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Abstract

Against the backdrop of the continuous advancement of the Belt and Road Initiative,
deepening exchanges between China and Central Asian countries have created an ur-
gent need for high-quality cross-lingual information processing technologies. However,
the severe scarcity of parallel corpus resources between Chinese and Central Asian lan-
guages, coupled with the uneven quality of existing resources, has severely hindered
the development of downstream tasks such as machine translation, cross-lingual in-
formation retrieval, and sentiment analysis. To address the challenges of low-resource
languages in Central Asia, this paper proposes a framework for constructing parallel
corpora that integrates neural machine translation (NMT) and cross-lingual semantic
R
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matching. The approach involves targeted crawling of monolingual news data from
official channels in Central Asian countries, generating pseudo-parallel sentence pairs
using the multilingual translation capabilities of the DeepSeek model, and obtain-
ing cross-lingual sentence embedding vectors via the LaBSE model. Noise filtering is
achieved through dynamic cosine similarity thresholds and margins. Experimental re-
sults show that this method improves the BLEU score by 0.65 compared to traditional
back-translation methods. The final constructed multilingual corpus contains 80,000
sentence pairs covering core domains such as politics, economy, and culture, laying a
solid foundation for enhancing the quality of downstream tasks like machine transla-
tion, cross-lingual information retrieval, and text classification for low-resource Central
Asian languages.

Keywords: Building a parallel corpus , Low-resource language , DeepSeek ,
LaBSE , Cross-lingual semantic matching
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bE 2B AR IER —F — B EWHIRASE R, FESTILERZ AR R H @R
%, EBIE SRS ERONE AN R X EES AR REER - PILFEERNES
MREFIE ~ B2ERIWE -« BERE . S/REHENE . LESES . XEESS5TGESBEARIE
O (RPKIEG - BEERFRAERs. DORIER) | EEFHEN - RxHTAETHEFRAE
5, BEBESICIAR T BRIk -

PLE#0E (Machine Translation, MT) {ERFLARTE S FERFFIOORR, HAEREAEIR RIEEE
FARTR T RAE ~ = R AFATIERLE (Parallel Corpus) RIYETE 5 SO 5 BHxf N B AnE
SERESCARES - R, NTHXERZEHILIEST S, AT AT H BT 5 R BT IR E
PR o XPPECE B = RPN B FHAS T A A OG- TR B X A E R RE ML SR BE (Neural
Machine Translation, NMT) #7K (Bahdanau et al., 2014; Vaswani et al., 2017) i 4 5N H
WIRG TEIESEERR . RIERG - BT EEM BRESAE (NLP) HRAEX— X5
IR -

2 & B PAT RN SR B TIR1E RIF ROV Es BB R RE L B B R B EAER - 2
AT XSHILEKES WP ERERD, AFrEREREREER D, HHFlores-200
(Goyal et al., 2021)%#E % - IR BEEZEA TYIZGNMT &8 2 SEERET FEE 2 RE A
i (Khayrallah and Koehn, 2018) - N T B FIFRIE S PATERBERZ B, HAREINTIRR T
ZFTTVE - RGN TEIEAIRON BNRERIETE R &, BERAE G - gL, MLISEIIR
M (Koehn, 2009) - Flit, BaMbER: B RIERMGE ST EORAN TR A - &
LTI FE B FEET M 4&IZ 4 (Web Mining) ~ [H]1F (Back-translation) « B 5 Fn2 > 55t
7% (Cross-lingual Representation Learning and Alignment )<

REWHNERG T —Edtke, BAETmE A 5305 PR IRE S sk Mgz
PR R R IR RIS K, X5, [EHER &R T RIEFER A R EE, B AT RE AR
HIEEE R, RAMBE SR VERELHEESE S . AREMERRIESY (hs
LR BRIETE « ENERTE RIEE) B, BT E A RS -

TER, KMESFSHEM (LLMs) WGPT #7% (Radford et al., 2018; Brown et al.,
2020) ~ LLaMA (Touvron et al., 2023) DA }DeepSeek (DeepSeek-Al, 2024)%%, fE£ 15 = H
A RS RN RGeS, o HEFERIE T, RIfE7EZero-shot B Few-shot 5 T~
AEF AR R A XNRBEIRFATIER B SR 7RI RT BN -« [FIR, @LaBSE XHER
[TRA) TR B TE 5 18 SRRSO AV, BB 100 PES FIUEMA T R @ pIERE, ki
RO FATERHR M TR AR TR .

HETFPLEWE, KR T —#4h & DeepSeck KiE S MM LaBSE B1E S A) Fi ARAY
) BT RNEMEIESE, RIETHETLERIEWIE - S2ERI50E - BH wiBnFTiE
B TR ZE TS

LR T — Mo ISR IZHEZREE S T 2 A WA EHL « H T DeepSeek F R B & Ph-FATA)%
FR s URETLaBSE KM G ETESIE U8, EERIUTEREIRES 1715k

p—
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2. M T B MRAMEK H L L EF-DOEFATERE: FAZER, BIWET 1 EE
2I8.4 T3 LR AN HPATIERNE, MR OE-DOE - BRI E-DUE - 5w iE-D0E
=MMEEN, WRBUA - BB ULEZ A -

3. SEERRUE THELSR M M Gl AT AR AR SR RAINMT RS, UER T LaBSE fEif

TRAL 55 7 BOPT B AR B M T X S0 T FNMT A RE R A -
2 MHRIAE
2.1 PATERHEHE S 4K

AT RIEEE R RV A BT SRR . BRI TAF FEAGH A TR, ShHeH
@Egiﬁ(mﬁéﬁ\%ﬁiﬁ>o%%ﬁﬁ%%ﬁ@,&W%LE@%%%ﬁ%ﬂﬁ%i
T IA]

ETMEIEIETTHE: X RTTERZO BARER B H TCRUEL & SFAT N B M, RG]
FH SRS 2 5 0) 2 R 57 BAE IR AT A%  Resnik and Smith  (Resnik and Smith, 2003)3#&
th TSTRAND R%4%, #5047 M TUES A AR ISR S HPAT I TT » Uszkoreit®§ (Uszkoreit
et al., 2010) FIFHURL Z5# « #5028 M SCARE BLEE S A7 I AHASE I 248 TR BRI R 51 ~F AT
e AITFXFFE, Gale (Gale and Church, 1993)84& HAVE T A F K E 7152 R EARZ
7 VE. FEMREA TINLER (Moore, 2002) ~ IAAN1H (cognates) (Simard et al., 1992) A
FESIRMGETTETE . SR, W32 98 U7 1A = B AR st 25 A AN BRI ITEE . 3 T 451
IRALECN B IR PAT I ROR AV, BIZHR I R E R a S RE MR .

ETREFEMTE:  [FE(Back-translation) (Sennrich et al., 2016; Uszkoreit et al., 2010)
FE L EERAENMT U2 N A ER G R BoR, THEMATRERZ & - HEAREE:
MA—D AR BIE S 2RE S BT (Tet-to-Sre), R RER BInE S BIEEUEEIF
EVRIES . ER(hIRE S A, ELHINES A)) BE BCFAT AN o XPPD5 % AT DUR AU 42
AR FATEEE, DEEANMT HAMHEE . Edunovss (Edunov et al., 2018) X ENEFHAT T
RADHT, RS ToREESREE (AR ER . BEEAN) S AERGER 2 R AR
M . Hoang=§ (Hoang et al., 2018) & T AMEEE, & I1%Sre-to-Tgt FTgt-to-Sre FHEAL .
REEEZREZE, BHERKHFEEARES BLREMN S M AEER, BEEREZR
T Tgt-to-Src FFIERE

FMARESEBAER. T, RESHEE (LLMs) BAHNZESEIER ) A PATIERE
FLTTRE T @z AT LE A FHLLMs R B 7575 RHEI I i — FiE SR 0 O AT 78Rl . AHEL
BYINMT #7, LLMs 8% B8 B 58 Zero-shot BFew-shot BIIFAES], BEAERERY - HA
BUESC . b, LLMs J8R] LR FRGEDUGERE, BT E LAlss . £ T304 - U
&, T EPRBIFNLIE A EIT R - BEERERASE - AT, BEMEHALLMs £ RGEEHLTE
ImAcA (APT P 2% FHEGH B BTIR) FIVEAE W AR, JF B AR D P47 f)xs [RIRE R 24T
FrEIdE -
2.2 FATERNTIE

T NIz A E T B AR, R RGBSR s, FEHTILIE
DGR - ERhE IEROR B1E BEnRAIFF EFREERR ~ AT EIRBTE R AR

ETRHIETIEMS RSN TE: FHSETNEEE RN —RIFIE, 061 KE
It (Gale and Church, 1993) ~ iFJCXFFHER (Moore, 2002) ~ 1HFFFLESE, RFIIG—10K
7% (WSVM -~ BEE[ET) SRAIWT AN & B FAT (Uszkoreit et al., 2010; Axelrod et al., 2011) -
XRITEMRET T LHRATRORAE, ZAREER, HXTiESEWER RIS SRR -

ETNMTERE A7 — R A A YIZRF AR RINMTRE o %f F— 4R Wy
FIEIXS (sre, tgt), ATLAM Sre-to-Tgt BEZUENRE svc 135 tgt, iTHE “tgt” 1 tgt ZIAIRIAELE
(&1 BLEU (Papineni et al., 2002), TER (Snover et al., 2006)) ; [Fi, FJLIH Tgt-to-Src 1
BENE tgt 155 sre, THE sre 0 osve Z BAIFHRLE o ZR6 32X B0 J7 1] HO S 70 o 4] W A1) 5% Jot
& (Khayrallah and Koehn, 2018) - iXF /7 EEM, HFZ RS TERNANMTEE, &
AL -

ETEESEXHUENATE: IZ2HKTRMERATIEZ— . 2O EER
AT #0515 S KA (40mBERT (Devlin et al., 2019), XLM-R (Conneau et al., 2020),
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LASER (Artetxe and Schwenk, 2019a), LaBSE (Feng et al., 2022)) RiANEE T BA) F LS 2 3
FRmEAS ], T A & R AR LU SR AT A R & AT (Artetxe and Schwenk, 2019b;
Guo et al., 2018) -« ETHEF M =AM LUE A IEEF E— 1 EE (RZHEELRT0.8) -
NT B REREE, HRERDE THESE0 (Margin Score) HIHEE (Artetxe and Schwenk,
2019b) o K T—MEHEAIXS (sre, tgt), MBEDEEE T tgt 5 src BFIFERIE, LI tgt 5 sre 76
HARE S IBE A ERITARE srepn FIFELUE Z o SXEBIT X4 B IERPAT AR AR F 8
FRAIE)F o ARFFCIERMELS T A REA A B0 AT TR R B SE 2 B 5 I AR AT
TERRRE, 5 T PERESR K DeepSeek TR FHATEIRE, H R TE 518 LILEL F R I =Bk
i) LaBSE AL T E I ES I8, BT S TR EIRIE S WE & R & PATERE -

3 A

AEVEAN AR B 152 0 A 3-8 5 - FAT IR B EAEZR . ZIEZR B Bt AR
AU BAE SRRz 3 = LR AT AOX, AR E1BTR

HiERSE

y y Y y y

ueEm | | MEERER [ | AAEIR | [ IESIR || &iE
4 O’ R R | R

iR
v v v
AT > EEHE > GFTE
TSR ER
L ] L ] v
iEFDeepSeekE) < HEFX -
= > ( s:, b &> HURETFNE
BiESiaudiE
v v v
LaBSEfJFHRA > RZBLETE > BEERENTIE

<>

Figure 1: Z£TLLME EEF A AR GRE S AT ERER EHELR E
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3.1 HERHESHAH

T FURTE S BRI R E A TAEREM . FATEZE® AT E (Kazakh, kk) ~ 5
2R T (Uzbek, uz) ~ EH50E (Tajik, tg) X =M AT X 2 HES -

3.1.1 HIEXRE

N T R B AR R RO AT o R, AT R e T B A LR R S 2 AT AR e
B, XEEm i@ s R EYA « &5 S LS L T H KT ERE - SR5F HpythoniE = 4
5 A A TCERE S - SR )5 F TCB B R AT N AR BRI IE - B SRS, &aBEIEARE
T B E

3.1.2 HUELHE

RRURWR IR, BIATHGT T —RANFAE SR UGS Fi& - HENATFINE. 1.
HTMLAZZEH . f# fBeautifulSoupFITHTMLIRZIEH . 2. KT AT B
WA URFARF - BHIFAE, REREATS . 3. XAMIEI: S —RmIG HUTF-8, AHATRE
FERSCREER (a0, Si—515 -« B S%) 4. XEHA): SN XERBIMETFRANHETE
H, NTREMEFNCESAFRE—H - BT ARIES A FERMFITEAR BRTHEL
fRes, <2 L IRARRS AR EEE A S) o BATRA T ETHNFIE L X7 ER 5 A8,
FHEDK BARE S IR S TERL, FluBERERTE (BFEiE . EEEEH) T
T (BZHIEIEEH) fInAEEI . 5. aFOiE: BRal (OTsE) gadk (8
150 MA) A F— X LA FAEE RS - FIRIEAS R B, M LUE R S~ F4T
XF; RN EZ BT - FRAF 5 8 dE BB s FRERA T -

3.2 HTDeepSeek HIHFATHIXTAERL

KRR EERE, T—P2AAREESER (LLM) REFIES T, ERhFITa
o

3.2.1 LLM%#

B AT & B A FDeepSeek-V3-0324-685B1& B . % FEDeepSeekft) F E & K £ T
H: DeepSeek#: T i & £ 18 F 2RI AT YI 4, B AE AR B 6T 45 & A% B IR 8 5 6T 35 17 fil
W, BRI BRI EREAR D ARRIERE ) - S T HIE KA CEAEERE S, DeepSeek 7F
HYMHRAES LRI AR M - BATERTEIE « B2 FOHTHE « 355 57015 & RELIE R
710055FLore-200_1 A T #1389 1 1118 5 1% 19 00E 5 DeepSeekfl 15 FI 45 SRAE M HLXT, I
MEVSE FE RN B AT AT 4> (1540 dl) |, B E RN SRENERIERE - &
IDeepSeek Bl IE R 2 792% -

3.2.2 WIFIRE

P AR PAL P 5 R A R L E S WA T IEV BN, FDeepSeekHIAPIZE 1T & 3% -
FRFLLMR [8] ) A ST 305 56 B IR 1E 5 A7 B 6, T2 o) e B0 O S A7 38 R - k8=
HSource_Sentence \t LLM_Chinese_Translation . R & DeepSeekft 1% 2 it = fi & FI#13%, (H
RO FAT AR T AT BEAFAE AR IR LB R EAN R N TR AU AR B R R Y
RIFEER, BAMATREHIBE (W' Kazinform IRFA RIEEE) - 23ENER: BELE6E
FRIFSCHIAR & SCEGI ANBCSL . 3 RAIAR B Bra AR AR T REA7 A2 fO MR 7= B SE R )
¥, BIREEREKIE -

3.2.3 ZETLaBSE MEEFIERA

i 7t 5 A flores- 200855 5 WO VUE-ME B2 5w 1 ~ DOE-5 2551 5e. 3 30 B A DUE- 18 3 so i iH
PR ERT ST SRS, FATR INE F LaBSEZEAT DOE-18 7 w15 AT RBHE XS 57 BIF 1> 2 RE S 14
#196, M AEMbERT flxlm-roberta-large @B I E40 LA « B LN T MK &I FAT A) % FR ik H
R~ B —BEAX, FATRA T LaBSE(Language-agnostic BERT Sentence Embedding)
B . LaBSE i#id 76109 FiE & L AOEEE SR AV ESAEIEHE TR SHETIIGR, e R
BE WA TR E — R R E g m B AS A, EEIE SR A FAE R &S A PR L . Y
TN ERBITAT AR (sgre, ). TM T FHLaBSER I T BIFIE S A F 550 FEINES
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(%) BT, B R
Vsre = LaBSE (s4) vl, = LaBSE(t,,) (1)
HA, v Flol, BYEEAAR GEH 768 4E) MITHE & .

2

T BASENIYR A 7] & (emb_sre) A1 HARAHA 7] & (emb_tgt) FEAEEER, H A AT
REK, FREEAM -

3.3  ETHLUE SIS BN E D 1§
79T MDeepSeek 4= a0 D~ FAT AN i s L& - 15 SC—ERI AR, BATTPRA 72T
DU 55 320 BE 7 B R O R

o AIFBRALER: XN TH—DWFATAR (sre, Sigicandidate) , BN ERTIZRHILaBSERFZL
AT EIRIE 5 AT AR SO A T R

Embg,. = LaBSE(sgc) Embyg; = LaBSE(S1g¢_candidate) (2)

XA B Embsye FEmbyg AT Rl— 8 2 B H

o FAMIBE T B FA 1 R TZALLE (Cosine Similarity) A &I A~ [a] & 7E 1 XA 18] F A
AR

_ Embsrc . Embtgt (3)
[Embsre|| [ Embigt|

RS R BUETE R E[-1, 1] ZI8], [T, FoRmAa) 7 riE SGBAEML . B L,
WS sre Msigt_candidate &N FETLRIFATAXS, ENTHILaBSERA R EIEH L, K%
MR BARE -

o JNIEESM{(Margin Score): (UIUKFIRIZAELUZEIEA & PLUX 5 FIERSFAT A FHE IR
IR FEPAT AIX, 2P FO R (Artetxe and Schwenk, 2019b) - F T & & IENE
Bk, FATSIA TR %L (Artetxe and Schwenk, 2019b; Guo et al., 2018) - HAZ/0EAE
5B, — NFHIEAT AR (Ssre, Stgt) ANBLIZAREL, T Hsgre Ssige FIMIUERN L EE =
Fssre FIEBVEFTEM BAVRES AT s}, PMBELE, RZIMK-

AT Bsgre 7 BVRE S IBERER RIRIEAE NHF N syt candidate A5) HIF

i@*ﬁ{u&fmean,sim(ssm, Ntht) s u&stgtfcandidate EY}E%“%I%*’I‘EEP E/‘J%ﬁgﬁk /l\/‘:ﬂ¥‘
(K@%SSTC K%) E"JzizﬁﬁﬁMﬁmeanjim(NNsrc, Stgt,candidate) ° %TITIE:;&;{“’ &ﬂ]

ALK (batch) N RIETEECE BT T I E TSR (WIFAISS (Johnson et al.,

2019)) RfliHixLe s

AFR T ECAT LLRE SN

Slm(SS’I‘C7 Stgt,candidate)

sim(Sgrc, Stgt,candidate)
(mean_sim(sye. NNigy) + mean_sim(NNuye. stgt candidate)

margln(ssrc ’ Stgt,candidate) =

(4)
VIR RO, RO A TR B G | DR, SAESWEMA) T T, ERRET
P AR AT REPEBOA -

e FIARE: TEERZMELUEMAE B AETNELIE . — D HFI7 A
X{r(Ssrm Stgt,candidate) %&1%%—Fﬂ%%ﬂ'fll——u| E]ﬁjﬁﬁ{ﬁ/@ L)L—FW/I\%%#F

1. Sim(ssra Stgt,candidate) > Osim
2. margin(ssra Stgt,candidate) > Hmargin
H A0 im MOmargin = TSGR E R BIME o X B B (B A 08 1 2 — D AU RS 1
(Precision) FAAEZ (Recall) IR . 8w EE 2152 5 5 5 (5 R E
MITERE , RZ IR o« BATE £ — P flore-200 4G IEEE FiTR%s, HHEFUER K
W€ S EIBIE - AT, FATBCRTZAELE S 0 7> 8 2 AR Bis0% %L
&, BETIBHRL20-26% IR O AT A, LFEERARAN B & -
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T N XA WE SRR, AR A0 5 - FATaxt &, HEA1E SR ik i
TERENEREPATIERE . BXEEARE AT BEN AVIEEEN80%, 11 F K152
2.7 A1 o BATETZ PR B RAME T B &8 A BB E, XA LEENE=TMET
St iR BB E A — M E B X EE -

4 =%
N T VR EATR B FE R EAEZR R R, T T T A SRS
1. i EEYEREVEAG: TS LaBSERALAE X 53 FAT AT FAE AT AR SS ERIVERE, 5 EAhES
T B RN AT L
2. NMTHERE A RN EANERZENZNMTREY  F o EfErEeE, DUESUEE R

i =

4.1 SERRE

o JRIGEGIE: W3 1TTETIA, MFEFEHTE « B 2500 wlH < B SOTIE E 77 i 9 vl TE AR
THELTE -
EEHSBSE: §F: RTX 3090 (24GB) , WAV SEGLE N: HLE K64,
22 RA2E-5, i gs:AdamW, dropout:0.1, P E F1#:0.01 -

AL 18 i R RIAR:

ES-EnES HE
B 5 IE-10E (tg-zh) 35,158
M SLIB-10E (kk-zh) 36,125
B35 5B (uz-zh) 35,989

F1: T IERTERR
i I8 5 TE RIS (I A TERLE)

RES-BRES HE  OEER (%)
P T IE-DE (tg-zh) 26,073 25.8
METE 5 BP0 (kk-zh) 28,989 19.7

B35 B 5 W- T (uz-zh) 29,048 19.3

#2. i IEEIERAIER
AL TERR:
— L5511 (i #EHERE): Precision, Recall, F1-Score -
— L2 (NMT f£f8): BLEU (Papineni et al., 2002), f#fSacreBLEU (Post, 2018) i#
TItE, LIRS R S0
4.2 1 FATAXN SRR
B AR X T HAREE & R X 9 PAT 5 3R FAT A AR5 a3 -
1. HEIEMBIESE: T8 NE S5 (kk-zh, uz-zh, tg-zh), I/ B 5 & P17 iR E
FHEUEAANE R IE ] (parallel) - 2 T # % /2 5 (non-parallel), A TR DL R RS X T&A

EFIRFIEE=2.: 1) FEHEX (50%) ; 2) BEFEEAMES (30%) ; 3) & AERUEIE
FATARS (20%, 3B LaBSERR EMAE RERIFFHIAIT) « BHRESGIELEI 11,

TR EEE SRS, BA88TL-H499T, W, TE, 202548 H11HZE14H.
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2. it EMLE /& 4. FLaBSE < LASER - bert-base-multilingual-cased FlxIm-roberta-
large 70 AT B PHINEUE £ 7 B G A5 RIS 1 S IS 0 A BE 70 4 .

3. VA N TR AR CUES S, R ERERE (EFLZE LERIFL 540
R R PATEE AT o IRE T EAENNREE L AYPrecision « Recall FIF1-Score -

GER: SLRLEIRINES B .

A% (model) kk-zh uz-zh tg-zh

Precision Recall F1 Precision Recall F1 Precision Recall F1

bert-base-multilingual-cased 0.451 0.204 0.281 0.321 0.104  0.157 0.097 0.023  0.037

xlm-roberta-large 0.350 0.073 0.121 0.262 0.016  0.029 0.097 0.023  0.037
LASER 0.963 0.843 0.899 0.986 0.927  0.956 0.965 0.858  0.908
LaBSE 0.987 0.976  0.982 0.995 0.987  0.991 0.992 0.986  0.989

#3: NFEBEE SR AT A AIRNES E PR

ST NES FTLUESE: BN EZIES % 2bert-base-multilingual-cased  Flxlm-
roberta-large £ B % H T E & T AN H I EFHN B REREE, F1 o EHRRK -
MLASERFILaBSERIMIEF IF » X F Z2 lH THX MR 3+ 22381 Masked Language Model-
ing (MLM) #Next Sentence Prediction 7E KM E S HEHRE LFTTOIIZRE - EATR HiRZ
SSTEAN  EFCHR /A ROR, EAEBRIEIEICAIAVEE B - LASER IOkt B
PREL AR A ACHE 5 TR B A) T (language-agnostic sentence embeddings), B f#HE T BILSTM
FImtan-fRIDaR2er , 7ERMEFATIE R 171145 - MLaBSE 454 T BERT A Transformer
ZRAGFNEALILASER HIEAER - LaBSE 7E170 12> B A] 7160 121X A5 %F £ FHMLM
FITLM (Translation Language Modeling, TLM)#1TII%5, E BARARL2E ) RAE B BRG] 7L
SRR 25 (8] P [R] — S - B4R UL LASER FLaBSE FE2& NEES A F RN
B, EATHIIZR B RS SFAT A AR ES mE R E - MmBERT FIXLM-R ZEAHRZ1ES T
SRR, BORTRR, (AHFRRSHRE R R EESH T, SEERAE -

LaBSE &7 iy GE7E B fa 5 L #0 B2 TLASER MEMELER F1 S8EEE R
F1. XFALaBSE REMR EAETHIHIE A FHE S 6] F Z A f01E B ME, B E e T &
HPATIER AT IEESS - HEBEREEETHSE S TMLM - TLM M#EEHEF ARSI E
B e

4.2.1 S£%2. ETFNMT HiERERE LM
BHbR: A5 B AT YA R A P AT 3B RS R R VRNMT R RE AR AR -

1. R, # HE T Transformer ZEF FINLLB-200 Distilled 600M #5753 47 Zero-shot &l
B o ZEFMENNAEE  (Flores-200M%E) _Ei¥Afkk /uz/tg -> zh 77 [ FOBHEMERE -

2. PHIAAETY: A FATESES 1 Fad B 2] fkk-zh (29k) ~ uz-zh (29k) ~ tg-zh (26k) “F1TiE
BHE, 5 AIFFNLLB-600M 25178 (fine-tuning) -

3. Wl 5 EEEAEF RS L ERORE R EIENERE, TTHEBLEU 4.
BER: SLIRSERINGRA PR -

T (Model) kk-zh uz-zh tg-zh

BLEU (1) BLEU (1) BLEU (1)
NLLB-600M (Zero-shot) 48.05 47.71 38.62
NLLB-600M + BackTranslation Corpus 52.89 47.91 38.92
NLLB-600M + Our Corpus 53.11 48.30 40.25
£ A (Improvement) +5.06 +0.59 +1.63

F4. FHRBEEREMANLLB-600M 5 HBLEU 4527+
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AT T4 AT LUE

1. NLLB-600M 1E N KHIZIESIRA | fFZero-shot M F A E& T MU AN ENFRE
71, THEAKk-zh Fluz-zh FBLEU 94081150 -

2. AT T DeepSeek+LaBSE HEZEH #E AP 1T RVEXRNLLB-600M #1TH0AE, T

= MESHHIBLEU 983 E T .

3. X TR IE-IE (kk-zh), BLEU S8R A RN ESE, B2 175.06 7 XEEZEHT
MATE TN T HAD PG SEIEE A SIE . kk-zhAERVE S T —38 90 Fefi 148 E R AUEL R v
R EORE, BT AR T B A kk-zh BRI R BEE, BSNLLBWIZEdEE L BA
— %€ BB B ATE R -

4. X F B3 B 58 E-TUE (uz-zh) FEE 5 50 1E-1 8 (tg-zh), BLEUS BB E R, 45
90.59 F11.63 7 - FEAMEEMAXN B, FEERESRETFESGIEML, 225508 Mg & wid
FEENECH AR, BEUEEEWRFERIET 1 . MFLORES-2005 5 & 1A F EZRIET
FEAEEL BRI H (Wikimedia projects), HIEMMAE 7 B2E/B0K « kil - BUG - FE - #
FR~ R PR . XEWREENA R TER2PRM . EEEASUR . BRI
FIERHIE (26k-20k) MXTERR; ERAES MR BT GEE—EER .

BRI S, LI as BRI T RATE B PITIBREZSERR, B ANIE LB
SNMT BRGNS 28, SOUE T FA 15 H AE R B HEZE A0 SE FANE -

4.3 {HELCES

FT AHTEREUERT LS BEERE AR, BATHAT TIHRSELS, F P g1 & 17
ITIERHERAUE, FE R NLLB-600M #Z7E AR AEERE ERUAEMBLEU (H . B ZBR
T TE S DOE N 228 B 5 E-DOE 77 6] AV Bl SE G 45

Language /o
=== kk-zh /O
uz-zh ]

54
53
52

51 -

BLEU Score

50 A

49 -

48 ©
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Training Data Size

Figure 2: BLEU 4 (BAEIE AR ZE (L
H EI245 SR AT LU B 3T 7T AR BIREE ISR ER AR B3 I, e BE 50 i8-D0E  (kk-zh)
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BRI TE-DOE (uz-zh) HINLERHIEBLEU R EFTRTF, (Hkk-zh BI5ETHEE Huz-zh
e XEZREBTRECEERNEARER S, B85 8SEARS ] WES NS
W7, BAEX SRR LRSI R A B m, MR R RER T -

5 SRS

REFFR RN U T —Mss & RIBES A (DeepSeek) FETEFHE LKA (LaBSE)
PURBHRPAT R EAELE, R I SR iE - 25058 -« EE Wit

T IEHEREHT: SERRLER (F1) EMIMIE, LaBSEEX S PIT5 AT A AR &
BT . HEEREEMF1S (kk-zh: 0.982, uz-zh: 0.991, tg-zh: 0.989) EHBETIEHLIE
EBERT/XLM-RI 7%, tHEEMN T Z A FISOTAKBILASER - X132 TLaBSERIIZR B 7
(MLM+TLM) f#EA605 5 I R E = A4 S U R % R o ks A 2 (IR iRk
EREFREMXHE, LaBSERH AR EATG M E S R BRI ERE T IRSEEM . XHE
WRE, X TR RS B TR AT A 4RSS, LaBSE&— 1 IERERHEFEN TR .

ERERESNMTHRSNT: S£582 MEEREH, RENLLB-600M XHEMB AN EZIES
B B2 B & 58 K Zero-shot BIIEREST, (AMEABATEDZESEM R « MUK (43
FARS EER) Bm R EPATIEREAT RO, DIREERE TR R AT LA RESR Tt - A2 fEkk-zh
A BB NBLEU S gURFA, BoR TR ~ AU KA AT EERE X T4 A48 8 5 0 #
BEPERERIRBEVER o uz-zh Fitg-zh J7 MBS BIRTE RN, (AR T HERIIERE - XR
HHERA TAOMESR RERS AE N AT SOTA BBV E MBI FEEE - ARRURBEREE ZIRIE E $£18
B, HE N A ESE, B8 — PR A SR BRIE & 0 BRI RE -

ERFBHESTT B AMRERRARET I UERFERE . B22757wiE - 55
B, EFTREMEREE RIFRERAMY . His L, ZERT UM TEAESY, R
NEM: LFEEENFERIBERM GBS A (WDeepSeek B H MR LUEAY) BN AL HEIRIE
SEIEFMESMENE; 2. LaBSE (B HMEMREES HRARE) R RNES - BE
F|DeepSeek FLaBSEES ZHF 12 0BT, ZAEZEENH T B 2R IEE 5 Pk i gt
&

JRRRYE: ARIFRMAFE L RRME . 0, ERESEAE T E T E A, ATRETCTE
SEEBERITENMAY R - HIK, DeepSeekIEIFEME BN, B REELE RGN Z B E
RAREER, TIEPR RGO |, (BTESEERITE & . o, NMTHREEEER 5

BEIRFAREI AR P PR, X AT

6 4w

I F RSB FERIE « BRI w1E - BE ISP KRR RE S AT iER B Z 10
M, R T —ME T DeepSeek KiE F UM LaBSERE1E 5 18 R AR H ML PATIERBHE R AE
R ZHEZRIE T R ) JC B B R . A H DeepSeekdE: Al it & AU PATAINS, FHfEBILaBSELt
BEETIEEME, H456 RIZME LU F IR BT = SR A g -

SLUSUERA, LaBSEZEPATAINAIBIMES LR Ak, wokl HAh B . {8 AHEZRF
HIZ8. 4T IR - L 2 8 AT IBRE, £ TIHNMTES R H RIEFRIRUR, BEBERL
AN GENFE FERE - XU TAEN O IR T IRE F VLSS BE R AN RS T %
ﬁg%ﬁiﬁ%ﬁﬁ,@%ﬁ@ﬁ%ﬁ%?ﬁ%?ﬁ%ﬂ%@%ﬁT—@ﬁW%\ﬂ%%%&
INZIER

JRRRMES Rk TAE:

L JRIE R AU RECHCE AR - LU BB HdE, 27 FTIERERIA
RAIZ N, R IR e AR ILES -

2. MEALS BRI RRERAMLBLIE T, BInss & aiEn i SERRISEZHEERER,
Bl {5 A 5 2D B AR I B B B ) AT I -

.RABMFERE: KRMAHENR . H R AILLMs( 4. Aya,Gemini )i 17 & % ,
S LLMsZE 1745 € AU G S0 A0 DU R e or & B D~ A7 A0

}\EL'

&
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4. HEEWEPWAL: AEZIRENNRE TR ANMTERETER, 5 e @ik
(GnfE -~ GEACEIRE) AT B AR AR HU SRS

NG, BEESORBIABT S MBS AIRA . Bl - S &R AT IR R 1T
BOE SRR (et 2 BETEE A AR R 5 USROS E SR -
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