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Abstract

Knowledge graph reasoning (KGR) aims to infer and discover new facts by mining and
applying the logical rules contained in the knowledge graph. This task is widely used
in fields such as intelligent question answering, semantic search and recommendation
systems. In recent years, due to the lack of interpretability of embedding-based knowl-
edge graph reasoning algorithms, some researchers have begun to study rule-based
knowledge graph reasoning methods. However, existing rule-based reasoning methods
have difficulty in handling implicit association information between relations when un-
derstanding relational semantics and are prone to fall into local optimal solutions. To
this end, this paper proposes a rule mining model ReSA based on relational structure
perception enhancement. This method improves the efficiency of rule mining by con-
structing a relational graph and explicitly modeling the hierarchical structure between
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relations. At the same time, ReSA also enhances the model’s perception of the overall
logic of the rule body through a global rule fusion module and a relative relationship
encoder, combined with global semantic modeling and local structure modeling. Exper-
iments show that the ReSA model has achieved significant performance improvement
on datasets such as WN18RR, and the MRR index has increased by 4 percentage points
compared with the existing state-of-the-art rule mining methods.

Keywords: Knowledge Graph , Rule Mining , Link Prediction
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FIRKEE (Knowledge Graphs, KGs) TENEMFIRAIEAA, 8 SSR-5e R-5K =7
R ie TIEMFR PR . A BMEFZRFIRKE (Ji et al,, 2021). 2810, M
A F0 IR T o I R R A SE & BRI - BIAN, Freebase 1L 76 % A A M) S 1A ik = B J&
P, MWikidataf {UE18% )% AARME T 1K R (Berant et al., 2013) - [, XFERRETHAE
W AT 2 BE A S RAPRERE (Xie et al., 2024) - K11H B o 4 3 1F 28 i 1240 1K 2 18
M, N EH KA H— 2 AR - ZBORAEFFEFE (Yih et al., 2016; ZFHEEet al.,
2024) ~ ¥R (Xiong et al., 2017)%F A IZ M, (B T mAFREE A EE M (E -
— B T T VR A ) R RN EAR R RO A 2 KRB - 140, TransE (Bordes et al.,
2013)F1ComplEx (Trouillon et al., 2016)5F kA 22 >] 7715, 7R & 25 8] P78 Ot B Sl
SEARR AT - IRTM, IRXREETIRAELFR AP EEAEN, B E MBS SR AL IZRAI
AR E ), (HIMEAF A RE AR RENER, Wid Pl BTSSR &
XRKFEAR T HEERIERE - 0bSh, FT =JuEMMAL 2 37 ATk B i E S & =)
JREREERE, TX ERLE G AT DIVE ) FAIR BT A B ZUER (Liang et al., 2024) - &iT, X%
ElZEMLZE (GNN) RERFERENHEL, GNNEGIAZIFREEF, #EidRE4H8ET A
RBEFT LR R, INMHHIR T B (Schlichtkrull et al., 2018) - #40, GralL (Teru et al.,
2020) AL E T DUBE e = JeH 9 O A i R ER R T I, B & 1 x4 S AR A VA 40 BE
J1o SR, XRTIEARRBEAMRCR T E S EIm Pk . TR, BT RN RS AR,

Figure 1: F1iREE R

H HAEW A ZHIZ B RES - SUAETE, ET AN AR B T ERZ B T
K- R, WEETHNMEE N EFE SR, SRIREEHEIET R T1EE Y. —77
T, IE AT AR 38 g o0 05 U DU SC R Z RIBE U R BRI B, S ELIE#IT AR
BB EETESE - i, WEFrR, ET 2418 S ieln(Trump Tower, N.Y.)FllocatedIn(N.Y.,
US), FATAT LURFAHERT HlocatedIn(Trump Tower, US) - {H &, BV Z T HLNAEAYE & TCiE
IER2E ST RN locatedIn(X, Z) < lieIn(X,Y) AlocatedIn(Y, Z) - iXEZZF HiX Ll
PRALR = XF K R B IR GEF ) T AR
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AT, AN T2 R T & r2 B, FFZARARLINIRR, DRI DL
RS ECATE SURER, BN RERIAE, ToIECRUEFLI B PR 0 e HE P -

X EaR R A, ARSI T —ME T R RGN R A HLNZ PR LT (Relation
Structure-Aware, ReSA) - ZHEBEIEH X REWIMGE R AZE, EBEE R EWE 5
MRAEARREFT TR, K Z BN ERR AR RE TR, & T K%k -
LT~ BX Sk BXRMEMRIEN . KARKBEBE AR KR ZEAEBERELS, 5
DN SEARBIRE, RET R RZBINEE, RBEFNIZIHRE o o, HkRRER &L
A, ReSA #£H T 2B A B, @ BB 2 /4, FIA BEEIPLHAERK
2 AR, IR, RIS IR BRI e R, CRHE B rf b e
ZM4% (GNN) |, FFFEERFEEATELS, Wi RENERTERE, &N E
e R, BALEE R IRETER YIS, B2 KEEEMEE R — ISk, 3T R
I .

SEISE SRR, ReSA BAELZ MRS LMFIREE N 2EST R A, METIHE
BFTANZIE 7%, EMRR 8 EWNISRR R FI-A T4 M E A - iX$5IE T ReSA 1
BIRVE R, UEBA TR 5% R L5 F BN 58 B A T RN 298 e 5 R tR I 2 T HL0 A HE 3 T
VA B T ) )

ZE PR, AT TTEAE B LU LT

oft K RELEM, X E IR KRR NS B RAZIFNTZ Y3 5 o rR T

oy T it — B FRIRAE RN IR AR r] BE H B R R Ec AL A8, A TGH TR IR LS TM 4%
M), TER AN A SEEAEMNE R, SRPE s R AL ATl e -

o EZ M ERSE L AR B Bt 4 SEAS IS UE T ReSAFENT T S AUNIAZ 8 77 vE B dsdt, [
B, ReSAR] DAFRAG I A] et a2 B ) -

2 MXRIAE

2.1 ETHARFGHE

AT N B0 7 R RN R IR PR SEAR AR R R BR M E S m B ], T E LR
oK R 2 1A FORE LU B SR AT 4 H (X Fiet al., 2016) - FEEJ71%HTransE (Bordes et al.,
2013) ~ TransH (Wang et al., 2014) - ComplEx (Trouillon et al., 2017) -~ RotatE (Sun et al.,
2019) ~ HousE (Li et al., 2022)% - :XEITERTE =, BLEESIMHERLSWELR, T A
THEPREE SR ER = AT RRRENE -

2.2 HETHEEWEENTE

BT G5 B 7 IR E A AR B R FR TSR (0SSR 2 R B R B A2t 7RI
X BELME) HTHEME. TEENX: ET2RTEMETREMTENTE. £2T2
JAF B JTEEMIR-GON (Schlichtkrull et al., 2018) ~ CompGCN (Vashishth et al., 2019) « KE-
GCN (Yu et al., 2021)5F WAL B 20 AUANIR EIIE L5, (EAERMRENE LiTEER, HEF
AT R R . O RIX e, BT /AR T B A5 R A R R IR B SRR B R B,
XS B AR S48 [ — B VE AU (5 B, WINBFNet (Zhu et al., 2021) ~ RED-GNN (Zhang
and Yao, 2022) ~ AdaProp (Zhang et al., 2023) ~ A*Net (Zhu et al., 2023)%& /7 {ERENS 1 N AN
BIRERIFIRENESE, BARANRAET, ENREETRRFEREER . REEBENE S

SELIIE

2.3 ETHMATT %

BT AN AL TR, @22 S8 AN (WHorn+4]) #HATHER - F41Neural-
LP (Yang et al., 2017) 5DRUM (Sadeghian et al., 2019)F €1 ¥4 30 K5 HL | % =) 49 A 7] £
ST EVEE R, SEELRL AR AR A AL 5 B E R B S AL o TterE (Zhang et al., 2019)
5RNNLogic (Qu et al., 2020) R 2 NER AR R R W FREZ R, N4
FC-HEFRIS IR PN B2 22 21 2844 - NCRL (Cheng et al., 2023) #& H 454 M RE SRS, @ R HL
A B B T 45 1 2H 6 B R B & pE i E NSk o B TR0 ) 05 1 AT R 5 AL BE T
U, (EBRZ R R TE LHBRARTCIEAN 3R R Z TR IR = SCHK -
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3 AR

R E XNG = {E, R, F}, HHE. RFIFHIFRELME . RAMELHES -
B IR R =B, Bl(en,r,e) € F.HEF ey, e € E, ENIZEPr € R AE—"
FUREREG, FHREEHEE EEMAHCENES, RIETH R0 B B EmEL (], re, el K
AERERE - RIBIALTENRE, — B N=EATFAES, RISKSERIER (7,09, ef) « BSERIHE
(el re, NRIK AT (], 7, ef) - A AT EBAES R K R, HI(ed,?,ed) -

—WriZ% (FOL) A A Horn B0 2 B —24H & BUE 1R A — N B — 10 A OB 18 1R 25 Al A
A BATESSBR AR 29800 N T2 EE R Horn B -

s(rp, o) (T, y) < 1o (T 21) A AT, (Zn—1, )
Hry (a0, ) B AENL o, (2, 20) Ao ATy, (21, )RR, s(rp,, re) 2 5 HUNHE K A E
BESE AEMNEFIHNAEBA T HornNEE R (1, o), EFry = 1y, ..., 7,
4 ReSAEAIF &%

ReSABRLZE —FhE T HIN < R ERIH S AN THESE, XTSI THT 0 s A 2 AL
5 3 7 VR AN S RN S PRSI BRI - ZARALE S 2 RiE U S BhAS e R, Sl
AU AR K RS 2R B R S - AnE2F7R, ReSARRTL VBRI AL 75 X % R EIF 22
MM Gmis s - RS ER NS =D EE=E D
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Figure 2: ReSAMEAZE4E &

B, AR AR B R SRR KR R A ECR R RS R S AR, HRR R DL
KANTH -~ WFEMAZEEA (h2h~ h2t~ t2h Flt2t) HAFELEER . X — B R
PR ARBIAEE, FIRMNAFIREN L 22 A PR R IR, B R IS AT o0 S )8 ST -

HLR, U G 2 am a4 R LI i AR A AR 0 5 AR G i 2 o LI A 247 GBS - 2 R AL
Rl & BRI F 42 R 7 S 1) B AR T e B AR R D JIIRE T, AR SR AR G i Al o [ e A2 o 4%
(GNN) iR AR R 7R ERE

e, S ER AL A G B AR R VAT TR AL 52 A E PR AT TR -
RALET SIS W T B MEEMER, BP R REAEARE D B — ML, FEd 58 X 5K R %L
PEATINGR, DL B HIAINI K AR «

4.1 MR REEE

FEXF e 2 B AR S A TR B SRR B o i O ok AR (AT R S5 A S B S, R EL R AL O
PAR AT A~ TR A B R A i) — R 45 - B id BRI RS R R A AL B
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(h2h~ h2t~ t2hFAt2t) , SRIFIEHNARFIHLIN L 7 B BV AR B, T 8 50 RIS HT 0 5
BHTE MR o [FIR, f KERMEEF, XA SSHEENFEE, REEEEERNEE
P, ImEE A B B
HREFMIREEG = {E,R, F} , BERELEFENRRr ¢ R MHBX R YEARREH
BT R, BETREEGR =RU{r ! |reR} - &, BEEHTEBENEH =TCHh, r, t)K]
kRS . Flin, B K REME LR H A, ﬁﬁzjzﬁ/\aé?fWﬁ%?IEPL
Thoh 8% « NERNE R REA, € RURXIEXY  SREAFGHREMERER A, EEiTETENA
H1-4FT7R:

Apon = E} - Ey, (1)
Apyt = B} - B (2)
Apy = B - E, (3)
Apat = B - B (4)

B, By KRR R, B RSEAR-RREM, 2 3NERLEHEMEERS KRR .
TE MR TR TE A AP R AT B AR, A HIEEA, = [Ah2h,Ah2t7At2h’At2t] o

4.2 HNGR1E3S

UG58 RS AR DA 2 — ., 5B HE BN PR HTE A% SRS 5 B 4
ER T BNFT - HEE G EEITE 42 R R R, RTR 4
T P 53 R M R

B MR R Fry = [roryseeesro ) M BENE O H20, TN E R he; =
meJoﬂM%ﬂﬁLLé%ﬂWﬂAﬁﬁﬁﬁﬁigﬁﬁﬁﬁJﬂ?ﬂwm 5 (EA
FAF B TR, ARG ms | 1L B A A X BT R B, AR R 2 T 1 7 AU B

7N o

4.2.1 L[/ AR

REFFFIETY (QILSTM) ZEENR B Bl #0000 B A T Ry SR A R R L2 2 B TT A A i
[y B [E] 0 BIRSRRCR S, M AR IR K B AR I Ry B (A B B 4540 - ikt Mﬁﬁmwﬂmmm
2 FE L EIRER A EE SRR, 32 /105 FHLH] R AR T RS A RS BE
H

HoE, i BEREAIEIRE TN, E AR AZ A2 REE, Ua
F5-6 7R

g= > aiWh,, (5)
e;ETy
a; = Softmax <qT tanh (Wahei)> (6)

HA, he, AT BN E, BN ARG, W, Wﬁﬂ%iﬂl?ﬁﬁ? q WA
SJEMARE . BE, FEREg IFALSTM BHIIRici T, FECiEHHREEALR
B8, ERED , RELEL TS ESRE N Rl S2RMEW,, BEamazr-gf

7N

ci_1(g9) =M1+ (1—A)g (7)
=0 (W [hi_y,2]) (8)
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B ¢ ((g)B K EiL e 52 R EgHTHESME @B FHNe; Fry, A
7~ SRRSO R FILSTM A B A e, BARTT RS REN A F9-14F7 7R

fi=0 (Wylhi_y, @]+ by) (9)

i =0 (Wilhi_y, ] + b;) (10)

or=o0 (Wo[hf_l, x| + bo) (11)

& = tanh (W [hE_|, ] + b,) (12)

c=foc 1(9) +iOe (13)

h{ = o0; ® tanh(c;) (14)

Hep, f 28w ], o FrBA], o foritl], e fmBERiciZ BT, B THEER FP
Wty ARoR T e, 38 LR & AR, FEHIE AL, -

4.2.2 XK RGES

TERIR B AN AR S5, BMEMLE (GNN) {ER—MEE KM TE, AT FM
MHAT IR, WA R R A E 258 B . X —d BRE T X RERMEE, ZERNR
AENIRENE B 5% R RIS BAR T, R N DLR RO A U FPERRl AT BT
(h2h~ h2t~ t2h Mt2t) HBEIELER - £ MNGREEREF, GNN #idiHE B RILHIE R
RE FHTERERE, WM R REE R ERER - Fo1E LT LUMERE DS BiRTE
A, BT EAK IR

a;j = softmax <LeakyReLU (W [hil), h§l)]>> (15)
Hip, W, AR ZSEGER, (A, B) #nEA, BIHERE . E XMz, GNN GEW D)
AH R EE AN [F A8 7 SR TERR T, T B b AR 1 5k AR AT A 28 ELAR K -

GNN HJE—ZEX R 2T R0 TER, BdRe44ET RpE BRI AT ARER .

BAEME, X—d & UF RN ATL6FTR:

R{TY = ( ST ay fﬁl) (16)

JEN(9)

Her, Y SR BT A RRERRS, N () FRT A AR EES, oy FRT A
I 5 2 B NE, o RIESIEEIE R SEE 5 A EE S LB R TERRT % R 28 H Y
MR . B, ROTEERE— 2 HEMZE WG S ARF R TN 2 ZHAEE, 0
JohY. -

4.3 HESEESYLH

HEHESER NG ReSABEI A — ML OB, MTUR g E 57 L0247 76 2 A 7
/ﬂ'J AL o %ER @ L RS GRS AR IS VAE R AL, shS T8 AL (5
B BB RE R B YERE  B— Ak

4.3.1 REHwIGE
FEFATROMERI A FHUN AR TE 2 8 45 & 4 R P @il & R B AR X ¢ 2 [ ) R b 238 o) 2%
(GNN) RFERHT - @ RHX B FhgwiE T s Aok, AW ER— 1 F4m . EEENTF
HNERIR - Bk, FoATE 5eiE 2 /AN E A s @ s 2 N p0 9wt SR 5 /e X
K AEFIGNNESR|FHN A gmts, — @ 1SS, BT ET B AKX 17RR:
hl = o(Wylh,,,he]) @ h$ + (1 — o(Wy[hi, he])) @ h, (17)

e;) e

HAow, N33, o NSigmoid k%L, S PEMEEER -
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4.3.2 BEXABRVEFEERIHLE

T EYENCRL (Cheng et al., 2023)AiB T4 HKHE, TR KEEIZZ D48 5 0 B —H) =k
FIEER b, FoA T — DR T SR A0 SUREE R B AL -

FATHRELE RIS A R R Y IR S O AR R, HRAZANR R T T+
FUNFEATHT o FHE B H R R, BRI AT o E 7 H0, Bt 8B a
18FT 7

€ = softmax([f(hgl), f(hé;), e ,f(hgn,sﬂ)]) (18)

He, fORRITHRE, sBRBHE MR/, bl FRMERNHALR, o~ E05RRE
HIFARN, A, BAIER OER NILHFHERERE G w B B R ARERR -
EREG IR R I HLHISh SRS AR LR R ERRE, NIRRT R R AR E
B BRI AN19FR:

= softmax(w;Wg (HWg) T /Vd) (19)

Her, Wq MW 2RSS EGERE, d BAGEE - @it Bw, 5805 K RNIE L —
B, ShASHEEX AL R RIRERE . HERBERNINE O, ITEHNAE R RTA
20 7R

w, = 0HWy, (20)
Hir, Wy B[S EGER . MRIBEBRNINE, FAF:LRKROFRETINNES, N
M —PMEERRAEG RN, AW ES T E S ST AN L 1k -

4.3.3  IZRAIALINIFR E
FEIGRRT B, B8 HARR S R SR E RN Ky, BIRASR « Jibt, Ffi T A8 SR 5 R
BREORYIZRRTY . B, BT IR m RO A5 21

|R|
L=— Z nyh log 9;‘ (21)
(p,rn)€P k=0
HeA, P MNAREE AR ERE, g, AHNkr, Kone-hot Hild, 6, EHiEp FITER
FAE o XA SR KA BT ST, EREARTE R B AR ko), BT 1
BAONES,, WHEHEFTINNRE  Eid H/ MOX N HURREL, REIET 2 ] B R A
NSk FR o
5 SEREHHT
5.1 SKERE
5.1.1 RS
FATRA T30 2 i B R SR PP A B TR R, "EAT190 A EKinship  (Kok
and Domingos, 2007) ~ WN18RR (Dettmers et al., 2018) ~ YAGO3-10 (Suchanek et al., 2007) -
RlgH T X3 EIRERIEAER

Table 1: EHEESIHIFN

Dataset Data Relation  Entity
UMLS 5,960 46 135
WN18RR 93,003 11 40,943

YAGO3-10 1,089,040 37 123,182
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5.1.2 PEMFERR

FEFNRERE N 2ES, BRI B2 sk iEss, RIS E— kS e R, il
SR, BiEAERSEARRIR, TLSEA o SRR, RS Al — MR Sk
ﬂ%ﬁﬁﬁﬁﬁwmﬁﬁﬁﬁﬁ%ﬁﬁgwﬁﬁmﬁoﬁﬁ%ﬁ%?ﬁﬂﬁ%ﬁ%%ﬁ%%%
=HMERE

FEEEHES (MRR) f&— MR TINER I FFER, EiT B RRFTE MR A B4k
HeZ W PIE . BARATH:

1 1
MRR = — ) ———
Q| prerc rank,

Hep, Q Z2MAEFHEEREAR, rank, &% q MEIWEEA B IERERAETLE R+ 15
% o MRRIEBER , RoRIERL B TR R -

HitsQN-Z 7 — MR MERTERfER, BT RTINS RIVEIN ML+ &
IEfERI G . BAEA0N:

1
HitsQN = — > " T(rank, < N)
@l =5

Hef, T 2FERRE, HRMRSIRIUE L, B0 EARIH, FANENEIMI10M45 R,
RIS IEWRE 2 T H AT 25 3R ) B 1L AT T LONL %8 - Hits Q1A & 1 L TN B &
SAERAERTE, TTHitsQ10M A& RSB SETE H N RO FIN E

5.1.3 FEEHER

FEARREEGG H, FATEET W REGEAGHETR . AR ERE A (KGE) JTIEMET
HN2EST T - FIR ISR A T B3 TransE (Bordes et al., 2013) ~ DistMult (Yang et al.,
2014) ~ ComplEx (Trouillon et al., 2016)FIRotatE (Sun et al., 2019), X877 %38 i3 46 SR A
K F BRI B a2 (8], R A R ORI X R - B, TransEj@ il [a] &Pk
FRKFR, DistMultF RSB AR TR R R, ComplEili it B HUR A RHHEH 5 41K
IS, TMRotatENNET FEFRIERER R R, TUEAFRA IR K RFAIX IR R -

T HLN Y 2% 3] J7 ¥ ) £ F5RNNLogic (Qu et al., 2020)~ RLogic (Cheng et al.,
2022) ~ NCRL (Cheng et al., 2023)FIRulE (Tang et al., 2024), X %77 1558 13 ¥ 42 8 A0
et iTHEEE, BEBIRA A RN . RNNLogicfs B I3 #4428 M 45 4b B K B2 MU, RLogicil
T RN A A B B N, TINCRLIVR 4540 R SRR, HIEm LA EREMN
M, FE— PR AR ENZ ALEETT - RulEsE—Fas & FUIHR AR AR B R 77 4%, B2
BN B A E R FoRF, S T BRI IR T PN R AR ) o IX L
TR S T AT B Y ) B 25 (AR S B e B R, P T T2 I ReSARE TS AL T
STH AT L ERE

5.1.4 ELEFEHESE

FEARIREESEG A, A TR pO ISR AR 21T TR OBCE, DA PR SE g8 45 SR mT S 14
FEShE o FAEH T W ENVIDIA GeForce RTX 3090 £, SIKE FALE24GB ML, X
AL FE R AR B EOR R A T a8 KA B SR - SRR MR E T PyTorch HEZRYEE, FF
T EE e B e M RGO BA &R . ZEBSECRE ., BA15—¥ %k epoch
BOXE N2000, VAFRRIETVE B0 AR RIS - X F 221 %, BATRIERIEE NS SHT T
ZFWRE: FUMLS #IEE L, Zo1 R E F0.005, DLUE R BN B RIAR R FE X & 5 p 4
¥y AR E EPREPERIWNISRR FIYAGO3-10 £ 4 b, 2> RKMAEE70.001, DISCIREFR
TR TE . N ZHEFHREIEEM R, UMLS % & 7512, WNISRR fIYAGO3-10 X &
gmm,uﬁ&%ﬁﬁ%%%ﬁ%ﬁoEW%W%E&%—&E%&I&?@%ﬁ%ﬁﬁﬁ%ﬂ
5.2  XFHSEE

SIS AE R EOR T ReSAEIE L M EPEEE (UMLS - WN18RR -~ YAGO3-10) FHIEIN, +H

BT REMFIREE R AT E (KGE) MEMBNIE 7, ReSAEALHE 2R HEF LS50
T —Ems . SSREERINF2HTR .
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Table 2: ZEEIELEUMLS « WN1SRR FIYAGO3-10 HSEIERG R

Methods Model UMLS WNI18RR YAGO3-10
MRR H@1 H@10 | MRR H@l H@10 | MRR HQ1 HQI10
TransE 0.69 523 89.7 | 0.23 2.2 524 | 036 25.1 58.0
DistMult | 0.391 25.6 669 | 042 382 50.7 | 034 243 533

KGE ComplEx | 0.41 273 70.0 | 044 41.0 51.2 | 0.34 24.8 549
RotatE 0.74 636 939 | 047 429 557 | 049 40.2 67.0
RNNLogic | 0.75 63.0 924 | 046 414 53.1 - - -
Rule RLogic 0.71 566 932 | 047 443 53.7 | 0.36 252 504
. NCRL 0.78 659 95.1 | 0.67 56.3 85.0 | 0.38 274 53.6
Learning

RulE 0.82 74.9 955 0.51 473 59.7 | 048 409 61.0
ReSA 0.82 728 98.5 | 0.71 65.0 84.7 | 0.52 50.5 55.7

ReSATEUMLSHIWNISRREUHE € FHUE T RIF LA, L HAEMRRMHits@10%5
Fr b, BRI M. FFA 2 EUMLSETE S | ReSARTHitsQ107% 7A98.5, BH B T H A
T, X FEAReSAREW BRI IE K B R TN E 240 5% 2 - ReSATEWNISRREUIE £
FIMRR70.71, Hits@Q1°465.0, HitsQ10484.7, XU Gith B T HAESEREMLESH
HEFRE T FVETRTE - A AMEYAGO3-10504E 8 £ EMRR, Hits@1f5 ir th B B E R A, RR
FEHits@10¥8 b1 b B %A L TRotatE, FA1#HIT T 25 L% & IMYACO3-105E AR LB K,
KA, FEINGEEFMELITE SRR ER R . FN, SEIRE S X2, HImE
BEAR, IR S BT IR R AR A O R, Hits@10 1 A INESE L4052 « T RotatEE T B 5%
[ BRI R R EE R R, EHETINES (HitsaN) ERIREF M - YAGOS-
L0TE N BRI RSB AR, HEKESMATRERUR TiXMER -

55 MKGEA# (W TransEFMDistMult) FHH, ReSAFIRIMNE Mg E, TTHEEE 3
FIR RS - TransEFIDistMult 76X L3R € ERIMRREUR, TTHEXRRERERED
B4R, EATREIRIEREZ S T —EMRH - MReSAIETSE SN 5REEMIEE, GEW LT
HifRRES R R, FEAMEEEE .

REReSATEYAGO3-105IE 4 F Hits@10¥5%r LR IEZE, (HEMRRAHitsQUKIARFFLE
BEKE, BR T EESHEMEURE D AER TR E M - ReSAREISERUMLE & 4 515 R
FIBHASR AR, M T ST I fEERE

BRIRUL, ReSAGA THNEIISEGEMER, BAEL MEUEE LREL TS HA
T EFIEA AN 22> ¥ E RO AR, AR R KBS EE RS C R R H - X f#
BReSATEFNR M5 BA T BRIt B m rI S HE 7T -

5.3 JHERSELR

N T RIERA TR A A TEWNISRRATUMLSAIE 5 LT T — R Y FITE B SES
FATXReSAERL AT T ZMAECE I, BFFZEMRSARB L SRR RE . 250
MIEL AR« BlA SR SRR AN Z IR AL BB U3 B PRI AR, DO B 5T R BE RO R
0 -

Table 3: WN1SRRAUMLSEWEEE [ #OVH Bl 5238 45 JR T 1

Model WN18RR UMLS
MRR H@l1 H@10 | MRR H@1 H@10
Full Model (ReSA) 0.71 65.0 84.7 0.82 72.8 98.5
-w/o Relation Graph 0.67 59.7 84.1 0.78 70.6 98.3
-w/o Global Rule Fusion Module 0.69 62.5 84.5 0.79 71.9 98.4
-w/o Fusion Encoder 0.67 58.8 83.8 0.78 70.5 97.8
-w/o Hierarchical Recursive Attention | 0.64 54.4 83.4 0.80 69.8 97.5
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S LERUFEIFT N, FEWNISRRFIUMLSEHE 5 T FI7H A L0 45 R B, ReSARK
B & A HAE ST AR R B B Tk - DIWNISRREUEE N, BEFRZKEE, MRRF
2067, WX AREN THIEXZRBMBEREWHMEBEEAZXEE, AP TREFES
RCHIZ AL 2 R HUI) A AR B B RS bR 5 B HitsQ1 NF%262.5, 38 81X B T 7E SR AR T X6
FLEE A B BN RE ) T AR TIER, _A THEHEAERM . B &REESE R
BEMRRFIHits@104) 5 P 220.67F183.8, fz Bl LB AR HE A 18 SUR S50 15 B 7 TH O B 241,
SRR EE S RE R BE RN AR VTER VLA RS EETE TR E i M, JtH
EHitsQ1P%EE54.4, XFRIZHLHITE S SEF A F A B R R A1 TIER, ST
PR R SCR AR P S AT Bk -

5.4 Rt

FERGI T, GERMFAPTR - ReSARAIFEUMLS - WN1SRRMYAGO3-1050#E 4 £4=
RCHBERALNACOE UG, T HERXZRE, sTo Rl TR NHERGE T - fltn, fEUMLSEL
PR, BAGRBETHELZ MR R (W complicates” « “consistsOf’ Fl “connectedTo” ) it
S T “locationOf” K &, I T HAFIEE KX AL HRIAES - FEWNISRREUEEH, 1A
ERCEIELNGS s S A EZBER R (W “verbGroup” R E R R) | #— Bl T EELNHEE
TR B RIS e - TAEYAGO3-1080RE A, BRI AE AL R T BAE R
B FA R iR Z AN AR

Table 4: Z&{] 547 B2 EEALI

SIIEZ

UMLS:

locationO f < treats A consistsOf~!

locationOf < prevents A connectedTo~! A connectedT o

locationO f < complicates A consistsOf A connectedTo A consistsO f~"
WN-18RR:

hypernym « similarTo~' A verbGroup

hypernym < hypernym A DomainU sage N\ member M eronym™
hypernym + verbGroup A verbGroup™t A hypernym A verbGroup
YAGOS3-10:

isLocatedIn < isLocatedIn A isLocatedIn

isLocatedIn < hasAcademicAdvisor A isLocatedIn A isLocatedIn
isLocatedIn < hasGender—! A isLocatedIn A actedIn™' A actedIn™!

1

6 Mt

JIChEH

ATCR M T — R T R RGBSR U NFZ IR T ReS A, FI TR SR EIEHER A1
fE o IZAETE T A e AR PR OR B AU AR SR AR Z AR IR, (RIS 512 R AL il A AR A
A EgRiDE:, 456 2RMNIE GRS REfai@e, sEsaxr B A B r) RFIRE T - K58
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