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Prompt-Based Probing

Chunyu Wang'?, Bo Chen"?", Yang Xu®", Xiaobing Zhao'+?
1School of Information Engineering, Minzu University of China, Beijing 100081
2National Language Resource Monitoring & Research Center for Minority Languages, Beijing 100081
3China Electronics Standardization Institute, Beijing 100007

Abstract

The performance of large language models (LLMs) in knowledge-intensive tasks heavily
relies on the coverage and mastery of their internalized knowledge. However, systematic
and fine-grained evaluation methods to characterize models’ proficiency across different
knowledge categories remain lacking. To address this gap, we propose a prompt-based
probing approach to systematically assess LLMs’ mastery of commonsense knowledge,
factual knowledge, and domain-specific knowledge. A high-quality knowledge probing
evaluation dataset, KPE-Pro (Knowledge Probing & Evaluation for Proficiency), is first
constructed. We then design prompt templates and conduct evaluations on multiple
mainstream LLMs. The results show that LLMs perform relatively well on common-
sense knowledge, with the ERNIE X1 model achieving the best overall performance.
In contrast, their proficiency in factual knowledge is weaker, the knowledge mastery
ability of the lightweight model is obviously insufficient.

Keywords: Large language models , Knowledge probing , Knowledge mastery
capability

*EHAEE

©2025 FEFTHEES ¥ A&

#R#E (Creative Commons Attribution 4.0 International License) ¥F7] HhR

IR EEE SRS SE, BINT-H322T, ¥, TE, 202548 H11HE14H.
(c) 2025 FEFLEFEEESUHEIBES L WENS 311



FEITRIESYRZ

1 55

AR, RIEFHEA (Large Language Models, LLMs){E BN E T A FRAUSEUE T B39
&, TZRIFHTICRAER - PLEas®EE - MIE RS LN % £ 55 (Pourkamali and Sharifi,
2024; Witteveen and Andrews, 2019; Yuanshuo et al., 2024), I H® KFIES HEEET] -
R, REXEREMERGARES HHRNHE, EAEFRERMMATENFELREE
5 o LLMSsTE A FIHR % B 5 B e B AR S5, (R0 DUR I HY A SR M i) R s R A (L RE
71(Allen-Zhu and Li, 2023; Anderson and Milson, 1989), &7~ H EAERIVA 32 75 T8 1) /R PR -

MR, FEFAIEIRIEN T A B FELAMA (Petroni et al., 2019)3# 1 cloze B 23 M3 7 At 17
HIR R HEILILEE ST - AutoPromp(Shin et al., 2020)i# ¥ E 5| SR H 54 Bl A& 37 IR
MANFIR, PLEKoLA(Yu et al., 2023) B =19 MES I FANREM R, DEZ4HERE
F153 FVEAE T ) FIIRIKF o ORT, XS VAR RR SRR ROARL B 40 28 5 1E Ak A T 7 T 40 A7
TR, ZEPTRAEESLGEEN AR, B SRR L RAIANRA TR S, LR K
B ERANREIREE T A AL 5 2 PEIIFE K -

BN DAV T ETE AR R B R A R A S T B R, AR TE TR
REF B R BB AR IR G AR SS - B9, A1 T 4 AKPE-Pro(Knowledge Probing
& Evaluation for Proficiency)) % R AEFAM RIS, WE=KE - 7/NREH: HiR
W ER . SHER) - FBSSEEIRER - R E0R) R AU (E250R - &mi%iR) -
B—EFRH UAMEL I E—E N EM, B85 =1 B KB R THEIR — 1> IE BRI,
a8 B Y HGPT-doE TR A RIFIR BohARL, MR EE “ FE R 1E 5 “—BAER R
BéJs . R DeepSeek-V3%f &t @317 B ot ds, HHUALERK, REILCEIEAM66205 5
BrEFEN - BT HEIESE, AT I5H FHAR S R0 0 T i K E S BEHT T RS
M, FHXFEERR - B FRENRERACEHT TIREN LS 8, NIEEERRIE AR R R
AR T AT R R -

AR FE RS T

o FIFGPT-4ofE R HRNER b B oA e iR HEE R - 2% iR) . FEch
IR~ D7 AR S Bk AT (22 A0R SRR = KBS/ N R RI662058 L5 SR,
Hif 1 DeepSeek-V3 H B3 ~ A TE, ME T HEERN < P KB FIHEEGE
HIKPE-Prof{fi 4

o U T —EL— IR BNIRET PHIUAEIR , R bR (L AR FEEAR 5 A8 Rl SRR
%, LI TR 5FONFIAR S RS AR ST - AT S IEIAR -

o WHIAI: FRAESERAF AR ELRIMIEE, ERNIE XUABIREKF, EHXE
PERTR LRARIIESS, BERAEITT AL, TLEiit, ARBERAAERE ) E

2 MXIME

IR, BRI 457G 5 2 (PLMs) BT 25 & F1IR B 15 (Jiang et al., 2020; Fang et al.,
2024; Wang et al., 2024), 2£F5H T ZMETHH M ITIEEI R et al., 2024; Richardson
and Sabharwal, 2020; Youssef et al., 2023)- Petronis¢ A (2019)H SILAMAE#, 8 1d clozez\,
1 2 AR SRR RN 5 A PEFE LM EZEE 77 Shin®F A (2020)#& HH AutoPrompt, H B 5]
SR BN ER LR, DU R B AL N B FE SR AR YusE A (2023) 14 B KoLA
W, I T RIS ZERE T RE R, HEREEshATER 2 4 AL R
FEIE o FEBLEAE I, He® A(2021)% tHTREx-2pEU R 52, #RFT /DR B N A 5 7 Bk
KR FIR PN R R ;. Lin% A (2020) % &£ NumerSenseZ& 1, X HUE iR 3472 W =X HE
B Sung A (2021)9BioL AMA T HERE H L MBE S B ST, U G TR0 75 4 L b1 25 -
FI; Meng% A (2021)#2 HRewire-then-Probe i 1%, 45 A& % 22 S] M) EEMed LAMARRET, 18
ARTYAE R 22 SR S5 52 B A PE kAR Kassner 5 Schiitze(2019) %1 T 5 € 517 5 4&
IRIREHESS VPR AL H R AE S A AP E (E B HIRE ST Peng®E A (2022)1)38 13 COPEN#E
e, MHEEAE AT - B AR BT SO AS = MMES, REHRNPLMsHIRE S
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P DaifF A (2021)#F— 2 WERRIAEHLIE H &, T8 AL “RIRTH L TT I AR ELN 5 SRR AR Y
TUER, AR TRt TR LA

RE LR TAEEA R 4E R AU f AR EEUS 7 B3R, I W T 7R FIiR
S RRAEA - PR 2T HIEE R (Cao ot al, 2024) 4 HEEHESAF % Z HEH52(Zhang et
al., 2024) ~ ZMERAIREG 3R /EH (Bian et al., 2021)8( 8 —FE /1155 (Cao et al., 2023; Yao et al.,
2023), BRZXTHIRMEWIEE R #H2HIR) - FRMEIEENR - [7 2 E0R) R0 % L AT (B 27
FR S SRENR)EZ RAFRNG—B R, WEEMZ NESES S ol g i, L2
2 RAFRATERE . B RNENLEMEE ST rFK. B, mFELE—MEHL
SREG NS AL & B A MHIRTESE, DUSEIIX RE SR AR IR 68 ) B4R -
B VAL -

3 AIRHEEHENEEEKPE-Profy##

FEEEFEESRENRERE NIRRT, WEBEELZ R ZRIIIAREAE R
BRI R - Vb, ASCRHIFHE TKPE-ProfiiE %, SEMNFIRRIRRE
SNEREWNDNER N A, SRR TEREART RERM - STHR, FATRMERDE
B - BRI = D T EXN KPE-Prodt T/ 4 -

3.1 HiRNE

A EKPE-Profiia R A A2, FAESEE T ER AR ES BRAEN 2 RIK
&, ZFEHufE A (2024)R HAVANR R T730, RHERNR D EF AR 15 R - HIRFIR -
BRFIRFIGURAIR, & BREE P AR 78 5 R Z B AE 5 A8 R, U =& R
Yi%ﬁ@o#Eﬁ—%Tﬁ—ﬁﬁﬁﬁﬁ%ﬁ%%ﬁﬁﬂﬁ%%,uiméﬁ\%%%ﬂﬁ
B

FARMERRIE AR R 2SR - TRZWIIGAIFT RO ZEING, B
K BRI AN 2 ML RS R - EROORHMERT Z 3 F - RIS LNt - KPE-
Pro U R B/ RN 7RI PEFRSEFE IR B, Y3 RAMEHHEE+TE
RINZ VAN, W OREMER SR TR A2 DmRE? 7, H2FIRNERE AR
BEIFRTRANES SCLEM, e PEREET HinFiawmet gy 7, wIEsEE
KL SIS RS S AR IR fE

B MPLRTE AT U WAL - TR B2 H B 5 2H - SERAiRE S, TR
ETHES A HNMERT  WRIMEFELAGUESRIERARE, BEREtSinE
RFIE - Bl TEECH B AR S P SLRRE D7 RAERER: ArE i KBRS a g5 - 3R
TR KEDEZMN, Bk LR NERRERIA? 75 5 M ARSI EAE
- PRV SHIEFEES, WRHES—EE, STREZERME? 7.

TP FUSER TR E LR B R SRR IR R, B R ELE L RG] 5 R
Rl 248, BERAREESE . B . RAFAMEER N - KPE-ProfREE2ZMIRE &
RETIR P B AR AR T T RR e - BE 22 ANIGR A an LR S BOm P ) R ST E AR, I
SRS BT RN LRSS N, RS R EEA TR A 7 SAnRNRE
WREFBITERATSIT N, BEEMT S  WSEHSRE NS, meaEdsgd, mig
(P/B)HABEEL? 7.

3.2 HuEWE

KPE-Prof 5o & TIES WEUR LM SR R 2B H A, SEMAEIEERIRE
= DREEERIEMIEME L R E AN
3.2.1 BUEARR

BATRAGPT- 4o ENEIR AN FEE T XS RINRFRABNBIFIE, &t T840
FRREBR (AN TR), 5 SEEE AR BCE B BRI XS o AR Al A2 FH G B A% L N -

o TRUVHRMIFEN . BARAIEHIELNXEBESETBARTREN, BEEZOMRLRSH
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2. PYANEI A — AN N IEA SR, HAOD T, (EARRETCE; WG H, AR
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4. 3R [0 614 2018 M JSONKLAH, Z5AanT

"id": "UuID",

"question® " [ SCA",

"options® {"A" :"IEIA", "B":"¥EIB", "C":"IEIC", "D" LD,
"answer® " IF i A"

"type": " Hi L A1H"

}
T EL PR H 2L SONKLA , AN EAEA RSN 745 i e

B 1. R A AR R AR

o “—HEENAEN: BT AR EAET - ERIANRPRRZE, #ER 5 B s S 0k
HEE, B REETREARE L ERERE

3.2.2 BUEREEH

NI A SEGE FVERRTE - RIUESE AN, BT T 22 IR 2R RS
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M, ERSEARESESAAE, HeREES; BT (ERE): HAHOpenAlffjtext-
embedding-3-smalli& E R A] &, WEDF R ANFR B TEIITES, 7 — PR R IR
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FHHMILGH. 5 RARI R G T A PR AR R, (RS SO B RE , A0 (4T 4 — BRI
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== Al ==
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FHBEA R S bt eI
{#i Figeography Iﬂ’ﬂ%{*{f?ﬁiﬁﬁgﬁ o
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ﬁ?wf’gﬁ% Eﬁﬁ HEEERRS  HER 1)
e ‘ < IR e . LEERRS KERES RS
N T N B3 112 1 A ‘ ZEREMEE G mmmimans
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4.1 HERIERE

BATEE T 120 FRMET KEFSER, 230k B ToxENR A, FR5IAGPTH
P, ISP REBFEA, BFHEE KRR AEE DeepSeek-V3 « DeepSeek-R1~ H E 0K
FEFIERNIE X1+ ERNIE 4.0 & i%E 5 KIEAIGLM-4-Plus « GLM-4-FlashX - GLM-4-Flash-
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4.2 EBRE

F T ARSI R T AT A T, ARSRES DLEE TR BRI 2T AR KR S R AT
i, WHAPI, HRME—MESTES, RonEBORFInEA4 -
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I RRE N A 2R ], S hn T B B2 )~ FF BB UL « B3 F B B RS
EHEIE
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FANBD KBS EHERR AR LR EARIMG R - N KIE S B FEKPE-Profl 1
£ EWPYIEWZERE , ERNIE XIEBEAERIKT, FHIEMEIEFN97.30%, DeepSeek-
R1796.59%, 1 51 % — , Qwen-Max/ll] 2196.26%H “F ¥ 1E #f & {7 51 28 = . MGLM-4-
FlashX (64.55%) ~ Doubao-1.5-lite(57.11%) ~ GLM-4-Flash-250414(49.54% ) §) “F- 5] 1F 1 2 1] 4%
AL g =4 -

ERNIE XI7EMEEIH - #t 2R B - B AR - & EHE B3R
5%, DeepSeek-R1MFES T [y 5 50 R B = IEAFA R -

SRS A5 SRt — B ARl LUE
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B R EIEE MR NS, B EIRENR - iR AR AR ER B BE Y
W EN, ZREFELSERAFEIE T iR, WS SEERIEE E R
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770
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W 73.02%, R 74.18%, EENR: 79.17%, SRbE1iR: 87.88% . AILLEH S
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e HIRR EaS R IL5E: S 4
PEFER  ASFEIR BEIR R EFMIR eREiR
ERNIE X1 96.46 98.45 96.08 95.59 99.02 98.20 97.30
DeepSeek-R1 93.35 98.33 95.88 95.90 98.35 97.73 96.59
Qwen-Max 94.74 97.66 94.23 94.98 98.28 97.65 96.26
Qwen-Plus 94.74 97.56 93.29 95.34 98.28 97.94 96.19
Doubao-1.5-pro 94.21 96.44 91.72 92.40 89.50 96.61 93.48
GPT-40 93.55 96.78 85.54 86.76 92.76 96.11 91.92
DeepSeek-V3 93.84 96.98 85.35 87.39 91.52 95.45 91.76
GPT-4 93.15 94.15 78.98 79.57 87.13 93.74 87.79
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