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Abstract

Pretrained language models have demonstrated remarkable performance in multitask
scenarios through large-scale unsupervised learning, yet most research focuses on high-
resource languages such as Chinese and English. For low-resource languages like Ti-
betan, data scarcity and morphological complexity—such as its agglutinative nature
and diverse syllabic structure—pose significant challenges for mainstream subword to-
kenization methods, leading to semantic fragmentation and morphological mismatch.
To address this, we propose TibLex, a Latin-encoded tokenizer tailored for Tibetan.
This method converts each Tibetan syllable into a short Latin sequence based on its
shape or pronunciation and then applies subword tokenization over the encoded text
to construct the vocabulary. Experiments show that compared to mainstream tok-
enizers, TibLex offers dual advantages: (1) dimensionality reduction through Latin
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encoding decreases irregular token combinations by 15% and shortens input sequences
by an average of 36.10%, significantly improving computational efficiency; (2) the pho-
netic tokenization mechanism maps homophonic variants to the same transliterated
sequence, enabling robust handling of homophone typos. Moreover, pretrained mod-
els using TibLex maintain competitive performance on downstream tasks, validating
its effectiveness for low-resource language scenarios. This work introduces a novel
paradigm for tokenizing morphologically rich languages, and its encoding framework
can be extended to scripts such as Mongolian and Sanskrit, offering technical support
for cross-lingual NLP research.

Keywords: Tibetan , TibLex , Latinization encoding , Homophonic typo
robustness
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TFER, KRIEE T Transformer I 2R 1B F 2 (PLMs) (Devlin et al., 2019)(Liu et
al., 2019)(Lan et al., 2019)(Clark et al., 2020)(Clark et al., 2020)if 1t 5 W& 2% >0 =07 B R
55 AL E A DUG SR M A e, H A R AR R AN RAE R T IR LR, B
M PLMsH)E SCERRE ST, Rt & B A TR A AN 701 SR 0 R TR M RE R R 2 . W LA
W R EITIECTER R0« FAFR AR TR 7] o KRR R AR E T E, B
BOEISCRFRS, R IR —DPRC o TR R R U 17 2] F A E(UTF-85 1 2
M, EHTWFEES, BEFIKER BEEN, XEZE T TransformerZ8 14 AT 1 2 &
BRI R . N T PEIRR KNS E RIS, P IARC FIR A, B R EUT
Mg R _EIR R - 2 F EFPLM s R H 10 53 17 568G, WA %RES (BPE) (Sennrich et
al., 2015) ~ WordPiece(Schuster and Nakajima, 2012)F15 15 518 58 5317 (Kudo, 2018) - &
T 3% LE T [a] B BRI RO BT EAE TR S B R E % R E IR £ /IR - DITiBERT (Liu et al.,
2022) 2 R B SCPLMs £ 38 11 SentencePiece S E199.95 % IR B 52 R, HEFI1EY) 53 B2
MFRSHAFFOREEBFAE: 1) FPHEAN. BT (E+80) GENAR, 2013)5 (FHL) (B
B and R, 2011)BOGEEERIME, &7 R E 7 F R I Z4E 450 251
R X SH T AR IFFE A RESR; 2) WAFRIERE: UnicodedniH R Ui 7 HR 1455
HUFERE, SEERD S T IAEE R EERIEE S L RN, PERETLEXIME (Wl
R EINFEE) | MERTAE UHEERE

FT RSk, ASCERBESISE A (Si et al., 2023) FIEAEIRH T —FET 5 T Jid 5L
TR TAES TibLex, WELFTR, ZTEE SR E MEOCE TRy T PR EE FiER
NTRFSFY, WEHEHATFIESE (WUnigram) TG WIS T2 EAEIALR - X, £
(15318 8 AT LAHHR BN R B U TR EGRAGR F & hnc, BT, XEBSCBR
BEAE (NLP) SR A58 — W R R - R R T B2 -

AL E TR T -
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SEATHFEEZETHGRT (WASEE) - B8 THARNR S FAFIKE
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1£36.10% B PN B 48 o X FHEAERS T IEFI 2R 5 G 2 -

(2) BBMENR. BOCTHFEY (KREMEREEER) 5IRMHEEREH BEE .
ETHE W FFR 51088 v R R R AR R 751, M A% [F & 95 5 BER F 2 5 AE
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TRNGRIE BRI M ROREHZ ) T WERSIEHR A S B SCBURR R E KB R 77
W Word2Vec(Qun et al., 2017) ~ GloVe(Mikolov et al., 2013)i# i HIIGT T4 AR SiF =, H
TR R—1R 2 I3 .« ELMo(Pennington et al., 2014) & (@1 A A LSTM M 4% 5L 2 _E T S0
JRAIR R IR, T TransformerZ8#4 (Peters, 2018)fH H ) EIMZS T HAVE= - BERT (Vaswani
et al., 2017)@ 1 FEADIE B @AM A B F XRIY, fEZWNLPAES PSR IE#E - G
14 FRoBERTa(Liu et al., 2019) ~ ALBERT (Lan et al., 2019)% 7458 53 4810 I 25 SR A& F1 5
BOLZNLHIFE— PR A ERE - R, X EFERETRESSHFEES, KBHESEE
BERBFIE S HMEERE IR TES - ZEFHEE (WT5(Pires et al., 2019) + XLM(Raffel et
al., 2020)) REHEEZTZMAES, HRBEHEE (AT EBERT (Cafete et al., 2023) « 1%
HEFLAU(Le et al., 2019)) RUSEIECEARAA, FAEEIES LA AT EER -

FERFIA5MATE (WBPE ~ WordPiece) TEESHMNIAIE S HRIET:, HIHES
FILF ROUFAEIERCERRG: BB ST MY M M EERL, (F50F 5 77 A BIRE 58
B o ITEFIRR T ANE 51 KB A0 FN, 41 S SubChar Ji 58 i Y /& B AL L
MR SRS, MByT5(Xue et al., 2022)5 040 1R B AL 519 7 51 UG SRIZ (L RE T - X4
BFFRERER, BN EE S MR A iadL I GE A SR FHE R AR (B F A 7 5K S 1 X
RFFEFBMER - 5CharBERT(Ma et al., 2020)45 & F /5 FIRRBERE, AREF50@EEH
TGt SN BE A R A TR A AR -

BB S FFRMANLPR Y O sl E EROR R - POCHISUIERT, Ale FIRAFE (it
4753 (Cao et al., 2018)) FIEEER (WP A (Zhang et al., 2019)) 7] IF 3 H AT &
B . FER RS S ERGE A H, ET A B MRS E(Chaudhary et al., 2018) EHHEHL
P [FF R F B B FRERRE, XEBEFRSFREEGERE . MR TERETE
AP E R ERER ) F AMIE (Huang et al., 2021), ANHF 5T QIHM A SR B SE EUIE 5 1
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P2 BFE— B RIICELR R« FERCIRB ST B A 18 S B ) R SCh T 385 T EE R E
(Wylie) (Chandler et al., 2004)R4mASHCCE T, BAREREE TGRS TR, A
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3.2 JACEME

BAVEE T WS F5 Z G5 LS FRF RGN TS A ba”, R R 7R 4R
FAPEBATTibLex A 2 FIRNC 3 o« F iR SR LA A B FRiE ST SR Al iR
FRit, XEHEIBEHFIES FEESER N TRMER MIEE . ERIMNMREIEFI L, FiF
43V AT DAS B B B T A B A 2 (8] S R SR el i R A R T E RS - FEX RIS TS
BT FIRAMAS R G, AR TS AR AL R B . PR T hREME A AR
(WAL EETHEAREIE) ARAER . EXTTAEY, FATEH T TIBERT (Liu et al.,
2022)7ESentencePieceH SLHL ) HIE 5 8 B I 0 1H B E N BRIARFIR S0 iF ik - FE564.4.37T7
B BALEE SRR E S B NBPEA TR BT, 455K, TibLex s iA FME %+
VA4 7 1 B RS AN URR -
4 SERVRAL
4.1 ERixE

A3 Sentencepiece i 401 HIEVE N ELL, PGS iAsy (BIEELMBATREH 57
%) B TR S EN99.95% M UnigramiE S, (XS TIBERTRFF—2, HAHESHGE
fESentencePieceERINE & - FA T BT A RALF) RIS EEIETIBERT (Liu et al., 2022)J5 48

WX HERTFXRE, AR RR, BEARLESERBEWNRIFR, TG LR HE25K Tesla
V100-PCIE-32G L 5ER% « FEFR2ABATELER T ZEHETIAE F OS5 R -

Parameters Values
hidden_dropout_prob 0.1
hidden_size 768
intermediate_size 3,072
max_position_embeddings 512
num_attention_heads 12
num_hidden_layers 12
vocab_size 30,005

Table 1: HAESLACE

4.2 HIESE

AR ICHE LU B R HBCSONL USRS 56 B 6 S [R] 4018 5 VAT SR AT A AT R0 ATy, &2
FERA DR KIURS R LRSS -

TNCC(Qun et al., 2017)E3ERIFE T F E PG MG, SFEE - 25 - BE -~ KilF - 3
B BT E B SR BE SMETERELRN ARG - ZEEEE L H 920340
[, HFTNCC (LTC) , TNCC(Title TC) h#rEbrel 5 FEEE 8T E K 0K 5 K80k - T
ITPEEIRE S NIIGE - L EMMRE . YIGE 50%, TLXEMNREL 510%. T8
TE R ABTR 5 SUAR TN SR 7 BARCR, AT BIRFREFI SO AT T 5 SR T SO 43 258
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% o TibetanQA (fMFet al., 2024)IZEIEEE S 71,513 FLFEH20,000 M AIZEX - ZFE—1H
FALES RSB AR ) /= T BB - TS LA L BIRI A MR EE - JT & SRR EE -

4.3 VEETEIR

F T PRI AR SR AR S B R A UE R AR AT PR o PR I E
(1) - (4) Fiome H, HIEH (True Positive, TP) Z&7~3EFRf IE 6 BTN B 5] FORE
KEL, RIEH] (False Positive, FP) F/nSEFRN RGBT A G FRE A%, BRF (False
Negative, FN) FIRSEFRA EGMETIMI A S FIRE RS - TR Z PR i R IS5
B EG A RANAMERE (Accuracy) -~ AEIZE (Recall) FIF1, REITEFEEEGR 2N
&~ WA R ZEFEMEL MTARXHRIESS, FHA1RE = DA RN 2175
B

y B TP + TN "
CCUraY = TP TN + FP + FN
TP
Precision = ———— 2
recision = o (2)
TP
Recall = m (3)

Precision x Recall
F1 =2 4
x Precision + Recall (4)

4.4  PRUETEAG
4.4.1 PEREVEAL

BATHE T TibLex 7 i #e FEE & 0 A 2s Y ZR PR o ZEARTT A, WATERE T A
EREMENRE TE: BA (ETFE) FMTHL-EWTS (BT%%F) - £22ERTHEHANE
4317 2% FUBERTRELZY 7L SUA 4 R A0 R SE# A 0 > P U EOE 56 RO RE - B 7E3.56GIERLZE I
YA ZBERTEA I E 5 R, AL MREEAREIEE L FE— L2, HERITRH
K TibLex s A28 7E FIFETESE 1 o] A5 FELLHH M o B A T 2548 - Ah, FATAESR4.4.2/ N R
WS T TN GREE B R - X LeE SR SRET, EARMEIR . BN E S EBNLUE NN L, &
IR H e v DUWE A — N HEE SR KR T %

TNCC (Title TC) TNCC (LTC) TibetanQA AVGacc
Accuracy (%) FL (%) Accuracy (%) F1 (%) Accuracy (%) F1 (%) |
12)2, 3.56GIERHE

Subword (Tibert) 65.62 61.72 71.04 70.94 74.32 73.40 70.33
TibLex-Yinyi 65.23 60.65 71.36 70.74 74.87 73.68 70.49
TibLex-Zixing 65.67 61.06 71.89 70.96 74.68 73.52 70.75
TibLex-Zixing (BPE) 65.74 61.12 71.45 70.63 74.62 73.49 70.61
TibLex-Yinyi (BPE) 65.12 60.25 71.56 70.43 73.92 72.48 70.02
TibLex-Yinyi-NoIndex 65.56 61.65 71.45 71.04 74.87 73.48 70.63
12)2, 8.23GiBRE
Subword (Tibert) 66.22 62.32 71.64 71.44 74.92 74.05 70.93
TibLex-Yinyi 65.83 61.15 72.06 72.34 75.47 74.28 71.12
TibLex-Zixing 65.67 61.06 71.89 70.96 74.68 73.52 70.75
TibLex-Yinyi-NoIndex 65.87 61.65 71.56 70.94 74.97 74.18 70.80

Table 2: AR iAZAE N ES _ERPERERT L

4.4.2 T GREIRHE R M 53 17

FER A T SR PR AR B0 52 o, FR AT 0 B T3.56GHE ST M uh 7 kL T I 2k
A12)Z Transformerti Y | 4K EE4EQ.23GBHIAR A 1 4% SCAE K} F T3 & )11 4% - g2 R
TR, RERHE &G R PR RIRUNEA (Fiasaes: 70.33—70.93; TibLex4»
W2S: 70.62—70.89) o XFAFRRCEE A REVR T IR IGRTYZES 56 GIE Rl L EFE R 2%k - HE
FHE, LR R T BMFEAEXIETIGT R T, AMRFRT AR S EESME Y5
LB NS TERE -
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4.4.3 WCRWBEE LR

FERTHASEIS Y, A PR H SentencePiecef) Unigram B IEFHITIRNC R EE « NIRRT AF M4 1
TiERm, BAERFFHAMBSEIEEMRIRT, HHBPEREEIIG S IFEL S 1H4E,
TF AN FEVE AL SEES o GBI Xt TibLex (BPE) Z8{£&5 Unigramf & TibLex 7 iday, AP %
PERErET - FATER2FMEE|, BPESSIIM Unigram LMESEIRR) LS EREERIR/ N ET
XELLER . BATEHE S, AL EBEEEEN SRR S B R E R - ARSI
T TibLex M RHEZEN A RIMEEIE B E B, ZOMEANZ BARSKSINTTIESRIZ -

4.5 EEFHHH
4.5.1  {AICAE AT

BATR A A B R R A ARFE RG] FRaE - Ebat - FETRE (A
TEAVEMFIANRF A8 EAN) FIEmE AR (BRIAMEIE) - WE4FTR, FiaaimssER
T ERS I FR D ANAE F & RO S THARRMC, 73 D AMEHEE —E &AL
FIFETTEE, B TROE SCAIERMA L B IR 7 7 1R 40 1R 7R A8 1R SR A e AR S SR 2
FREEYE, B iR g A R TR T BT S B S IR £ e R AR 1]
%, XELEE N TFETIRCSFAENKESE, N EEEHEME T HARICE RN
fEo MHHLZ T, TibLex4riaasRIf# H /D& F#IIF & TAMC REAGF 2 B 205 T R RIEE 5=
ROHERE T REHERTFETIMCHHIL, AT B ERAEH A0 o X MR 15 517
S EZIAMEE, BRMmEFIKE GER TN .

Sub-word I
TibLex-Yinyi |

TibLex-Zixing |

TibLex-Yinyi-NoIndex |
O%  10% 20% 30% 40% 504 60% 70% 80% 00N 100%

nEF B aFRAMUTES HAAUTED HHEA

Figure 4: A[F|531AZ8 18R H & RIME A1

4.5.2 ETFIEREOBEE
FIRLEFESEZENTHAMNERRARERFENFIKE . R3SBRT AFEHE

BEWAN NI E LR FFIKER L, FATWEES], TibLexd)iA 28 e B & % MM AT

H o AERRTYILRINE T, TibLex i g e IR A0 B 2 B I 2« A RE, 8

TNCC (LTC) TNCC (Title TC)

Subword (Tibert) 329.6 18.8
TibLex-Yinyi 205.2 13.0
TibLex-Zixing 200.7 12.6
TibLex-Yinyi-Nolndex 196.6 12.1

Table 3: ANF 5 1A% HFE 0 FR8 I B HU AR

R T R (Krell et al., 2020) AT BP0V ST, TTRAH0FF S
EAREMEREOTE, TR EERLR - RIBR T % BN T 75T S0 R

FHoH W E R S SRS R, 2730528400, BYEE, thE, 2025F8H11HE14H.
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B, TibLex/riFgs R I H BEMBHAE, H A TibLex-Yinyi-Nolndex /M A 2$ZETNCC (LTC)
IR AR E & 167.9%M) 8] « 5 H T 38 43 18] 2 & 8B 8 5 TibLex- Yinyi-Nolndex % &
FETNCC (LTC) HUBSE EMIZriizs, vl 0538 W SiGH 5 5 B 2R BB RATIZRI 2K -

TNCC (Title TC) TNCC (LTC)

Subword (Tibert) 100% 100%
TibLex-Yinyi 88.2% 68.4%
TibLex-Zixing 84.7% 70.5%
TibLex-Yinyi-NoIndex 82.6% 67.9%

Table 4: /N[5 1] 23R AT [R]XF HE

\‘ —— Yinyi-Nolndex
\ Subword
44\
\
¥
3 -
%
S
2 -
P Y
1 -
0
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Figure 5: TNCC(LTC)&0ESE AR I LR 0T H

TN BN B R MR B3 o BRARE &/ ITEEREER, H9M L%
WOR MR A BT R . RBR T AR E XN A E I, TibLexs
T 2 A B P K B B I TR 2R U7 v, R A T B AR ML 46 19025.8%  (TibLex-Yinyi-
ggmmﬁﬁﬁﬁﬁ¥ﬁﬁﬁ%%>oﬁﬁ&%%ﬁﬂﬁﬁ%%%%%%&%&%%ﬁ%%ﬁ

== °

1A Jo VE A A

Subword (Tibert) 100%
TibLex-Yinyi 76.8%
TibLex-Zixing 77.6%
TibLex-Yinyi-Nolndex 74.2%

Table 5: A[E 5 1A# RO FITERHIBAER KN (EE AT

4.6  EEMIEM

Br T AEAMERR N _E AT PG A, BRI T Hedl 152 t #7011 7 1A R 5 B 1 R A B
FREIN o B I TP A R S I, SR8 R B TibLex- Yinyife & e A i 2o H
B GRPIEERBAN IR S S RSP H LNRETHGHER, TTHEER P AR
BN o S PRYE LS R B BT ATRS, FR M & PR RS AR RS AN R R SCH R L
B Bk, AP ATRES BV B ERIR B 2L R & 7 B KA ANERE R R ) FAT - 71X
MIEALR, FATHE H A TibLex- Yiny-Nolndex ) 1A g5 B A X AR AT M 2K 7] & F 1 5 B iR B A0
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o WE6FTR, FHRESRK—DFHRERE TS EHERENS SRS, REHiHT
T FHit, TRHEERNTFHEM 4, REEE B FHNFET, 2% b #R A
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Subword (Tibert) 71.04 70.12 66.34 58.32  43.76
TNCC (LTC) TibLex-Yinyi 71.36 70.34 67.23 56.76 43.43
TibLex-Yinyi-Nolndex 71.45 71.45 71.45 71.45 71.45
Subword (Tibert) 74.32 73.42  68.54 60.37 46.56
TibetanQA TibLex-Yinyi 74.87 73.64 69.26 59.72  46.32

TibLex-Yinyi-Nolndex 73.89 73.89 73.89 73.89 73.89
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TNCC (Title TC) TNCC (LTC)

W E M= 30005

Subword(Tibert) 324.6 17.8
TibLex-Yinyi-NoIndex 196.6 13.2
R = 45005

Subword(Tibert) 257.3 13.3
TibLex-Yinyi-Nolndex 190.2 12.4
R A= 60005

Subword(Tibert) 2434 12.6
TibLex-Yinyi-Nolndex 187.2 12.1
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