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Abstract

As large language models (LLMs) demonstrate strong generalization abilities in the
field of multi-task learning, their application potential in low-resource Classical Chinese
scenarios requires further exploration. In this paper, we perform continuous pretrain-
ing on LLaMA3-Chinese-8B using 21GB of high-quality Classical Chinese corpora,
followed by fine-tuning on ten tasks, including punctuation, part-of-speech tagging,
named entity recognition (NER), event identification, translation, word explanation,
reverse dictionary, historical figure knowledge, poetry appreciation, and poetry gen-
eration. We design two fine-tuning strategies: single-task fine-tuning and dual-task
combined fine-tuning, and conduct 55 experimental configurations to quantify the pos-
itive and negative transfer effects between tasks. This paper systematically reveals the
gain relationships in Classical Chinese multi-task learning for the first time. Experi-
mental results show that both synergistic and interference effects exist between tasks,
and these effects exhibit asymmetry. Basic Classical Chinese tasks exhibit stronger
synergistic effects, whereas translation and generative tasks show relatively weaker in-
teractions. Additionally, due to the dual-task setting, the stability of different Classical
Chinese tasks varies significantly.

Keywords: Multi-Task Learning , LLMs , Classical Chinese Task
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1 58

bEE KIE S (Large Language Models, LLMs) 1F 38 F 40 ) 28 i et e, H7E T 8
BREAHESP PN HAMER RN E - PREEEBERNARSRO N EERSE, BRI AERR
PR~ ANELIE 2 B GRARERE, RFEEAEE S EA IR AR S5 -
REERAER (A0GPT-4 (Achiam et al., 2023) ~ LLaMA3 (Grattafiori et al., 2024)) ZEFIL
ARG AR AR, EEGDCESENEIREERR: H—, SATIZRER A POE S
AR, SFEXSCECEEMN - ZHEC (< g E:in) iz s, 2, 0
B RZRET RS (WMAEEEIE) | SR REWSR— S ESREEE M LIRN
AP ARG KRR . BET UL, ZAESHEIUIGIERNRA S TCE SRR fBE T
M, MR DOE SR B AR AT S5 B — M EUR A T2 - Bl ERAEZ (A
RAFIRTRE, BREMMATEES, R —IIGEELERFTE S (Crawshaw, 2020) - IH
R A Z ARSI FNRENLES B - ORS REFIRE ST ES PRI M. (Wang et al.,
2020; Lu et al., 2020; Escolano et al., 2021), & BHESSH A (Ding et al., 2023; He et al.,
2024) ~ BEEH (Peng et al., 2022; Zhang et al., 2024)5F AL /7%, (HE & PUEESS BIETR
TREMENRZGHERR MBS A, ESHAREEE T RS mENERZ RMKE -

AR RETEHPOETS B G X RX— 0 . WEMRGERKEA: F—, B
LEZNHEEE M, HIOEESRNMIRT EZHTIESHENZEER - B, aEiRE
TR AL A5 SR LA A Bk B, T S (v ] BB A S ] BETR 224 6 1A SURRRE Y | R SUHFFAE, bR
RS BRI R AR EN T B, ESMREEATHNE, HMESEATREE
WRRBGE R S BIGTRN « WRFE BEEAREMERIE, 1 E IR B e 5 525,
TAFEREEBSHET AR R - i, RGN DOBES RIS LE, R
PSRRI, B VOB AR R EEIRME -

B ST R S ZE DT R ERAE LA PR 7 T

(1) HPCEZAES MR R WERE S BFE - FFIRENT - SRS R
HESHIEERIRS, WREMEIES - BIFERESTERRES, RO RESEEES
OEZ Sy = TR, HMEDOE 2 ES T RN = B

(2) HPUBES RS T 3B RS 5 TS H SRR, HIX
MR POBES IR AERE, B ESE B E S MR, HEAESEA SR 55505
BRI ML T HOR IR BN IR KR -

2 MHRXRTAE
2.1 EHPGEREIR R

BEERESEA (LLMs) el AU, & OE R e LR B b 5T F s -
N, ZIRTHVOGEME S EERMREE, MMM RBREENBESMMLE ZIES
RTINS - B POBMRS TS ML AL Az, TR R E T AERR S - 20« B
PREEEMES PR /RATRIEH (Hidden Markov Model, HMM) - &:BE#13% (Conditional
Random Field, CRF) - FHFMEHWL (Support Vector Machine, SVM) &8 &8 12 M E
POBEFAMEFRE (Huang et al., 2002) ~ FPOERTA] (Huang et al., 2010) ~ 44 SR I7 7] (Yuan et
al., 2019; Li, 2018; Meng et al., 2015)%& AL LI, HERTHPOEE ZL0EiELS
FAFAVE S S, Bz ALRE ) SUEMRR IR . MEREEII R AR LR, 1§AmE
f%% (Recurrent Neural Network, RNN) K H AR 0 EE BAL SR Re A BRI T 5 gk
HZE, WEPOESRNE (Lample et al., 2017) « FEAEM (Yang et al., 2019)% -

B POB PRFE BB FR LA AR SS KB IR R S, 2 RSB AR E S - KiE
FEA (LLMs) 5Z15%> (MTL) B4 6 RO HESh i D0E B R E 5 0B R BEEROR
Bz . BETEHE S LA TongGu (Cao et al., 2024) A58 13 H i BLE & A 5 1 R 18
MAEAL (CCU-RAG) AR, SEIVERGEE24 AR SCE LSS, BUONER S XA 7
TH. A, “EFL. “ATKR” (Li et al., 2024) ~ WenyanGPT (Yao et al., 2025)77 £ K
BN — RN ETBERTHIGPTZEM B i B FUI 4R A, 41“Guji” (Wang et al., 2023) R
A . SikuBERT (Wang et al., 2022) ~ SikuGPT (Liu et al., 2024)%, ¥ PGB R ESH

Yhttps://github.com/Xunzi-LLM-of-Chineseclassics /Xunzi ALLM
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PhFAHE . EEDOGEZESHRETHM AR TR EEH, RN EDOEESEMREES
S E B T -

2.2 ZHEELES]

ZHE55%>] (Multi-Task Learning, MTL) & —FHUF40EREHLE], HAZ O EARZE S F) A
HRAEFSINGE 5 P& AN € ERIESZIAET (Caruana, 1997) - TR, MTLTE
HRESAEZ MESPRIIM B2 0Y, THEEESBIREEREUES B EA RN 5

1R85 Z B R & B AR5 2 ST I R R R Z — (Zhang et al., 2023) - mfHRIERIE
FRIVIGEA TG B T I BRAE R R SR, 1A RE B R T RER 1 E (Kandemir et al., 2014;
Jaques et al., 2017; Guo et al., 2020) - LuE A (Lu et al., 2020)RMTLRN A TGS ES,
FINT 24 BRI ERERER (MTVAE) | ERAERS R0 FIR 2 THEXES
FITERERR T - Lu®E A (Lu et al., 2019)ZELSTMEEMHEI AN T HZS5EEFFE IS, AL
T A 44 SRR S TR AR S B R AR S R 22 >] ;. Cao%E A (Cao and Yogatama, 2020)]
TEAESS NS (B B I HRE, 1R T A A 55 AN 22 A AN [ 2 A 55 O P [RI R B

TELGEH L TIAE S PMTLEIBF S D, (BE AR RER T EAEREXZRY 7T B
71 10, Luong% A (Luong et al., 2015)f5 1, RS EIRER T K, ATRESEILTIHE
JZ; Benton§ A (Benton et al., 2017)M5RH, 7&HIMVESHEAGRAEN T, MTLEEEZERT
PERE - N — DAL RIPIAE B R, Martinez Alonso5Plank (Alonso and Plank, 2016) %
Gt A T EEES SRS A G S, R INHBNAE SR B8] 43 A0 2 BT A B 5%
BEEZ - tAh, MoufE A (Mou et al., 2016)tHIRN T MTLS X882 S HA SR, o8 T AEMRLE S
BN XERARTEA] T2 RESFZERITH - Joachim Bingel (Bingel and Sggaard, 2017) I A 2%
St AER A, B, WRFZEESZE20-30% 1 E A EANE FHEM S s, EEMES
AT ATIONARNT BEDE, BRAMTLE A RIRERIEIEN, (BREML, FEoomi i, RF40M
AT RS o ITEARREMIFTIRV, MTLAR AT B THX L5 B A 55 ) IETRIEEE (Guo et al.,
2019; Kung et al., 2021; Chen et al., 2022; Grégoire et al., 2024) -

NAFFAEMTLA B M R & fPERE, S50 F R AR SRS IR T IRTFES
NS AT HEFR EA 28 & T4 (Alonso and Plank, 2016; Bingel and Sggaard, 2017; Zhan and
Zhang, 2024), #5645 55 B AUH [z BRM TLERA AR & A48 B al BB -

EREERRE, EFERMNENSEGEMIATTE, WLoRA (Hu et al., 2022), SRiEFTIA
RO, EREYSTRNRY, BEAEESERBRARNERZESKES, HEEGE TG
PIERTRESZ PR, MELAFE S TR A RMESS Z R B4R E 2R (Liu et al., 2025; Yang et al., 2025) o

3 ETHAGTDOERRBE ML S %ES]

3.1  WPUETISRE R

TR B ARt E R B LU R L EE: (1) &R0~ 30E HEE S A FFRUE Y
HEERIE MY, (2) Github FARAE DOEHREIRES S NEH T,  (3) WAL
PUBAESHMEFIE GRS, IACCN-INS (Cao et al., 2024) 53R 4 - FTEIBBHEREFIHTT
Z— RS AL AT R PR TR S - IR ER: EBRHTMUNESEEFEER - i—BES
M~ BIBRFRIART S 5T08FRF, DA RSG— (WnAfiyeit) 4.

W FaARA S, FATRE T 2920GBRY AL DO ERIEE - EEINA 2, WETE
ROUE R ERTHE S B 7 BHKRE, BIaHE GLiE) @&GF) CGEid) )
(ET) (EpdE7) (MRBISOR) St SORgniganzZic /i ~ i ZE S - B8 SU %) 55
ZFCERE, DEFEREEN . HES . BB BH . REUE . RECEEZ T
g, WEEEEEZRESZZERE, WEEE . WiE . REESFE, BENERESS
FEVES P SR o R RL R IR IR RN R 1T -

FERTILER A, FoA 1% FHLLaMA 3-Chinese-8BYE A ZEMIZEAE - XK AIEMERES S E IR
Z RIS T RIFRPET, a6t K S SOUR BB IGR - BATEFRER R RIE S
1A (Causal Language Modeling, CLM) {E45 EXHZER 1T T & TR, DUEE &
I DO TR AR AL -

TR EEE SRS, F2B9T-H272T, W, TE, 202548 H11HZE14H.
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tesh, AT P RANGE, BATBIA TR BEN (LoRA)  (Hu et al., 2022)f
B, 1ER—FSEE IR 1% - LoRANE BB ISR 51 A fF 2 A E ERE, 1
FE G| NBS PR AR E R R R E R LRI, e B WO REETNISEEE, NmFEK
THREBRRTERE, FIRRFFER R EERE . AR ES RS E N1.0e-4, HHE/NESESEUL
SURBEL RS G| R ERIE, #R/NAS, BERBUSECON, SRS A, RARAE
EYIZBF16, HHILFP32 (32 fif#a%0) SHEADER; KRB0, HEAERELITE L
BB 5 LU/NE KB N POBEAR 1, AR R R %) RSB ERIE, RARZAE
7, EIGVAFRE IR URERR S SN, FHZERERE ) B LEMRE . &
% TEWEKAS00GPU (80GB) LT T —IR18.24 K HIHE B I% - TR BL ) 3= BT S 44
WEF 2.

By R IR o AR B kIR oo AR
chinese-poetry-master 111.90 MB network 1.04 GB
GuWen-master 8.97 MB guner2023-master 48.02 MB
text-to-picture-sidamingzhi  6.89 MB  TCM-Ancient-Books-master 234.81 MB
Reservator-master 79.97 MB PoetrySplider 13.92 MB
chinese-dictionary-main 12.30 MB Classical-Modern-main 476.74 MB
wenyanguji-directory 1.57 GB chinese-novel-master-long ~ 245.96 MB
erya 7.72 GB gushiwenwang 59.40 MB
zh-ancient-texts-master 22.32 MB core-texts 209.93 MB
Classical-Chinese-master ~ 273.99 MB chinese-xinhua-master 47.31 MB
daizhigev20 5.04 GB poems-db-master 498.98 MB
ACCN-INS 1.06 GB Poetry-master 1.09 GB
core-books-main 747.68 MB chtxt-main 87.50 MB
chinese-gushiwen-master 22.88 MB RFE RF

Table 1: FIEHRIRS HAE

S fH ZH 51
cutoff-len 1024 learning-rate 1.0e-4
finetuning-type lora num-train-epochs 1.0
per-device-train-batch-size 8 gradient-accumulation-steps 1
Ir-scheduler-type cosine warmup-ratio 0.1
lora-rank 64 fpl6 True

Table 2: TGN BORSEHOE

3.2 AT

FERATHINEE S, BATEBET + M EDOEESS, HBERN S N =EARE, EARTH, FA
RO LR T s o POB T OMESS, FRxX L R SR8 %0 B iR 5 48 77 =k 4
FHUTEANEBERG . BRAEEESZSRBAH T EESHE N - 2K REIFES (B
H) Wkl - 3FTR .

(1) EMZEAES. HRESRET URKHEMGEHS5E B . BB A mkn
- A SEAEIRA . FRA

%@>ﬁ%%E%:%%&%WE?E&%S%WR%Z@%%X@ﬁOE%@%zﬁ%\
AT ARRE

(3) HERRMES: M IAESSE R BT X POE FIR AR AR T Q& M 15 B AR B A
BN . BARGE: A s AENR - RREREAT R -

TR EEE SRS, F2B9T-H272T, W, TE, 202548 H11HZE14H.
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3.3 EFIGMIEEEIESE

BORE R IRTER FZR B AT i POEERNE RSB TR - rEEIRE S AEE, &
FEAE ML - EEMBMEN, RIE HIUZNLPAR L5 A b T RIS, B SOAR SE 8t 45—
FHRFE . TR, ZANLPII LR A H#H T ATRLE, WHRRESFESES I 1%
EARES —, HEETRERINEIRE « BATILES: 1104 TIUIGE - JF R EFMMIRE - £3RLE
T AT A A EE S ORI RN 5B O -

£ BUE SRR YGE FrE hRE
AJBE classical-modern 42496 5312 5312
T PERRE EvaHan2022 9952 1242 1247
i 44 SEAR A = G £y | e U 20923 3740 3741
HHERA CHED 5650 1218 1218
e classical-modern 41332 6383 6385
B R LEmEEM 31088 3863 3934
J ] 1] chinese-dictionary#flchinese-xinhua 35703 4462 4461
[ =2 AR IR 5000 1125 1125
RERR AT IR KA 9526 1162 1252

FFAER  Qwen-2.5-14b (Yang et al., 2024)4E/ 11232 1402 1407

Table 3: ESINGRFNFEALEIE

3.4 ZEFEITR

NI RIFTN GRS KRG SRS P RNZLEETT, BT H L T —BEE TS
WHIZ RS IESE, W b FE ORI A0 MO ESS - IR REr, LIRSS
L&, HFHTREMEATUESES NGRS, URRESEHERRAMILZET

ZEFINGRAG—ESHIATEN  ENGEART, B MESHEAE SR 8
LRI+, BLEY (BMESIES LKL - 3) LERESWMESEE, 51 5HE
AR B IRERE; BT RS HERMEIR SORE A B Bt RS ITERSE R -

BATESER B MES D RIEAT BARSSHOH, (ENEEAEIZES B MERE R4 - BERIEE
RFFIIGR O A A IR &, (OUEXS MRS 82 5l Lt Tillgk, WP ERES R
W, NEEFHEGVCRRMRT AT« AR AFESRRARER SRR R, BOET
EEBEAESHERILBAT - BEH, MFEEM1I0 M 0MES, Wi T Ere ANEE R
WA G, HITasHESZN - ERAYIGF, BAERIOR W MES ORI EEARTRIE, 25
FEZ R L5 THINTT 52 LRE 7 - i LBOWESS YISREE R 5 & H RS 24, ATy
PrAESRIIETUERIEIL, IRAMES TR R REE & 5 A M REE - NERIESSIRA A S
Rl Fralgd s — BB SO E N7 - MBSO E RPN .

ZH fH ZH 1H
cutoff-len 1024 learning-rate 1.0e-4
finetuning-type lora num-train-epochs 1.0
per-device-train-batch-size 8 gradient-accumulation-steps 2
Ir-scheduler-type cosine warmup-ratio 0.1
lora-rank 64 fp16 True

Table 4: UM BESEZE

4 L5
4.1 VM IERR

T DOF AR S5 A VE LR IR - ARG AIE S M LSS ERME, AT
EHWAEZESMARBEEANRES PRRI, FATRYE A LS 805 B R ENE LH

TR EEE SRS, F2B9T-H272T, W, TE, 202548 H11HZE14H.
(c) 2025 FEFLEFEEESUHEIBES L WENS 264
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K, EETEYAVEM ISR, EEAIESMZE (Precision) - AFEZE (Recall) FIFE (F1
Score) -~ BLEU-~ BERTScore A SAEAIFTHLHE], BEARGTE »

WTEMBES (AL FAMERE - 2L ARIR%5 (NER) ~ FEFRBD) |, HATERAE
R (P) -~ BEIZE (R) FIFUERIEEER TR . BT E A2
TP TP 2 - Precision - Recall
prrp el =T EN T Precision 1 Recall (1)

H, TP« FP MIFN 93IFRREMME - BIEEM AT EE .

ST TENERALSS (EE - AERE) | FATRHABLEUMEE IR - BLEUEN 115
MRV H 52 2% UK 2 8] fin-gram P FR R B SRR AE A B iU &, 2 A BLEU-4R % & 4-gram VLR
TEOL, R F IR SRS SR IE B R A B I -

BIXf AR RATSS (W miade 7 s A AR AR E AT) . B A1 FIBERT Scoresf
PE A R 7 5y 18 YT & - BERTScored@ it it 8 A LU A 5 5 2 AR E T 4518 = A
(WIBERT) ZS (6] H AR L, JUH REIE Z | AICH « 413 2 FIBERTScoreIF 1{H
R B LR A TE LICHERR -

ST RGN AE R RES (WNFTRAER) | RSN FEbRME L4 T S B AE A as B R E -
KT B A AN B AT IR, AR A E TR IA R AN LE] . Bk, FATET
TN ZHEE SN, BN M ERBR AR E RIS (prompt) B RAEAANISFHOETTIES
4.2 SEREER KT

BATH3 3N BRSNS EREESR, #7055, AMREFITE -

4.2.1 ZESBMAEHR

£ 5B TAFEA)EL  TAMERRE - M ASEMEIRS] (NER) -~ EHMHRS] - BF . iAEER -

SRR S 57 5 A AR~ SRR T S RO AT MBS W A5 R o RS R T AR B AR

ERRERESZHA TR R, ERE—BITMERITES RS BRaI%E, ET
S5 ERPFINEER - Rt i, AR ESIENEZES, FIESIENRBIES -

55 A "W NER EH OBE O WE kM DR R K

R et R il AW EtT AR

AJE 80.39 80.25 79.69 80.49 80.25 79.94 79.90 80.36 80.33 80.30

WHEARE  89.25 88.38 89.65 88.13 89.57 88.99 88.99 88.24 89.42 87.73
NER  91.90 9223 92.00 92.27 91.36 91.87 92.07 91.87 91.09 92.24

HMARS  72.02 7334 73.46 73.84 7059 7213 73.78 71.72 66.98 72.17
B 46.82  47.29 46.74 47.15 47.29 47.01 46.61 47.23 47.12 47.32

WHEMBE  47.37 48.74 50.92 49.57 46.39 49.00 49.32 46.92 37.80 47.74
RIAAE  73.07 7313 7294 73.30 73.58 7320 73.31 73.56 73.24 73.44
s ANY  75.66 7551 7550 75.73 7540 75.69 75.39 75.70 75.37 75.79
WEKEMT  66.81 66.11 66.60 66.30 66.17 66.10 65.66 65.65 66.22 65.79
WAL 63.63  64.23  63.67 63.96 63.69 63.58 62.67 63.88 63.58 64.37

Precision =

Table 5: FAESF S GRS A N PENE S (EXHA N BESEER)

MEESAI I, ZAESSEREIGREE R EX BAMESERERIE A IR, ZEUF O MECRIRT B4
S . RERUES AN A% (AIRESHE) EBUE TRIESGRIEES . flan, Ehik
ES5H, BESHIHNRD 780.39, BT SRFMARFIIMIEMIFZHIERSIGRED, RfES
HFRBIECE BRTE 78049 F1LE, WIULBESHIAL 1701, ZFRMN . H—BUEEA
S5, WEAHRA S B IR AY) S RS, RN EEESEAHITER NI E RS, (2
S B BAESRORLE RITRELERFAERILICF, RIS IIGRTTIET R EZ R . filin, BIFEE
BAESS T RINAT.29, EHEGESIFHEREL SR HI47.32, BREUIZRH R AR 55 & 27T L2
i o FHARBIE RS TG NT73.84, WERAERES TS N64.37, mTHEEKE
HRBUE - BUEKE, ETLoRAMMEIAIZESECS UL R MiftESERE, &2

TR EEE SRS, F2B9T-H272T, W, TE, 202548 H11HZE14H.
(c) 2025 FEFLEFEEESUHEIBES L WENS 265
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FERBAME S PRI AR (LTI . XM DB 5 2 G L BT S BB REEER,
AR A AT AT S, S MR S R

4.2.2 WWEBNSES T
NEEM - AEME E LSS EIGEN ZESEREmM, AR HE (Gain
Rate) TENSHTFaR - SEEITELEN B S EEME, MRl FEE LR T RSS2
— AR T AR SO R E 2 I, REBESUE R EAES 0 X R E R, FT5
R RIRE A ELRR - BhAh, M55 SR BENS B vEERf I i LA T I REI S AR R, T R 2 1E
G R bR e 5 TR IS, UHER T oSS B FERFRE - Flan, Hik
ESENFBMESE REH R m A m R, HEENEESHHZ ] EE T, XFEESFRME
FEUE A PR - 5, W RIE P TRRE A 5 5 B @R I mE . 1§
28 % (Gain Rate) & X IF:
v WESED - BESED
HamR = EEES x 100% (2)
W REER TR, Wi RPN - EBITR -

155 Al W NER O EHH BEFE OWE k@ E R R
b A R s AW BT AR
ETRE —  -0.18 -0.88 +0.12 -0.18 -0.56 -0.61 -0.04 -0.08 -0.12
wHEAME | 4098 — 4143 -028 4135 40.69 +40.69 -0.16 +1.18 -0.74
NER | -0.11 +026 —  +0.30 -0.69 -0.14 +0.08 -0.14 -0.98 +0.26
HHRA] | 246 -0.67  -0.51 — -4.40 -2.31  -0.07 -2.86 -9.28 -2.26
B -0.99 -0.00 -117 -0.30 —  -0.59 -1.44 -0.12 -0.36 +0.07
WEMRE | -3.33  -055 +391 +1.16 -5.33 —  40.64 -426 -22.87 -2.57
MAEgE | -0.33  -0.25  -0.50 -0.01 +0.37 -0.15 — 4034 -0.10 +0.18
FERAY | -0.06 -025 -0.27 +0.04 -0.40 -0.02 -0.41 — -0.44  40.12
WEREAT | 40.90 -0.17  4+0.57 +0.12 -0.08 -0.18 -0.85 -0.86 —  -0.65
WARAER | -1.14 -022  -1.09 -063 -1.05 -1.23 -264 -0.76 -1.23 —

Table 6: £33 MR IREEAIIL (ZBRE D)

ARSI, (UE23HRINHMEARERTT, HRe7THY H AR E R ERE T E,
RPN « S5 EEFIRFIE - BARERMBE T ILR KRB R . NERS AMEIRES &8 7
BIIRAG T 0.26%00.98 % HIIEHE 2, 171 1 A e 5 Rp Ak BT IR 5 of 38 2 2R 50 31 9-22.87% A01-0.18%
- NERHUSEAPRZ AN “Hb 57 5 IAPERR 00 “ns” FAAERIRREK, HARLREIE T HE & )| 45 B A MU 32
XRER, NIMIRTHERE - TAIEMERE SRS, WA/ KOURHER, P ECE ISRIRE T
FERCEEHIPLH] - A ARSI R AR AR S L, il 255 ) IS TR E RE
ERRIFF RS AT - K AR SRS R B VALE F AT B B R SOz, L
HPrRECS s RS KRR GFERRER, SERAEESECHNE G Z B st H
5, HREEMLFEARES AR [« LA, FEZESSYIH, KRS fTH & SR
PR REOK, X ATRES M RS A S, AMSEWE T, RSB A%
RWOR, TERIERE T -

SEGLE R ROR T 2RSS P EBE s AR R, RIVE AR S5 1E ) EAE ST RE IR
BRARMRTE, MAE MR RS R MR E - Fral B IMEIREES, EREESH, i
ANEMAESE, 6MES=4E TIERMEE, Flin, A (+0.98%) -~ NER (+1.43%) FH#IRE
(+1.35%) HESSEE R RIMERERR T - 8T, (EONREBNAESSEY, TAPERRIENT HARAESS B f e
N, R A SR RBNESS A TAVEPRER =4 T RMIIEREE (+0.26%) , HAKHD
ESS RN N - FFRIETES BEAFRBIEFICE RS, MR ou-0.67% - XK, THMERE
TERFESE, HAESENRREESHMENFEMES, MERMESEATES,
TTEPRE BN ERENBON AR, MELUAIEDFEIER « IXEHSRIE— P UL T £S5 A 1 4
AUAERIRRYE, FEARS RN ARSI RE R B IR, MRy B AL S5 R BE S
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FEAERIFERIRCR o X ATRESESSH) B VRR BTG WL ZERE KX, SR FIER T ZEE
8= R N A RERI

4.2.3 fESEFMZM

BEARATSIET, BATONTE XA IMEME TS (A WMEARE - NER -« FHAERF])
FEER A ISR RO R A FIRS. - BAAORE, RIS Z RIMH AT 6H - 127 8E
ZEE . HAPE N EREINIEMEE, HHA41.7% - X EPNEESHES SR P iEw
BRI R LB S SR, i R - ARSI, AT SCIERER T -

FLZ T, BERAES (EEF - EmE) ZRPAESERE AT, RIUHEER
hEREST - HEREES (Wi mimds o 5 A - SFIET 51 aERD) ZAPH A
RN BREEER, HP AT NIEMZ, HHACN25% - XU IARIFER A M IMESEL TS
YRR N5, BEASZENE L BERNTH . flan, WiEMENELES, 5
HAMAF S A AR R MG, Hih S5iaEMRE S0 N T-2.57% (W#£6) -

ol FERIZRESS - BIFERES A RAES Z A HR & A A TR DLF= 4 55 5 1 1F A 3
8, RMETE R fFBIS . Bk

o ERRESIENHBMTSET, FIXEFERMTESS, WESPTBAER, HAo R N IE
I, GH25%; 1R s m T, SH62.5% - BbAh, FIRTAEREAES, HE161
HAEGER, Ha M NIEmBELS, HH25%, HIEMEE SHAEN1% (LE6) - XFEH,
B RAESE N BTSSR AT LUR T A AES R RE, (BRAMEANHE, Wi RAH
125% . FIEERIIRA LSS BArX it sl S 8O = F kT8, SEDFERRN AL -

o BIFERIESZIENHIMESN, FXIEMBESZHSNTIKEGERT, (2P AIEMME, EM
Wi N25% - X RIARIERESIENHIESE, BARTMHETRET ARG R, BE
BIHFEISCRESS, REEFRERT EMBESHINERE . ESERRESBEIILGR, a8t
HEERENMTIE, TG HN100% - 3 Xdt—HuE ] T B RALSS 5 ERSRAESS 2 1H]
WIPh RN AR, TERESHOLZ SRS, £55 2R B bR 72 AiE 5 il fE 2 16l
TRIL A EEAR RN -

o EMRESENMBIESE, S EMBESHICPHGLERT, 4P NIEME R, EFHE
T HN25% - REBEFEIRAN RS, BARLFBI T, ERRESEB HEMEES
Wk —ERMEREIRTT o MHHZT, TERXTRIERES RIS NERGLERT, 2P NWIEMm, IE
A3 o A7 LRI 925% « X —45 G ZEMBAEFHIRIRML, H—BRERRESIER
WEESE, RARGEAERLES WA G, EEE B EFERESHEBAER, AL
AR N TR T

ELETR, ESRBNERN ZELINGHOHRINEE BE 2 . ER TSR R
SRAT RIS, BENSE T =B A E R T RE; MEIE AT S A AR ARSI
FMHERERMDRGE S, THEFFRESEFESHANTE . BEESHEHERIATEE,
THEEANF RIS PR R AT, fUFBRISERE LS.

4.2.4 HESBEEHETEME

FEARSEISH, BAT9T T /ESHRESE D - ENESEE TR KMES S/ IME L H R
TR~ BEhyiE (ExTEZE) UNKIMEE, DaETHESELSESKE TR Et 58t
SIS R IMETIR . HA, bMEER THEES MESENFIUES K E NMEoHiKhTEEMZ
FEFINEGRT S MMESE TR E R . BAFWT:

JJ;ZWW g

i=1

FEANA: o FoRRfEE (Standard Deviation) , n: FREIEAMEE, XEEZ
MAEF NGB EREE - 0 FoRHi KTEFNG MEFSHIED - p RRIZESHERES
HTREY, BMESHEERD - Y0 FoRNITEn IRIGRE AT -
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1% BAES mKE sAERE s/AME S/MERIE EXHEZE  WEE
L 80.39  80.49  +FHEMHHF  79.69 +NER 0.80 0.3338
MR 88.38  89.65 +NER 87.73  +IRFARAERK 1.92 0.8250
NER 92.00  92.27  +HEMAHF 91.09  +HIRFEREAMNT 1.18 0.4025
EHHRA  73.84 73.84 — 66.98  +IRFREAT 6.86 2.8167
B 47.29  47.32 FIRFERAERL 46.61 4z [AliE4L 0.71 0.3529
B 49.00  50.92 +NER 37.80  HIRFEREAT 13.12 4.0169
MFAEE#E 7331 73.58 +EHEE 72.94 +NER 0.64 0.2098
A 7570 7579 +RFERAERL 75.37 4+ RREEAT 0.42 0.2062
FRECEMT  66.22 66.81 +HAJE 65.65  +THEAY 1.16 0.3881
AR 64.37  64.37 62.67 4+ [A)iEH 1.70 0.8204

Table 7: FAEFHREFER - RATMESAIR - WEEH - TriEE

[ 5 N0 B T3] B4 S5 R AR V22 9 31 20.2062F00.2098, AR T HARESS, FIHXHE A
ESEZESINGF TR EMRE - TNME SRR/, FIHIX AT S HE 05 BT #hiE ST
&25], WEERRNENSHMESHTIE/DN, 28 ARG S IMMES I REiE > o 17E
BAES HIPRIEZE 14.0169, BEETHAAES, WIZESHELESES) PRGN IR,
FIHBARPTRE N - BRSNS EME KR (13.12) , &/MEES T ES I
FIUIERE £ R, ATRER TR ETESEIRE K ER K, B TrEemiERNNE, i
TEARERAL S T T A E S R EE, EPESHBEIIGH, AERBESZE TR
K, FECEMEREMELURFFREE - bAh, BHHIMES IR EE N2.8167, S K, FIRE51%
EEHE ZMEME S EMAESIMEERE % . HMIESIInEZE 51 7E0.225]0.83 2 [H], FAH
EATEZ TS IGH R E R, EHRBEREMHRA - I AFIR « X EiFA#EER .

1RSS5 P KA AN B/ IMEDRR R B TAESS R AR BN » MSERSEE SRR E . FHRBES A
N BEEAESIINGRRE THRESS (73.84) , M EMBENMES (A% 4 ERIR
Rl AT BEFE, FXESESEERBNBSINGREEAE T & BNEREES . XEHAE
IR ZAESSHELR H B BER ) «STak e, HAMEE0E UG BAE L= EE0 IR FHAH A5 1
R, THEHERESEMBESNEATURENEE - HNE, SFREMESERESS, BT
— M ENFERES (B F—PDERRES EAYRIR) B4 T BERE, fxXm 1S
ESHEBAGREE T &mas - XRE, REGFRERESESER BRI EE K
(FRIEZE10.8204, HENEEIN1.70) , BESIEEMIMESEA VG, Hrlghld R=ET
BEZE R RS, HIREANIE S AR ERE, WM R IETRR -

ERFESEL TSP ETHERE W ST . ETTR/AMEF, B/\TkE TE
RBAESS . HAFIENTIES BN ZAESH A AN B E s/ MERIRES, % SERIRS
(NER) -~ FHIRF] -« BRI 5 A EIRES HBE ISR BUSRARE S X R«
MiER GRS TAIEBRBRESHEAFRMBEILNREE, B9 T T13.12%, NIEESH
A ECRRETE, XK ESAESER T AR EER R T -

5 Mgk

h-A

AT POE AR5 )RR S A, IRAIRTY T 2 ARSI RN « 17
TR  AESS AAYAERT R 1 DL AR S5 AR @ AN ST e - DFSRAESRR, FE PUEHES
Z RS IERT, EFENHRE R ESZERM, BFENERTUTBMIEX B
I3 a1« FERHRAES Z AR FERE AN Y, AT ERTHRAINERE, TR RAES 2
ERRESZ S =MREESZHNRGHE, EESSFEOUTBMERRRS) . Hit, T2
552 SRR, FREARIRALSS (0B SUR IR R R S BLE AR SS H G, B A FIRK
R~ TR - SRR ENE, HERCR RS R TRkt E R -

KA, BATRE— BT FTTEIERE, FRRMMTIE, BFESEFE . IR AT I
MR, DAL NNAS A 2 AR 5524 I ERE « R Z 5 I AE SXF 57, I B AR 0 AT
B LUESPUTRE ) A58, DOERIESSRE S - IR, AT RIEANETHEETONGRAE R
TEERMAER, FERA AR R SR TE, DIRRZEREE R AT -
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