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Abstract

Legal Event Detection aims to identify and categorize events in legal texts. How-
ever, the complexity of legal cases poses significant challenges in collecting high-quality
annotated data. Most data annotation in some domains is currently done by hand,
which is expensive and time-consuming. While traditional active learning can partially
reduce the need for manual annotation, their performance remains constrained by a
heavy dependence on human intervention. Recent advances in Large language models
have opened up new possibilities for automated data annotation, but how to ensure
the reliability of the annotations they generate remains an urgent problem. To address
these challenges, we propose an innovative, collaborative training paradigm, which
iteratively selects informative data using active learning and employs the generative
capabilities of large language models to produce and refine high-quality annotations.
An evaluation and filtering mechanism is further introduced to retain only reliable an-
notations, significantly reducing the need for manual labeling. Extensive experiments
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on two event detection benchmark datasets demonstrate that our method substan-
tially reduces the demand for manual annotations in low-resource scenarios and, in
some instances, achieves performance comparable to supervised learning.

Keywords: Active learning , Legal event detection , Large language models

1 5§

TEVERAE, FSOAE R M H AW B R AP R, A AR B AR SO R S 1
S TIEEREM T ARE R REE . BHANEINER ST RS T 2 BN TN
RN EREE . EHRFHFEN (Legal Event Detection, LED) # X iR BI FIFRIE SCA H H i
& (RAEEREBERMERAERE) o RIS, HEESREOE® H THBI 547 T It
%5 (Zhang et al., 2024; Feng et al., 2022) . & BRNESOBEE AL RE, NERKF B
RECRHE B O LR E R R AN I B ZESS - R, REFSLBRIUESHERT
KREWTFE, BIE ROPRE SR B S W RN, Btk it 5538 i i F B ACE2005%X
PEEE (Doddington et al., 2004) A8 RT3 N FHRA, WERIFHFRBFFRELRIEE R,
H B TERRGAMEERZ T, R1TH AEREFRRBUTETRMENBEZ o 7E5EFR
Yy N HImE KSR SR D ERE IR, 2R TIRERIERN R (Yao et al.,
2022) -

Bl ERMASISEFEIRENE T EREZET ALINE, XI—dBEB AR S, f#
BRREREEIREDR T oMmEE - S5 . B, A m 2R A R R EEE FFRE IR A
THRERBAR —TEEZAEEXHHR TN . E512%%>] (Active Learning, AL) (Settles,
2009)# T IA EEEE B B SRR LUE DR ERIR TR, SRR AT AR S R (Mar-
gatina et al., 2022) ~ 15273 (Margatina et al., 2021a)55E55, SiXEFINGRIES AR, ¥
FEII AT EHRNES R — D HARTE AR T, R TRk . B—m, &
B ERIA R B RIERN B v I E RIRE (Li et al., 2024), FR#I T ER ZNH - TEK
T <Large Language Model, LLM) EZ T BERIESLHEESHRINE T S8EE T ME 5%
PEARETERRME T —Fh 28I (Tan et al., 2024) - @ 7T H SHCRE RS TR0 DUE RFF E
A, KB —SAESS EEZ A LT ARINEE IR (He et al., 2024) - (B2, KIEHTE
— B FNVEERR I T T A S IR AL IE R B FHAOPRERORE, A TRIEINEEN AR, 1
& — MEBIRABF )R] -

FEXTTAER, FATRH T —Fsgrst M ENIZR7EZCALLED (Active Learning with Large
Language Model for Legal Event Detection) , ‘B FIHES2ESEM, ERMERE T
—IIRA TR IGRETR . YIZRLLMAE R € A _E EORMEESIGE S, MAHEAERESR)
FE NS P EIRINERE . SETRINGREIR PR SRS AN —RANA R, SEhRE SR BB
HEERAEE R iR, H 7 EF A FHLLMARE & O EE0E, FTRA TR
BRMBEOR, 51 FLLMAEREZ MRESSR, it 7 —F BRI RN 2 PR £ R
i, RBRFEIMERIPRERTE A AT LU T —Rak AP i -

IR, AR FEZETTEA R DR T R T E T EIES TERESRALLED, £
TIRBEIREREBEERN R T R2ES TR, ERAEREFEN MO E WA, R T
FLLMAER FE 5% 5] FREERFRES FItERE, FRt AR A TAREEERE & R T LLM B3
X SRR S5 BRI ZE P DT 2 (5 FH PO SRR TN AR Eoe AT 75288, VA T =R TT
TR ALLEDHESR N A 2 M 1) SR

2 FXRIE

TSR RS, BRI R R ISt . RO X—Pkis, Esh2E>) 7k
RO, HEEMNBRE M EREERFERIRE, DAERROEREME MR ERE, 8K
AMEBIETE ISCILEr TR RIVERE - 72 BIRTE S B0, 502> C RN T RRE Z 05
NHRESEARMAL (Dor et al., 2020), ZEHIFET TIHES L (Margatina et al., 2021a) -
ARG (Schroder et al., 2023)FAF 4 SERIRAI1ESS (Vacareanu et al., 2024; Radmard et al.,
2021) » FEEFNFEIRBIGERH, BRI B R SRS R0 Tk R B B 2 AR #H1T
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Figure 1: ALLEDEEMARZEM): FFHLLM#ATIEER BRI E 524>

PREE - FEBh2 > IR ST B R EE H 0 N E T A E R 71 (Prabhu et al., 2019; Margatina
et al., 2021b)FIZET ZFEMERIJT¥E (Ash et al., 2020) - X Z % Vacareanu (2024) 95T, R E
S N A TR IRAE R B RNES, FRR S ERRIE R R RE R me, DU TR
PRI a0 -

i, REREZ T EHRES CEAES TR S8 TREARFDEARGES (Zhao et
al., 2023) . —EE TAERFF T 7EBR Z 7€ TS5 R BRI LLM FFEAR 22 3] 87 (Savelka and
Ashley, 2023) - F—LfF57FE ETFL2>] (in-context learning) HIRZF (Dong et al., 2024),
D BEASEFENER, CEERHERER /DR (Zhang et al., 2022) - b5,
FXTHF B AR (Devlin et al., 2019)4 7] DUE 2 /0% SEbniE 7 A T Im FO Pk - H RifIE
HREME IR R RZE T T ZHHAACE (Automatic Content Extraction) ZHHHE=0#HT AL
PRvE . —2E TR B B#EUESE (Gao et al., 2024)F1T5L98, 503 W R A KA FF R £ 717
§F5 (Parekh et al., 2023), RLKRE(RBTRIES (Touileb et al., 2024) - (KB VRAIH (Ma et al.,
2023) FAEEIRER o (BRI OB IR SR MM I P AR T A SRR RAEN B B BOAREORIE - Rt s
BRI ATFPREBIRIR T Mk BTt . 7 REIRSE A, —ST/E DU T & o0 1A
18 AR A Chat GPTYE N BEEFREVR (Gilardi et al., 2023) « 1BiT 5] AR BT &L H],
A DA — AR PR AR AT S, B AT IR A B E IR AL AT 9 BT AR 5 1% (Zheng et
al., 2023; Kim et al., 2023) ~ ZETHMFIRERI /7% (Dou et al., 2024)FILLMIREI /7 ¥ (Wang et
al., 2023; Lu et al., 2023) - AR ZAFMALLMAFEE IR EA KRR BB FRE, EEFA
TTRIEOL N CRUEFRIFE R AvERA PR — B, IREIEB I ERE -

3 FEHE
RTTHMANE T ALLEDNEZE , 1Z G 1ERER T KA 5 £ 522 5] RIS FE LS & R R
ESH RN - BERREGOEL iR . 5EEF92S) FEFEESRINGIER PRI TR
HEANE, ALLED #4FIH TLLM BN BEhbRiESS AR KEE ST, W &M T ALK . £
HEZR A R DU IR IR T
1. B4, NLFRFE—/NoE s S0EE, 1ERNVIm)IGeE, HETZEEIG— 158
MRS KRB b R 2y, BN TARFET R -
2. FEEBNZOIEIRT, RAZFE R I N ARTREEIE B0 BiE AR ERE A
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3. i SR KRB PR E 2% X B ik (RO REASEAT B BAREE, IRIOR R 0 1 il 4037 5 28

?j_lJAO

4. FIABUEESINLS], X AR B S BRI PRESS R T R TRk, 3 I A E Bl S
PRI T B 0 KRR

5. R R BFTREREA A CE NGRS, EHATIIGREF MR R4 .

6. EEPITH2ESSY, Wi BRI IERNA IS EE SR E, EETES
T Jot A AR T FH A B IS A SRR L R

3.1 EifFEE

IR R T =M 2 AR T A E SIS, UL — 1 RELE RS T .
FEREAGE RS R, ST RNE, BRI E G S TR, R IEE AR
FFIRE - &2 SRmS I BRI -

Random (RD): FeHEAIATRMIANA, TS LIFEHL T 2R BCEARE AR ARE - BEL
BRI AT EE AT E

Breaking Ties (RT): MRIBETITMILEF, SEEEH1TH - TNMER 2 BE B/ N L5 #7745
e Bk, 3BT LUN ARSI

argmmin [Py =l | w) — Py = la | 75)] (1)

HoAr, 1 iy 73553 B AT BERIPRZE AN S — AT BERPRES o
Least Confidence (LC): MRIFEAITAMILE S, PRk FiITRES B A5 B A AR S5 3 1T b
- B LU AR RE AR

argmax [1 — P(y; = I | z;)] (2)
oy AT REIIARES -
Prediction Entropy (PE): MRIESAMITIM, JFEBEHREE 5100 (E 5 = AORE AR ATARE
AR ARBE AR TR - B ARIE I LAR A UOR SRR ;-

C
arg max |— Z P(yi =7 \ xz) log P(Z/z‘ =7 ‘ 331) (3)
€T; 3
i j=1

HA e fer, FTE A BERITIITRZE AUELE -
3.2 KERIFRESS
KSR EBA T NI EEERFERE - B& LN OB PR EEIE T m e
Tl o AR RLLMR A T4 € NI ES B LAGE, EETEBESEIEE R, 2
BT E e . HRARRYE TSEES (Parameter-Efficient Fine-Tuning, PEFT) 7
%, O BERERFETHRESERS NIRRT, UREB—/ NS IMESE, WmiREHE
B EAAPERE . M AT ERAPEFTH R B E TIER RN E - gAML ARE: B8 N0
(Low-Rank Adaptation, LoRA) (Hu et al., 2022)% - HH LoRAHTHMMAIMERERN RIF
IR, BN SR ZFIPEFT A « AL FEERALoRAVENSE S MU I SL BT = -
LoR A B R T AN 22 HE R A B8 3 v] LU i (R o A AT (L, BIREA EE BB R om A
FREEFERRAR, A BRI RS EUNEE -

AW = aBA (4)

Hep, AWREENEEMEAER, B e R™THIA € RO rAIFER, o B EEE

T gL T, POFAWHITIAL, ERAEEEW RFFAZ . MAEE, ARMEYLY

AILE), BTG N ZE - FEVGIT AT, BELRASHEW + AW =W, SFIEEHESH—
e
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3.3  BHRE PEAL

FEALLEDMEZR A& (I ZRaR AU, #BRE 68 FH FRLLMARE &8 4 AR08, T B R T 203k 1
X LEDER KRR B E BN - F, BROFM I LLM A BRI PR N T 7850
REEEN B REE . NERZPIE, ARIOET T — i T RO R 98 5O i D B T
VRN o % 58 A0 R) R0 AR A T2 R R AR A — R R A s O [, T IR A R 5 R AR
FEWS 5| FLLMA M E MEEinELS Rt — DM . Bk, ERRERNE D, T
2 BREE R B R B Npeam 78, Nocam BB KN o XT A Fs;, © R LUER—HIRGEDR
EEAZ = {(si,e“,r“),(si,eig,rig),...,(si,em,rin)}, 6%3%%%8%%&5@%]4\1ﬁiﬁ$ﬁ{3, Tijfll‘:{%
WebRiEe;; KR o MR3Er A0S, AP BIPRTESE RS FHET - IREPRERIR D r HTEWT

T

Pley | s) =) log P(xy | <1, 5:) (5)
t=1

rij = exp(P(es; | 5:)) (6)

Hepo 2B N EE - P(oy | <y, s)fEE BRI SRR -

IR PRVE I T PRIESE R A Al (S AR, - B, J—MREIRENRS EEES
S BIETE LB Er, BEEEDrn 58 _mR D rp L FREEBL A — P E{ERN, %
PREBIA R AR -« BARTHEANINT

D:{SiES|TﬂZ’7'1 andril—riQZTg} (7)

He, SERRIBEREREEFENATE . 2difts, DERZNSTERENATE. =
RIIZRERETRAREATHE (HeR) FTDTIATHE -

TREPME BT R IRE TORIIPRIEBEE R TN, NRES HAbEEMN X 25 =80
e P EIPRERE AR BB SR ZR, MIAREE W T R P B AT IRE, EEREGHE T —
R TR IREAE R k- -
4 K%
4.1 BEE

TATHET 2 56 FH A S ARG I 2598 22 ACE05-C (Doddington et al., 2004)FILEVEN (Yao et
al., 2022) b FF/ESEE - ACE05-CHEL & T 33F0 Z 44 K AL F599 10 M AN [F R IR A 301 « R 1%L
EEE T EASE, EERESN MAEEXEFRENEREFRNESEFERER
3o LEVENSZE H B o E S S K FA BRI EESE, A& 8116 MERURAN108FhH 13
B RN T BERENIFEARITER -

B % ACE05-C LEVEN
HFEE 7,955 63,616
HiRERA 33 108
R X 4090 150,977

Table 1: FEHFRMEIEEMZTITEE

4.2 ER5M
ELITER D LTS =4
o PR3] ERLLMsH AT DREARR) E R 3CES], R MIIZRE T RENLER - HT 7R
B R S BT E FTRE B AR R Y SEAG A HU AR T R LoRAR H TiX 28LLMsH)
R AR RE B, BT DR LM ERREEFETWE (1) FIYREE.
FHOpenAIAZ 1 JChatGPT (Brown et al., 2020)RFIHA , BEE KESHES £
e, TRZNATEARERESCIES . (2) JFFEE B ZH#EH A KT IRES

B R ERES SRS, BITI-2E49T0, ¥, FE, 2025458 H11HAE14H.
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A Qwen2.5-32BFAQwen2.5-7B (Yang et al., 2024); AR BRI Z & T TE X E
AR AE G Rt A S AR RE S R 8 InternLM2-7B (Cai et al., 2024); H
JHE & AT B0 5 — AR KIE S 1A Baichuan2-7B (Yang et al., 2023); DeepSeek A%
A HIZET QwenZE ZZ ML FIDeepSeek-R 1-Distill-Qwen-7B o

o WERMM: MAHLEVEN (Yao et al., 2022) {32 Ht fUtT FH THOM - B F B9 ZREHE LL A
5 ALLED i FH R LLEIAE R B, BI30%IIZRELTE - 5 SR T 1 F e B #E 17
WERRRERENSEE

— R EHREME SN AR T ET RS, B T WI4RE S S ABERT
FMRoBERTa - {4 5 #R BUEE Bk i Z A IR R, HREMAZDRE, U
TS DL ) SRR A o O REA T e — P Token W AIHI Z K P RAESS, BRI
SUAS Hp B TR O B A A T e EL SR

— FPAIBRIE: BIAT FPHIRRE TS R A Rt AR A 7 AN [ 5 Ak & 3] 2 A] A | R 3T
WIS ERR « BRI Z BN T wiges 2 £, RAREW IR E 75
HILEF(E R, IR B AR PRIETERE -

o RMFEHLKIRAIALLED: BENLAME R L5027 5] i B fa] B ) 2 1) SR

VAP T 5L (2013) ) TAEF AR RIbRE: WRM A W8S 2% a il —
] (Trig-1) . W & A # ERR A o QiR & RS R ELS 25% il R A S 2R B — 2K
(Trig-C) , MIARA ARG IERIS 2K o FATIRE Trig- T Trig-CHIF 14 - FrE SERH4 6 F A R Y
FENM T T EE, SRR RARPFEEMREE -

4.3 EIRE

ARG S T Vacareanu (2024) TAEFPISERZE, FFRYE 115 BTR Y PR il A2 A A A
YIZREREFEAT TIE S A% . BAT S, LEDEALRA T 24(& H107MAIBERT-base-chinese,
H A FHAdamWILALE HAT ISR - FTEEBESIRES, B EIR R ILHTI0H L/, BN
ARAMEEE £ PR BURA R INA B GE S - BREG RN, B H30%0 AR T
ZLEDEEA! . ZELLMARERSE S, 1 Qwen2.5-7B-Instruct {E A ZE AR il i LoRARE
JTEFENN S TR 2SR - X TLLMAY LR 3C%5] - LoRADL RFRES IR, H5—
FAR2FHEIREE . LoRARUAR, rixEBHN64, FHHAFKEN6. BRTFAHRGIRTR
(System) ~ FHP#IA (User) MARIRTRE] (Assistant) ZHBHAL . HAF, RGERAHT
REBRBAEMES, APBANRIRERRR IR, SRR |0 26 14 0 E AR PR 45
S, ELEHR R T A S e A 2 TR B EF R SR R T

System:

R NETER, VRTFEREH —BOUR T T fIE b A 18 S S R
User:

201645 H19H , #idE ANFhE&A ERNEIRENL SR, FHUS4tR T 5 CaEfT
Assistant:

{

"sentence": "2016F5H19H, #EH AAEA FRFIREN KeniiFRee, I
wnskanfftidee T HCHIFRITY,
"type": [ll?ﬁ%ll , nﬁj\:jlﬁ‘u]

}

Table 2: LLMJIIZRE3E =5

FEAE BBV SRR, W E Npearm = 3, 71 = 0.95, = 0.05, T IERRE
W B BIPNEREA - ORISRV SEVE, KR T 2. 4. 6 8HUIRE TEEN
X, BRARETFEERIIREE - HRIIGRBESEESE: ) RIENS x 107°, epoch = 10,
H R SRS N, E %3 Mepoch B UEERMERETCIR T, MIFRATZ 1EIZE -

B R ERES SRS, BITI-2E49T0, ¥, FE, 2025458 H11HAE14H.
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5 SERGRS5HMT

5.1 FELEEER

FIER T ZHANF A F 2L 7715 5ALLED/EACEO5-CS LEVENR /™ 505 8 b i) S0 98 45
R, HRMET HHZEINGEHTRERANERIENSE - BRIZSEBLERI, HREZHHN
A T 30% B ZrE s - RPEMERREZANFEVAF LIS 1 E L ML, FEE LIRS
SRREH, FESE R LRI -

ACEO05-C LEVEN

Models Trig-1 Trig-C Trig-I Trig-C
GPT-355 shot 1083(030) 775(049) 1483(011) ].284(011)
GPT-405 ghot 3512(024) 2571(033) 3280(013) 2824(017)
QWGD25—32B5 shot 2110(034) 1609(055) 2814(006) 2271(007)
QW6D2.5—7B5 shot 3'23(0.64) 2'73(0.56) 1249(104) 8.77(1.02)
QWGD2.5-7BLORA 3104(024) 2740(011) 8576(003) 8168(003)
InternLMQ—?BLORA 2511(018) 2218(065) 8466(005) 7968(004)
Baichuan2—7BLoRA 4032(116) 3565(067) 8369(004) 7915(008)
DeepSeek—Rl—Qwen—?BLORA 2272(071) 1637(021) 8305(003) 7838(006)
BERT 6850(164) 5748(132) 8661(007) 8229(008)
RoBERTa 6909(169) 5843(164) 8666(016) 8223(014)
BERT+CRF 6890(040) 5778(143) 8648(014) 8222(020)

RD 6432(395) 6076(404) 8706(021) 8171(037)

LC 67.86(1.85) 63.79(2.46) 87.69(0_14) 82.37(0‘21)
ALLED(Ours) PE 68.54(270) 65000268 | 8722013  82.21(0.12)

BT 69.14(0.01) 66.02(1.08) | S7-55005) 82.490.20)
BERT (full) ‘ 75-03(0.62) 64.32(1.30) ‘ 87.55(0_21) 83.80/0.26)

Table 3: NFEIFELZ N ALLEDR LS 45

FEIXEeE g KRR T B N RS W AR R IR 55 . X RIIRE KRB BH
SRRHIE S HEERE T, HEMRIPREE B AERR R R LLM##F TLEDIR B A S, JU
ARG BRI R P RS IS B2 -

TEX KA I TLORA fUR)E, MHAEEZFRA, FFHEELEVEN HURE L, B s
HEIBES BRI . XEH, EERAOIGHERT, B @RS ER0EER, fTURS
Bk KR T AR AR AR SS RV 1 - SRTT, LoRA VA A KIE S MM AEACES-C SRS I
FIRIE TR BERUANESZ . HERTRSHEIESHAERE X .. REACENS-C KA H
X, EFREHIRATE SR, XME S A — BRI RER N T A A B AN T EE 7T - LoRA il
VA KT B SR RS, 7R B JESUFR A 1 SOOUAR R, B AT BE R BB R 1E
BRSSO Z (8] 8 SRS o T WA B RO U7 2 B R AR T S B FIUE SCRIARSS T
W T S A —EE T R A5 - BERTFIRoBERTAME N I ZHE S A, BRI
EHBGR . A, REZEF SIS E TR MEHER, EERHFAAFET
# . BERT+CRFEM MRS _F RIS (LT BERTHEA -

KILFTRMALLED T EEZ MR E THBE T 74, JTHE ELEVENEE &
F, BT NHALLED®E# T ZEE LT - ZEACE0S-CEUEEE I, BTIHES [ 75 X L&
XF 2 A B B i FIRR, P IE T SR 2 o) SRS R BE AR A « ALLED /7 ¥
BRI G|ANEBN2EIPEAHED BahiniEss, B EIRREESPLH, BREER T RRER
ARSI ZR AT R, R T = B E N\ TAREEGRR SR R T Eoh2E 5] iE
BERTFHREESEEN . B, Bid5IAETAHEEN IR, BOEFEENEHE
RRREA, (R E R IRE E R BE T - (B2, HS{EH2IBIGETER, ALLEDS

B R ERES SRS, BITI-2E49T0, ¥, FE, 2025458 H11HAE14H.
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HABE —EMEE, WHES P I ERREREZRIZR TEEHEMRD, MAERET
RIFIET, fREE R EEETF T -

LEVEN ACEO05-C
88 1 80

60

= Breaking Ties = Breaking Ties
Eﬂ sl —— Least Confidence 840 Least Confidence
= Prediction Entropy & Prediction Entropy
Random 20+ Random
821 . .
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Figure 2: ALLED7EPUFHEL IR SREE T 195 >) i 4

BRR, FATHE— PR TR AR REUN T REE 502 ST FE OB N Ae L - B2
R TEIRIARIEGESE - EREES LUGTETRIR N Ao sk . BACRE, 5HEAMA=MET A
EMERE RIS, BEVLE MR R RER TS REM B NPk, REAEIF 1 HtiAg
R - X —EERENE T AT ERF, UDEFEREERIEAT TS, WLy
HRBORFAETERE . 7351, FEACE05-CEIREE L, B Rk 1024 5]t Sl R I BOR I
st X R ERSZHRERS N LE R —HH, EEEIREEN, g
AER; A—7H, ERERREARTERRR, B3R T A EE 8 T i w6
WIS TG DL - ACEO05-CEUEEE L T0% O EEA B 40 0A), X R IIZEE 5 i) SR 3 L
Mo X—HF AR AU RBNE BERBOR, WS EIUIERE R EE - X —
ﬁfﬁliﬁr;ﬁé‘%iﬁTE/J\%Mﬁ\ EREE IR R, BT E B ] RIS 5 HEA R L)
HVEZE -

A R B R e B A xd B

701 B LEVEN
B ACE05-C
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Figure 3: fil & 1AECE 947X b

5.2 LLMFRriESS1fE
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