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Abstract

While Large Language Models (LLMs) can generate text efficiently, they also bring
the problem of text abuse. How to effectively distinguish texts generated by different
large models becomes a key challenge. In order to solve this problem, this paper
firstly constructs a dataset LGT-AA oriented to multi-categorization for the task of
LLM-generated text detection, with a total of 94k texts in 7 common domains that
generated by human and 10 commonly used LLMs. Secondly, this paper proposes a
scheme to extract discriminative features of different LLM-generated texts, constructs
salient features by extracting the maximum pooling of hidden states in the last layer
of the big model, and uses feature alignment to fuse with distributional features in
order to construct a sentence-level detector, which improves the detection ability of
the generated texts. Experimental results show that our approach achieves superior
performance under different model combinations and different generative model classes.

Keywords: Text Classification , Feature Fusion , Large Language Model
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1 58

KiIEFHEH (Large Language Model, LLM) /R T3 KPIESEMEES, 28 ZH
BP9 1 =T G AN R S

INTT, WP REERIPIR G T 2EAR T BFHEE [Sison et al.2024] -« X T BB SCAKEM, 3
A7 R A B SRS T ) B 22 i R 2 X 40 KT A BN B RN R BIVER I 5, DARERE SEFR
B, Flan: 4e3 (5 BB, Pjib R AER N (WfhiEiFie [Ignat et al.2025, Gambetti
and Han2024]~ EHRMA) B RARS G ERE; RIPEARSHEWE, #AERERE IS CE
VEML IR FAG /& R A FE [Perkins et al.2023]; B IR Tk AL A= B AR BSOS 5 AR BIE
26, BN ESFESE . Hitk, BB KRR A BRI SCASH TR, 38 K B T s
T & FMEH RRR RN AR IR T EEZR L 2R -

T KRR R E RGeS, KRB AE UK B R R B H i I FIE 5% [Kumar
et al.2024], 5 ARER IR Z B A EZRFEEF AL [Tian et al.2024] » REFZINFIASL
MELLO R A O, RIERIES TR R, KR RS TRAVLH M [Li et
al.2024] - AN, KRR BOCAREFER AR AR A KSR R [Spitale et al.2023] - £5 L
BT, Q0T i ORI AR A RO R T SR B Rk -

FRAE AR A SRR 5 KR EE, PR E S A A RIESFSME T RES . Z 5
RS TORAN G B SRR NRBE DR H KRB AR, ME 5 RESTFERRNG EEREAN
RB-E LR BEZ Mk KRB PR — A - B RO — SRR A O E R RS [Li
et al.2024, Wang et al.2024, Dugan et al.2024, Macko et al.2023], HH KEFRSZEFT — 5 RE%H
AR, HiEARBERE R D, WHHERRTR— MR AR E SRR - 25 EES
PEERSEIL D, Hik A RSERR D .

TERI TR T, A B TAEHR & >k FH KA A= Alitoken HlogitstE A6 il SCAS B 457 1iE
[Mitchell et al.2023, Wang et al.2023], A LAZEA]FHRBEFEATIGMI, SEFR b, ZEF /R _EaFAT
Sl H % H B XL [Chakraborty et al.2024] - SR, logitsZs it 2 = 4EiE LA A IR, 1F
5 B R RE Hp N Ak S 25 2 T —HR 4 4ihr B8 SURHIE R B SCBhaSREe o BRI, EoAG i
AEIDIA AN SE PR R FH B 77 22 -

N RRRUA BRI, AR SCE SE i T — T ) KB A= R OSUAR £ 49 A6 AT 55 O BR
£LGT-AA(LLMs-Generated Text Dataset for Authorship Attribution), ZEIEE &7 ™Y
AEFIL0H A RIRR A B HR 94k G AR « A EIZETE, AR DG TR AR SRR T B
a~, AT JE R AR AT SR AL - R, AT SCARETE PR RS SR IR AT T
B, BEHRICRENSEES YR, M, ASURE T — D RRE A BOURIE 70 R RS
B & — R IR RO, H Rl5E B T SR AR IR AT B A, B e T s
FERMEAE R LUFEATRL G o BT | AR T RS HUIS I BB FHE, A T SeqXGPT I ILRER
$F 93 AR AR X — BB A B REZR A TR IR AL - FTELGT-AARTESE ERSEISEE SRR, AOURH
FRVRIN 5 V5 R B LR AR TR T T 10.0% TR B2, FERT B 1A 4 RARSE EI8iR 3] T B 1t
HE o

BATTE, FAT TR EZTTEAA N ATk

— PR T — BRI [ 22 5 RAARTLAE BOCA R AL S I BIRELGT-AA, SCEYIRLE
RIS IRI T, B TR R T A 2 S A e -

— SR T M R BN F AR AR BOOR ) X PERFIE R T 58, 5 AR IR T H &
FERIGS, $ETT T XA RSO HZ AR I fE

— FELGT-AAKUYE 5 L ASCIS 45 AR M, K SUSE HY ARG I J7 ¥ bU 53 2 SR R 42 T
T10.0%H1ARIVERE, AE] T HHIRIIERE -

2 MXIE

XA T ARBERICA, KIEAER A (LLMs Generated Text, LGT) f8R=2iE T K&
SR, MAEERMNGEEEITERE, BshERMER LT CEBMER R BERIES
AR o MRS RAGRL A B SCARRG I 53 RV RANEE, AT E S A o RESFSE 5 EIES -

TR E AR SRS, FB8T-H612T1, W, TE, 202548 H11HE14H.
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2.1 A 50 RS KRR A SRR

T RAESFER 0 ARBRE ORI B A p ) SO, SR SCAOR IR R AR T AN X 53
BARRIRIERI R - |0 Z 0 RESHTETEEFETIING - BTHITAKEI =3, HAK
P77 B0 KT AR B AT 82, JB T AP IR 5k, T 53 SRR 8 T A Al S R I B0 7
1% o BT IGRRITIEFRLE RN 685 AN RA N T GEAE AR SCAS R AR 88 6 TRl 2R gt
R, DA A X RO « S FIRBEBORENAE 0L, H B 80T B0 7 53T R [Tian
et al.2024] - FETFTHEITHWEEHESTHEA N URER S, FFNFQESTTRE . &YIATT
EMETRNGESHIENER, FHERE (perplexity, PPL) ~ HXFRAKAR A LUEES
TTEE [Beresneva2016], T #A R 715w m) 13 FH B = 20 FOFFAE, Pt sh iR fiZ8 [Mitchell et
al.2023] « FEEIE [Bao et al.2024] - XMEFKE R « tokenSHE  token RIS - HT Lt
AT AL e B (RS e X B R AT AR o KT, 122 T L A R SR R A R IR 55
TEHEFR I H AN A FRREERL A0 Fay O BBk - I, XS 7 VAR AR A b A PR AR SR R B
B ER - R, ESEME ARG [ R A—EME TS SR IEREILT [Zhu et
al.2023] -

2.2 TH[A] 2 53 FAE S5 IR A gl SRS

T RS TOIE RN R T B AR B, AR A ORI BARORTE, Rt
WMT ZHRMES . ZHREFER S ARREG KUK KRR A SR SR, 5 ) RS
IS, WHEFR A FIEEIE (Authorship Attribution, AA) FHIHIH| - B i HE M £ 4>
FARS BRI T IEIF R D, BT G0t 077 V20 UG SCR i BRI T IR A B, L
& FE TN T 1% o Venkatraman A H BIGPT-who, FI & T 41— {8 5% E (Uniform
Information Density, UID)RJFFAEXT & > KRBT AT 2/ 3X — MUFF SU it FpfE e A7 @, DA
SLIRERT AL 5 AN [Venkatraman et al.2024] - 25 BUHE SR S B T KRB 24 f5if bR SCHY
VB SCHR AR R A R — N A AR IT - % DetectGPT [Mitchell et al.2023)f0)5 % , Snifferif it H.
BT JRAR T 2 18] BT HHE SR AE 64T 90 28 [Li et al.2023], TSeqXGPTESniffer & filf b 45 &
T Fast-Detect GPT [Bao et al.2024] S 2 i 0G4, o L BT IRER RO 5 20847 5
2K [Wang et al.2023] - MAGRETH [ — SR FH 22 A PR R BT AL BCMR R0 SR, AR
FEERHE, SRTHXIMOTIERAR S, KT AP A SRR RIS H] [Huang et al.2025] «

2.3 KA AR 4

WAEPIF IR T — S RER A FOURR RS, BN AM RIS E AR
A2 BSCARAR R AT AR OB A SO, B R K B vR B 4R 0% B ) A U TS b D R
1A] [F] — R FA R AR SO [ S 8B (WLLaMA-2-7B/13B) |, 1fiiX LA A AL & 2 [A]
ISR A E RN - Flan, MAGER FREI27 MRS PR E 27 MR FI20 N AR [Li et
al.2024]; MAGT-Bench{{AEMARI5 MERL EANA T GPT-4 [Wang et al.2024]; RAID [Dugan et
al.2024]FIMULTITuDE [Macko et al.2023]#0f# H 1 8 ANF BT o 13X Ebenchmark s (X
e Z o RAESERIRSE LRI -

3 BUEHL

KT EENBEIREWETTE, ZENENEIESLGT-AA(LLMs-Generated Text
Dataset for Authorship Attribution)#1TIEAHAIN4H -

3.1 BUESEMEN

BREMENRETE IR, BEREIREE - it - URER - e AL
T, NN ITEERENE -

TREPE L. FoA1:E B THC3-English [Guo et al.2023]fIFast-DetectGPT [Bao et
al. 2024 BB R VE NIRETESE - EHF, HC3-Englishfl & &/t E25 < F R AR & 1Y
NS 7,210 (A1 8 7,210 AR [EIZEA110,243 D Chat GPTIE 2, Fast-Detect GPTHY £ %%
TR THE « 2R EMONESE=/418001,300 T A F 88 5 19 SCARFI7, 10080 74 R TY
RIS o B X0 2 R N BT N 5 R T EH A B 2R 5 [Liu et al.2024, Yang et
al.2024a), JEE N RITER HFESSUREIES [Mitchell et al.2023, Yang et al.2024b, Yu et

TR E AR SRS, FB8T-H612T1, W, TE, 202548 H11HE14H.
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Baichuan2
4>Eh | Question | Answer 4 | Question o
JEiE X

e K [ - X ' GPT-N 1 4
P5%4§ | Question | Answer ' PR 74 ' 0 ! (i

V=
GPT2-xl T

H A} | Question | Answer ey

FFi A% | Question | Answer i FF I % E LLaMA-3 E
\_ HC3-English . : \_ WEwE ) 5 Mistral _» éﬁ’%&
: o LLM > OPT ; THYE

/ Fast-DetectGPT \ E / HERR \ E PULI-GPTrio E

) H Your task is to ... ' H

Hr News ' + : GPT-3.5 :
BRI Article 5 il : GPT4o Dl | etk

B S Novel Dok Tex || Claude-3.5 !
TECT : ——
TR Sl ’ :
\ / E \ / ' Human :

T BHE i R : BRB E SCAE R CONELE

Figure 1: $iREMETEREE

4 )

Your task is to complete the article to make it coherent according to the given beginning. An adolescent’s environment

Iplays a huge role in their identity development. While most adolescent studies are conducted on white, middle class

FEARLE
children, studies show that the more privileged upbringing people have, the more successfully they develop their
identity.
- J
s N

Your task is to complete the novel to make it coherent according to the given beginning. A man invents time travel in
BB B g |orderiofind a cure for his sick wife and succeeds, only to find out he can't go back. I've taken the title and gone my

own way with it a bit, I hope that's ok. It also didn't turn out quite the way I wanted it.

G J

4 ™\

Your task is to complete the news to make it coherent according to the given beginning. Maj Richard Scott, 40, is
HE accused of driving at speeds of up to 95mph (153km/h) in bad weather before the smash on a B-road in Wiltshire.

Gareth Hicks, 24, suffered fatal injuries when the van he was asleep in was hit by Mr Scott's Audi A6.

G J

Figure 2: prompt7~

al.2024b], THXMMES S AIEL T KRR B RFEZHE R M EAYEETS) [Liu et al.2023] -
IXEHEIE R 1 20205 K AR ARERE HSURPE N UREAR, (RIE T AR T SURH 7 (N E
S, AP ET ST

Rongt: A TRIZEEIES, HATEERBUAEE N prompt; X FESEAKIEE. I
T ERZEEN, 2% SeqXGPT [Wang et al.2023]FREEA 1%, BATRENIREUCCAFF LK)
JLANEIF, BB A7 B AR € [20, 60| HA) F5EsE - Ak, S5 URDTEH A
AJprompt, 7~FIUHE2FTR

MAER: ¥ TAREENXA, RINEENH TB3IFEHEETARETS
SCARHIER 435 TR T ORBER AR AL SCA, FefTi% A T Baichuan2-13B-Chat!, GPT-Neo-
2.7B [Black et al.2021], GPT2-xl [Radford et al.2019], LLaMA-3-8B-Insturct?, Mistral-7B-
Insturct-v0.3%, OPT-2.7B [Zhang et al.2022], PULI-GPTrio [Yang et al.2023], GPT-3.5-
turbo, GPT-40 [Hurst et al.2024], Claude-3.53%10/ 1 2 1 Sy 57 £ M) SC A 1 4E Al AL
XA R A R A SO R M S e HEAEESFELY R ZEH . A9, Bk

"https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat

*https://huggingface.co/meta-Llama/llama-3-8b-Insturct
3https://huggingface.co/rubra-ai/Mistral-7B-Instruct-v0.3

B E T EE S RS E, 5985561270, BrRE, FE, 20254E8H11HZE14H.,
(c) 2025 FEFLEFEEESUHEIBES L WENS 601
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TGPT3.5, GPT4oMClande BB MAPT, H Uy A M F A= A -

JEAEE. KT U R A A RS SRR (B EANRTINEAS - P9 55
LERILARIC) RSO P BE RS BN [Yu et al.2024a] - B4, SeqXGPTJ5ik
FEIR UL Ja REUE B R BB DR IR B T I3 1723.66% . DLRFSRA - St ARSCRMIENERX
AEAM TS S RTIE, RO ERR T ARCURT S RIC -

3.2 BUEEST

ACEET LR T IR F I AR A fOUA BB SR LG T- A A& 5 94k Sk B 107 AN TR ) 75 FH A
RUERGHSOA, BRSNS MR AR BHE MR AR « IXESORE R B TR R
WK B G B R AE LS R prompt AR AF N AR - BLAN, BATEX AR EAT T IRE D8
%o, WA SRBRTR -

Ay & EA ARAE B FAXE BIEEE FE A&t
Baichuan2-13B-Chat 3475 816 1033 461 278 415 420 6898
GPT-neo-2.7B 3917 1241 1174 840 300 500 500 8472
GPT2-x1 3909 1111 1175 838 300 500 500 8333
LLaMA-3-8B-Insturct 3932 1244 1185 842 300 500 500 8503
Mistral-7B-Insturct-v0.3 3931 1247 1184 840 298 500 500 8500
OPT-2.7B 3859 1213 1102 829 300 500 500 8303
PULI-GPTrio 3813 1227 1149 724 297 492 471 8173
GPT-3.5-turbo 4503 1334 3546 842 300 499 499 11523
GPT-40 3933 1244 1183 842 300 497 496 8495
Claude-3.5 3928 1248 1185 842 300 500 499 8502
human 3933 1248 1187 842 300 500 500 8510

&3t 43133 13173 15103 8742 3273 5403 5385 94212

Table 1: [H[A] % 53 RALSS AR A2 B SCARZIREELGT-AA

4 Ik
4.1 [AEE X

R 25 5 E B SR 2 AR BE LB — 1 B KER A A A m @ a] DLE L h—1 %
DRES: AEBMALKRFINX = (21, 20,...,25] (EFNERFINKE) | UK—NIrEE
AM = [H, My, My, ..., M), EAFHNAZE, MRFEDKER ML SE TR RIEZF

F: X —>mmcM (1)

BATHEET A& =R, BB A SRS 2 i « AR AE R BB BR AO AR I 2R B o Ho A
8\ U TS 2 A5 3 9 ] B 9 AR I 4 T 7 R S R B N SR X e R B R AR ) G S
Flls = [s1,82, ..., 5n], FAAEFERUBHR (5 FH KAETISE B A& T RANFERHE, R 23 rs g o 28
SHREITMLE R . FERFERBUES G, BRATRA T ZMAFREE A% E, Ell-model (H#
R 2-models UAETIZH A ) | 3-models (ZHEHIH A ) DL K4-models (&FREHRD) .
Pld-models ], HRAYFER AR EE R4 40 B 3FTOR -

LU 5 Bl BRSO A AG I 2 A R 1 AR A 25 -

4.2 FHERBUER

FRIESR R 40 6 & X B RAREHE AR BRI G — R B O HEHE, oA ERE T KEA
AR BT ERNGREBCCR R E R, AR R EEFE, FIH SR RE
—ERERSHR AR CALRBER, “HEFEWME. &5, B SFEHTRE
DSBS I REFIE - LU 53 B 48 P R R R R &350 5
4.2.1 SAFHE

A SeqXGPT [Wang et al. 2023 FUX EURHEME N B e - BRI S, Ak
NFFs = [s1, 52, ...,5,], CEREEIM , AT LIS EHEA SR X5 R AT EMER S Rl (), HA

Uni(si) = logp(sils<i) (2)

TR E AR SRS, FB8T-H612T1, W, TE, 202548 H11HE14H.
(c) 2025 FEFLEFEEESUHEIBES L WENS 602
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! Modell—>|:'— @ I/ _______ \i —
< I :
—> il ] CNN | I
' 5 | I
! [Model 4 = [ ¥
PAR G TIE S FEh o> AT RFAE ! b ;
ol o a) SR, @ |
Text—>| § —>§ Model 1 —> | ,—l—» ?—)-—»Label
ode & | =
—E—» % | zg}\a]}l;er J B : g g
ode 3 | [
: Lo , i
Model 4 —>| : I
[
— — G — R REUR A S RFE b) & ZER1R c) [ AERL & I —
(1) G A8 Bk (2) $FHE SR B B (3) Aol B B
Figure 3: Lld-modelsi% & 7 {5 BRI B AR L5 44 P
1(s1) U(s2) U(sn)
v v
o | - N | o |
| | P 1 1
b bip | b1z | bz | b | bau | by | Do bui | bnz | bnz | bt | bus
| T I
by by b1z | b1z | b b1z ba | by | bas b bnz | bns | bpa | b bas
) m ) |
w w1 wa Wy
v v

(wy)

ll(wz)

”(wn’)

Figure 4: XU 71 TR0 57 #ER 5

IRT, T AN R AR Y o 3 S I N AR R ELAE AR RO R 81 SR A BE A TR XS
FEIELE . H R R AR KRB T S lsm = [sm1, Sma, -+ Sma)» EXFRLHIFTT
i%%bm = [bmlla bm12; “'bmllen(sml): ceos b1, g, b'rnnlen(smn)]j:éj‘L%}_‘&.TVFE [7] <:/H\: l:Fllen(smz)%
R ARERm i Mtoken sB)F TE) |, AT LAZEATXS 57 & H 8 1E, WME4FTR - WL, @i
R 53 17 Fp 51 # AF TTROR BT A, BT RE B K AN [R] 4K JBE B KU 51 0 57 21| 5 — #) 9)
HFIw = [wy, w, ..., wy], W NFINIWKE, RS TE RO RBERIR, RIS 5 A
T, (w), HH

(3)

Uy (w;) = logpy (wi|w<;)

Bl 3 A FFAERENS fe AR T X 1 S RN GRS P A 2R -

o A E2— MR, TRHERNHECEIPIIGEEF . S IEEFESHLHE
JiiE, AR ESEE L ZEHRMBH TR RS, DHRREM > R EP B L T UER,
MR E S AFFIEd € RI>e . HA DHATRMISCAR IR KK EL, e Wiz 2B M 45 HEiE
Koo ZBRMERIEH SRS SR KRNNR(5,3,3,3,3), FEKMN(,1,1,1,1), HiHHE
184 (64,128,128,128,64) -

4.2.2 SERBIE

BATE T FREURIR A £y 5 — 2 PR S i Rt A A A ) 3 R AR - R I BR IR
AT B ZEZA BEE SIVLEI R R4 N4 ZHES TP AR R R AEZS (8], ETransformerZR
M, B—ZRREEURSEN ME N FMRZ R ERY - BATE, KZEEEIRS E 25

41=1024

TR E AR SRS, FB8T-H612T1, W, TE, 202548 H11HE14H.

(c) 2025 FEFLEFEEESUHEIBES L WENS 603
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AR BRI - AAGE SR ENFE, MRS M REEINGR, BAE T 2 LR
PUHIRVRHE RS B, BP0 R SO RITE SO 3B B 45 RN T S AE

Fralit, KRB &G — RRERCRS B MR R ME - (F A BUZ MR HE 1
RAPRKL, ZERRIRNSANEE T A BRIFIERBEE R, & B R CHECE T H 2 /Y
M RERGIRE . NERRMAERE, & —BREBORESL TR R IR E E 1Y
K, BEORE TR ARIE U OER, NETEREELERBER T IRER, R T
FHROBEFFERTR o X T oML, ETRECRSH T E R IEREY & 5 H 2 AR
A [Gekhman et al.2025] -

RRERINTFIs = [s1,50,..., ], EIBIZHIEHECRET LIFRAH € R4, Hoin 5
FIKEE, dNBSEYERE - B, &E—ZRBOREFR S AHE (LVEREBER) - BTZHE
E SR, AR KT ARSI AT AN - OO REAEE — s . Hide —RRSHCR
ASTHEIAERREIE, BATERRA MBI 4R 55— RFS U S 1 RS o R4E
&, B P8 ATA tokenfL Bi(1 < i < n), EBSBORASHIEMFELERE (1 < j < d)HIHEK
B, ERGLE M EERFIEVE e R, 4R -

- L
vfj = maz H;; (4)

RO MR E T R i 2 AR IEROE(E, R SCRFHBRBE LR TT, AR R RYEE
ANFEHEATH FFARAE,  [RIRS HL8E 1 P25 3 A6 e P U [ [Lee et al.2025] - BRI E, A
e — BERCIRS T 23R B R EE, RO — DR AR, H5 R RS ReR A &
. REb 4R R E T T e AR N, AR DR RERE, MR AR EEE R (E -
FERBT R E IR E R FEIE . RSIER & A B ERE - AREEGER RS
EMAERREREEENBZSTE, FOESBOXLEHEE S TEEERAR, MMHIT E L
MEAITTER - BN EFBAMMHRF R LR PRRBER, B N EE N EEIRG 9%
HERE PR E IR AME, DUEETRHMERL S -

RUUTA2 10 BIEER AR 7%, R 2l B2 AR L 7 2 B R W 47 AT AR
Gat, BT RE—AIAE, AMHEIEERIEy e RO HA, AmZ GRS 5 HiE
EARAN, AT ETRAEX T, 50+ ARG M 435 s E LR - XGRS R
SRR BRANA3,3), BRI(L1), HitiEE Y (32,64)

4.2.3 FHERE
S T o R RS B 0 AR R AR AN B B AR AR, AT ERHERL A DU B — 20 10 4 K S
T, BRE B A AR 4 B B AR AE /) & AT RFAE T 5T - ZERFIEXS ST AR, WA EE LM
o € RVRFIIEERETIGHITT B, TPRY BENFHEERY € R>¥e, FEfES FRYEE 51
FHIEFEREFHATRL S -
BAME, AEBmARHEy, BNESFIEET REEREERIIX, £l RBAEE
vi=v-[1,1,..,1; =[v,v,...,v] € RI*¢ (5)

N—_———
l

WEJE, B RE I EE LY 50 MRHEd € RAEIN, BEIN TR BRI

f=v 4+decRXxe (6)
ST HARRBGRFITTRL S, BT RS IEE et T, BRIRS 4L
FZ[fl:f?v"':fk]ERlX(k‘e) (7)

B&Ja . BATR BN UM R B RS FF IR, DI B R SR B R SURFEF €
R>*(ke) o bR G & B Ptransformer2, R A E16ER 7L, BREUE K/ H512,
R FH S iR B A AL B SRID P [Vaswani et al.2017] -

F = 7‘1(623512(F, P) where 771(7;) := Transformer(h,d)*" (8)

TR E AR SRS, FB8T-H612T1, W, TE, 202548 H11HE14H.
(c) 2025 FEFLEFEEESUHEIBES L WENS 604
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4.3 WIS EIR

HEEEMNRE, ¥TOMEEd € Rixe, FidA8 5 R AREF ¢ RXKe) B4 %
IEFTEI4E A ] LEVER BT 58— 1A 5w B8 P token » BRI, FATINGR T — 15K
a7y, BE B R RHER R BN N R RARES b B ST B B AR S B A TR G
TMEZR , R IR AR 22 HORR A E R ) F BB A TIN5 5% -

5 SEU
5.1 SEREE

FA1%EH T GPT2-x1+ GPT-Neo-2.7B~ GPT-J-6B° - LLaMA-2-7B-hfSPU > - JE AR B AE Ny
FHIEFR USRS B 0 B &R, ol X DA AR, FA 3R BT PFRAS [R] ORI AR AT 52
55 o a4 1fTiA, AT R RORR T & AT T S -

AT BrepochiZ &€ H20, batch sizel’ && N32, 2> FiriZ i Nbe-5, weight decayi¥ &
70.1 - EOHR S B 11 HL I FE AL 23 S I SR R RO 5 o 6 43 A AR A0 R 35 R AR S BGER 43 1Y
SEHETTIENVIDIA Tesla A40 GPU b, FFIERE & S5 RAMER 73 59527 /ENVIDIA GeForce
RTX 3090 GPU_L o Ffi13%H T SeqXGPT [Wang et al.2023]1F 1% 5 FAES HIEL T . Fast-
DetectGPT [Bao et al.2024] ~ DetectLLM-LRR [Su et al.2023] ~ DNA-GPT [Yang et al.2024b]{F
H RS LT

AN, BIELUE TAE, BADEABEHEP.AA B ZRR. 4 HIVFEHAE A R FI AR NRUR, %
FHACC (/rRMuERYE) fiMacro F1 (B KERRFIFF15E0 /B0 7 IEBEE AL bR
HE
5.2 SEESEER ST

W% RAES LR %R R R, ZEXESR T fl-model (GPT-Neo), 2-
models (GPT-NeofILLaMA2), 3-models (GPT-Neo - LLaMA2FIGPT2) LA Jz4-modelsf) 55 4
X SeqXGPTHATAVRE AL SR - Horr, B @ s i) U M AL 20 & 40 7l 2 7 [ B AR AL A 2 1Y
FHE T SeqXGPTAHER FRIMFKIFIIA S, HIEMPLBG RS WIHRC -

1-model 2-models 3-models 4-models

models SeqXGPT our work | SeqXGPT our work | SeqXGPT our work | SeqXGPT our work
. P. 32.1 41.3 47.3 57.3 52.4 59.0 55.1 62.2
Baichuan — p 18.3 18.6 40.8 425 473 9.8 49.4 54.6
P. 71.8 78.8 87.3 93.1 93.5 96.6 93.6 96.9
GPT-Neo g 63.0 75.6 85.8 93.2 91.8 96.3 92.9 97.7
GPT2 P. 52.7 59.3 77.5 82.2 95.1 97.9 95.1 98.4
R. 52.4 61.1 65.4 75.1 95.2 98.1 95.9 98.3
P. 40.6 48.3 51.9 61.8 57.1 67.3 60.8 73.3
LLaMA3 R. 44.7 43.0 55.5 58.0 65.6 69.6 67.4 75.2
Mistral P. 50.2 51.6 65.7 73.1 71.3 75.8 73.2 78.5
R. 41.8 60.9 55.3 71.8 61.1 73.3 61.8 75.0
OPT P. 30.7 33.0 50.7 58.1 63.8 68.7 66.3 75.3
R. 29.6 21.2 56.2 51.7 67.2 63.6 70.6 73.7
PULI P. 45.9 45.5 61.9 66.7 75.9 82.4 79.2 87.3
R. 42.5 48.2 64.3 76.9 73.1 86.1 75.8 88.5
P. 78.3 76.4 84.0 83.2 84.8 86.5 85.4 88.8
GPT3.5 R. 77.4 80.2 82.4 85.8 86.5 88.3 88.2 91.5
P. 48.5 63.7 62.6 77.2 73.4 81.1 75.9 84.3
GPT4o R. 60.9 74.7 69.2 85.6 73.8 86.8 76.9 88.5
Claude P. 51.3 60.4 65.8 73.0 76.4 78.4 79.5 82.2
R. 59.4 62.0 66.4 72.2 72.6 74.7 76.4 79.6
human P. 51.7 70.6 65.5 72.3 72.6 84.8 76.0 87.3
R. 64.6 80.7 74.3 85.7 79.2 86.3 83.0 87.6
ACC 51.8 61.5 66.0 77.1 74.6 84.2 76.9 86.9
Macro F1 50.0 56.4 65.1 72.8 74.0 79.5 76.2 82.9

Table 2: [ [ 2 73 RAESFSHITLRETR

https://huggingface.co/Eleuther Al/gpt-j-6b
Shttps://huggingface.co/meta-llama/Llama-2-7b-hf

TR E AR SRS, FB8T-H612T1, W, TE, 202548 H11HE14H.
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BRTE, AT BT Seq XGPTHE F+ T 10.0% FIVER B #16.7% fMacro F1430%%, #5
MR F T T76.8%, BRIRFHEF T76.5%, XL Z FIEAEEE R L EEFM
TSeqXGPT, AN{UEEMRTIMIERR R &, E7EIE R0 B91R B B8 77 AT 45 58 10 mT S 14 2 1]
ST EALEPE o Macro F1EUIR I — 53R, FATR T B R BN a S 2R
NS BERZ R, B BOARHE R ECE SR T T AT AR B0 SIS . b,
FEARRI PRI A 5 T RATHR A ERCRBE BH B AR, R FH8 A T710.1%, Macro
F1I5ECFI8R A 76.6%, XU ERURIEA H AR EBAE A ERGER, B EEHMN
FaE M -

our work our work
851 SeqXGPT 804 SeqXGPT
80
75
75
— 701
[
@] 4
O 70 g
< 5 65
65 =
60
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55
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Figure 5: AREAH S ACCH I Macro F1ZA L%

ERFEREEE ST, Fofi10 LM ZFACCHMacro FIH ML A2 fb#a 5, an&5Hr
7~ o M3-models?H & F|4-models?H &, & h0 T 33%H9 Al AN AE 2 AR FA T 2.7%0 1 E
F3.4% K IMacro F143 %0, X — 7 H ¥ 4-models?A &% B AW, FHHINHmER RS
WoRE Z MR, B— A IR T EE3-modelsiZ B HSeqXGPTE4-models & 1
RN BT, ERRMIAAA S R AT LI N . B ER &I -

ST AR R A BT AT UM ZEBIGPT R 5 AR A AR 3 T H T KA 5 25 5w s
o B2 RE SR FIGPT4ot 2 a0tk « JRAZ: 1) HATEA M ERIUER F 68 & =
NGPTARF BT | X F A4 Bk R (42 B 4s B & MGPTAR ¥ I B il A= sl 45 S vy &
Rl 5 A A 2) X ECHE 20X — B T R B A2 Bl SO RS I B RRAIE A 38 ok B EREARTT
#Detect GPTX GPT-34E A U AL BN G5 RO ER . Al HE N GPT R YA B BB FrEmx HE
KR AR — % -

AT E T 5238 B R AT« 3T F 4-models{E 4 E I BUR R i AE [F] SE 56 R & T
FATHI T EN HESeq XGPTHIM R I FK3FT/R - TSI A T BN EZERE, FoATABEZ AR X
TSeqXGPTHIM T L27%FIFERT « HA | ZERMEIRIN B, SeqXGPTHIFATHY /7 153 EX
B — UK EIRE FIRFERERT 4 B M0.70sF10.88s, ZEESIN AR (WL CAREN) FHER
AN AT LOA R ERA T T 5B SEBR S E -

FE | BERR % At

SegXGPT 18.27h 6.57h  24.83h
Ours 23.03h 8.48h  31.52h

Table 3: SEERCR AT

A, FATHAT T 0 RAES RIS, SRR INFRITTR, EZES LR 3 T ER
FIRER - B IRFast-Detect GPTIR B KA A sl SR BRE IR B 15, Detect LLMR 5| KR A A
NAMAREZRE S, H2EIRHAREE R CARPIRNARUAR, BEZHCRRIAAKR

TR E AR SRS, FB8T-H612T1, W, TE, 202548 H11HE14H.
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TR RL, KPR O ERUR AR B R AR « BeAh, BRAR MRS AT BE 2 18 BN IR I Y
ERE R, WEBEE KBS T AR RSO R IR IC KRB R, #0135 2R B MRS -
EATIE, ERMEER T REIEF, BT A AEER IR A R AN SCA R R -

models | Fast-DetectGPT DetectLLM DNA-GPT SeqXGPT our work

P. 99.2 90.1 90.1 98.2 98.6
LLM R, 64.9 99.1 89.1 98.5 98.5
P. 21.3 3.7 9.2 86.8 87.1

human R, 94.6 0.3 10.1 84 87.5
ACC 67.6 89.4 81.4 97.0 97.4

F1 37.7 47.5 49.6 91.9 92.9

Table 4: [H[7] — 70 RALFHLIGLER

5.3 THENSEL
T B R RN B R, B TR 4-models B S TR 43 Bl X 4 A R AR B AN L 2
FRAPAEERIEAT T VRS, WERSHTR -

models | our work w/o HTFHE w/o BERE

i P. 62.2 335 55.1
Baichuan R, 54.6 11.6 49.4
P. 96.9 486 93.6
GPTNeo p° 977 62.5 92.9
P. 98.4 388 951
GPT2 g’ 98.3 357 95.9
P. 733 351 60.8
LLaMA3 g 75.2 34.4 67.4
Mistral P 785 427 732
R. 75.0 42.9 61.8
P. 75.3 336 66.3
OPT g 737 21.5 70.6
P. 873 441 792
PULL g’ 88.5 26.4 75.8
P. 88.8 62.6 85.4
GPT3.5 g 915 75.2 88.2
P. 843 54.7 75.9
GPT40  p° 885 70.4 76.9
P. 82.2 50.9 79.5
Claude R, 79.6 55.4 76.4
P. 87.3 60.8 76.0
human — p* 87.6 70.2 83.0

ACC 86.9 48.9(-38.0) 76.9(-10.0)

F1 82.9 44.9(-38.0) 76.2(-6.7)

Table 5: JHRlSEIS4E

BETE, w/o SAAFHEESSERE T 1 38.0%, Macro F173 48U N4 7 38.0%; w/o B
FRIEAE S5 R I F% 110.0%, Macro FI0EURFE 16.7% - X Ui B P MR AERE R R T SR 00 A 1
[ GTER, FAAEIE M PERIN. o Hoir, S ARRFESR M T 2RI RIRESR, B Hf T THh 7T
tt, G T ERIR -

6 S

AR T — N £ 40 R KRR T A ORI E S5 B IR SELGT-AA , STk A
AERCCARTRRR ST, IR T R AR 2 AT F 8GR - AN SGR R T 3R BUIN R R ZY A2 5 T
AREI XA ERHER) T 26, B IR BRI 5 5 — ZE RO S s R AU & B E, 5 A
TEXTSF 5 o A A TR & DB A FRes, 8BA TR AR SURRIRIEE S « X a2
%SeqXGPT, FATHITERA T 10.0% AR EFI6.7% M Macro F170%%, 7EARIEAH A T
ARV AR R R N ERA R T AR AR - AR R TAEB IR REER - JB A STAFIRS
PUEE BT SHR -

TR E AR SRS, FB8T-H612T1, W, TE, 202548 H11HE14H.
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\ GPTNeo \ LLaMa \ GPT2 \ GPT-J
models ‘ SeqXGPT ours ‘ SeqXGPT ours ‘ SeqXGPT ours ‘ SeqXGPT ours
) P. 32.1 41.3 29.0 30.6 31.6 37.7 28.0 31.1
Baichuan p 18.3 18.6 19.7 18.2 17.0 22.5 17.3 19.2
P. 71.8 78.8 47.3 53.6 50.9 56.8 51.3 56.0
GPTNeo o 63.0 75.6 54.5 72.7 53.4 73.1 51.9 67.3
apre P 52.7 59.3 60.2 66.9 63.2 73.6 56.8 62.5
R. 52.4 61.1 49.5 59.9 62.4 74.2 52.9 61.6
P. 40.6 48.3 45.3 50.1 40.2 48.7 42.2 47.6
LLaMa3 o 447 43.0 45.0 41.2 44.4 51.3 48.0 44.7
Mistral  E- 50.2 51.6 51.8 52.1 47.5 51.6 49.7 49.6
R. 41.8 60.9 47.0 60.6 44.7 55.7 43.3 60.0
OPT P. 30.7 33.0 33.1 35.3 28.7 30.8 31.1 35.1
R. 29.6 21.2 35.7 25.1 26.5 18.6 31.0 25.2
purt P 45.9 45.5 41.9 43.6 39.5 40.9 40.5 42.5
R. 42.5 48.2 31.1 26.4 30.2 25.2 30.7 30.0
P. 78.3 76.4 79.8 77.3 76.9 76.0 80.3 78.2
GPT3.5 g 77.4 80.2 78.8 80.2 77.2 75.1 79.1 79.6
P. 48.5 63.7 57.7 67.1 51.1 62.0 50.2 63.7
GPT4o o 60.9 74.7 67.7 81.3 62.5 74.7 59.0 76.5
Claud P. 51.3 60.4 41.7 49.0 48.6 55.2 58.5 48.1
aude  p. 59.4 62.0 52.1 45.4 54.5 58.0 62.6 39.8
. 51.7 70.6 53.1 67.5 52.7 67.1 51.1 65.1
R. 64.6 80.7 63.5 77.6 65.1 75.5 69.4 73.9
ACC 51.8 61.5 50.8 57.9 50.4 58.8 51.2 56.6
F1 50.0 56.4 48.8 59.6 48.2 60.0 48.9 52.1

Table 7: £ 1-model&&{f T FISEEG 45 5

B E T EE S RS E, 5985561270, BrRE, FE, 20254E8H11HZE14H.,
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| GPT2+LLaMA | GPT-J+GPT2 | GPT-J+GPTNeo | GPT-J+LLaMA | GPTNeo+GPT2 | GPTNeo+LLaMA

models ‘ SeqXGPT ours ‘ SeqXGPT ours ‘ SeqXGPT ours ‘ SeqXGPT ours ‘ SeqXGPT ours ‘ SeqXGPT ours
] P. 482 55.0 44.3 49.4 411 51.4 45.6 51.2 38.7 48.0 473 57.3
Baichuan g 42.4 44.0 32.4 38.1 28.5 33.6 38.8 41.6 29.8 30.8 40.8 42.5
ePTNes P 60.0 62.8 60.4 63.9 89.1 94.8 56.7 61.8 86.9 94.2 87.3 93.1
R. 62.0 78.8 61.3 76.5 89.7 95.1 59.2 73.3 85.1 93.1 85.8 93.2
aprs P 87.5 94.2 91.1 96.6 74.5 74.2 72.5 79.3 92.0 96.8 77.5 82.2
R. 915 96.6 93.2 97.8 62.8 70.9 60.3 70.5 92.3 97.3 65.4 75.1
LLaMas P 53.2 60.0 149.0 60.6 448 57.8 50.9 60.5 47.2 56.1 51.9 61.8
R. 59.0 58.3 58.1 61.2 47.9 52.1 54.7 55.7 56.2 59.5 55.5 58.0
Mistral P 66.6 72.7 62.5 68.4 615 67.8 65.4 70.3 59.7 61.4 65.7 73.1
R. 56.8 71.4 50.5 67.2 189 66.6 56.3 71.8 489 60.0 55.3 71.8
opr P 492 53.4 429 475 44.0 55.2 43.6 459 47.2 52.5 50.7 58.1
R. 51.4 45.1 47.4 37.7 19.9 47.4 50.6 38.6 46.1 35.3 56.2 51.7
S 53.0 52.6 55.9 55.5 63.0 65.8 51.3 50.0 65.5 71.8 61.9 66.7
R. 145.2 36.7 479 43.0 63.5 72.6 45.3 45.5 62.5 81.0 64.3 76.9
aprss P 83.0 83.4 82.2 82.5 80.1 80.8 83.5 82.6 80.2 81.0 84.0 83.2
R. 85.8 84.8 82.8 87.1 83.8 83.2 83.9 84.4 82.0 82.6 82.4 85.8
P 70.1 76.7 65.3 73.6 61.1 70.7 66.2 76.6 66.1 70.1 62.6 77.2
R. 71.2 84.7 67.9 81.3 64.9 80.4 71.3 84.1 66.9 79.8 69.2 85.6
P. 70.0 73.2 67.6 70.9 63.7 67.0 65.9 717 65.1 65.0 65.8 73.0
Claude g 68.9 715 70.5 69.9 68.4 70.5 66.5 73.1 68.6 67.8 66.4 72.2
T 68.0 81.4 64.5 78.3 60.3 775 63.9 79.7 61.9 74.5 65.5 82.3
R. 75.9 82.9 72.9 80.7 71.4 82.5 73.7 82.1 72.0 79.5 74.3 85.7
ACC 65.6 717 63.3 70.9 63.0 73.9 61.3 67.7 65.5 76.4 66.0 771
F1 64.4 68.8 62.1 67.4 61.7 68.7 60.1 65.7 64.4 69.5 65.1 72.8
Table 8: 7F2-modelsZ&{F T BISLEG 25
| GPT-J+GPT2+LLaMA | GPT-J+GPT-Neo+GPT2 | GPT-J+GPT-Neo+LLaMA | GPTNeo+GPT2+LLaMA
models ‘ SeqXGPT ours ‘ SeqXGPT ours ‘ SeqXGPT ours ‘ SeqXGPT ours
. P. 52.7 59.4 48.9 54.6 485 57.8 52.4 59.0
Baichuan g 46.0 52.9 35.4 39.1 5.3 50.3 47.3 19.8
P. 65.9 70.0 93.5 96.7 92.1 95.5 93.5 96.6
GPTNeo p 62.5 76.6 92.9 97.3 90.1 95.4 91.8 96.3
apre P 93.7 96.9 95.0 98.0 80.5 84.0 95.1 97.9
R. 94.4 98.0 94.3 98.1 69.5 77.6 95.2 98.1
P. 56.9 66.5 53.2 62.8 54.0 67.3 57.1 67.3
LLaMa3 g 63.5 66.2 59.6 66.5 57.4 60.8 65.6 69.6
Mistral | P 72.1 76.5 66.8 71.2 71.0 74.8 71.3 75.8
R. 60.7 74.8 52.2 68.6 59.7 73.2 61.1 73.3
opr P 54.4 58.6 55.8 67.2 57.1 65.1 63.8 68.7
R. 57.9 495 60.9 64.0 62.5 59.2 67.2 63.6
rorr P 59.0 63.2 77.8 85.6 67.2 71.3 75.9 82.4
R. 56.6 60.0 72.2 86.7 72.1 81.7 73.1 86.1
P. 85.7 85.5 82.1 84.8 84.5 85.2 84.8 86.5
GPT3.5 g 87.2 88.4 85.2 85.9 85.7 89.0 86.5 88.3
P. 715 81.5 67.3 77.4 71.0 79.7 73.4 81.1
GPTdo g 747 87.4 715 84.2 71.6 85.8 73.8 86.8
P. 75.7 81.0 72.8 76.4 73.2 7.1 76.4 78.4
Claude g 73.8 77.2 73.9 74.8 72.4 75.8 72.6 74.7
boman P 70.8 85.6 67.1 80.6 70.6 85.5 72.6 84.8
R. 79.5 84.5 79.5 84.7 79.1 86.0 79.2 86.3
ACC 69.7 76.7 715 82.8 70.4 80.1 74.6 84.2
F1 68.8 745 70.5 77.4 69.6 76.2 74.0 79.5
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KWL, FH98T-5612T1, Hreg, FE, 202548 11HAE14H.
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