZ
ARG T RIFFE, v F RIS R T —FmE . RGO RS -

FERFMTAEAF, FA1FH B OEH E ot fy Bt TEMEBOR, DLEE IR E 45 1
MiE, FRRRE &S OEIE ARG E, EREAREEEM T R R, &
IRTSCRXS AR H K -
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