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摘摘摘要要要

大语言模型在高效生成文本的同时也带来了文本滥用的问题，如何有效地区分不同大
模型生成的文本成为了关键的挑战。为了解决这个问题，本文首先构建了一个面向多
分类的大模型生成文本检测任务的数据集LGT-AA，包含7个领域的人类和10个常用大
模型生成的94k条文本；其次，本文提出了一种提取不同大模型生成文本的全局性区分
性特征的方案，并与分布特征进行融合构建文本检测器，提升了对生成文本的检测能
力。实验结果表明，本文提出的方法在不同模型组合下和不同生成模型类别下都取得
了更优的性能。
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Abstract

While Large Language Models (LLMs) can generate text efficiently, they also bring
the problem of text abuse. How to effectively distinguish texts generated by different
large models becomes a key challenge. In order to solve this problem, this paper
firstly constructs a dataset LGT-AA oriented to multi-categorization for the task of
LLM-generated text detection, with a total of 94k texts in 7 common domains that
generated by human and 10 commonly used LLMs. Secondly, this paper proposes a
scheme to extract discriminative features of different LLM-generated texts, constructs
salient features by extracting the maximum pooling of hidden states in the last layer
of the big model, and uses feature alignment to fuse with distributional features in
order to construct a sentence-level detector, which improves the detection ability of
the generated texts. Experimental results show that our approach achieves superior
performance under different model combinations and different generative model classes.
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1 引引引言言言

大语言模型（Large Language Model, LLM）展示了强大的语言生成能力，已经被广泛用
来帮助人们生成新闻稿件、电子邮件等。

然而，对大模型的误用引起了学术界的担忧 [Sison et al.2024]。区别于虚假文本检测，进
行大模型生成文本检测的重要原因是区分大模型生成内容和人类创作的边界，以应对实际风
险，例如：维护信息透明性，防止大模型生成内容（如伪造评论 [Ignat et al.2025, Gambetti
and Han2024]、虚假观点）冒充人类身份传播；保护学术与教育诚信，避免大模型代写论文或
作业破坏评估体系的公平性 [Perkins et al.2023]；防止模型工业化生成低质文本挤占人类创作
空间，维护内容生态平衡等。因此，有必要对大模型生成的文本进行检测，强大的检测机制对
于各种使用大模型的应用程序提供了重要的安全保障。

由于大模型的优秀生成能力，大模型生成文本具有类似人类的超常流畅性和连贯性 [Kumar
et al.2024]，与人类生成文本之间的分布差异往往并不显著 [Tian et al.2024]。未经培训的人类
难以分辨大模型生成文本，即使是语言学专业的专家，检测结果也只略好于随机地猜测 [Li et
al.2024]。此外，大模型生成文本往往被认为比人类生成文本更可信 [Spitale et al.2023]。综上
所述，如何高效检测大模型生成文本成为了关键的挑战。

根据大模型生成文本检测分类的类别数量，可以将其分为二分类任务和多分类任务。二分
类任务仅识别给定文本是人类撰写还是由大模型生成的，而多分类任务需要识别给定文本是人
类撰写还是由多个候选大模型中的某一个生成的。目前已有一些大模型生成文本基准数据集 [Li
et al.2024,Wang et al.2024,Dugan et al.2024,Macko et al.2023]，其中大部分是针对二分类任务
的数据，其选用的大模型都比较少，常常局限于同一个模型的不同配置或版本。而多分类任务
的数据集还比较少，且选用的模型较少。

在检测方法方面，现有的工作都常采用大模型生成token的logits作为检测文本的特征
[Mitchell et al.2023, Wang et al.2023]，可以在句子粒度进行检测，实际上，在更小粒度上进行
检测并没有意义 [Chakraborty et al.2024]。然而，logits本质上是高维语义空间的低维投影，在
信息压缩过程中不可避免地丢失了一部分细粒度语义特征和上下文动态关联。因此，其检测性
能还达不到实际应用的需要。

为了解决以上问题，本文首先构建了一个新的面向大模型生成文本多分类检测任务的数据
集LGT-AA(LLMs-Generated Text Dataset for Authorship Attribution)，该数据包含7个领域的
人类和10个常用大模型生成的共94k条文本。为构建该数据，本文设计了针对不同文本类型的提
示，使用了非同源大模型进行文本生成。特别地，我们对文本数据中存在的格式化特征进行了
清洗，使得文本更贴合真实场景；进而，本文提出了一个大模型生成文本的多分类检测模型，
其中包含一个新的特征提取模块，其分别提取了文本的分布特征和显著特征，通过维度扩展对
齐特征维度以进行融合。所引入的基于大模型隐藏状态的显著特征，相对于SeqXGPT方法能够
对分布特征这一基础判别框架进行补充优化。在LGT-AA数据集上的实验结果表明，本文提出
的检测方法比强基线模型提升了10.0%的准确度，在所有模型分类标签上均达到了新的最优性
能。

总体而言，我们工作的主要贡献如下所述：

– 构建了一个新的面向多分类大模型生成文本检测任务的数据集LGT-AA，支撑细粒度
模型生成文本溯源研究，具有涵盖常用大模型和多领域数据的优势。

– 提出了一种新的提取不同大模型生成文本的区分性特征的方案，与分布特征进行组合
构建检测器，提升了对生成文本的泛化检测能力。

– 在LGT-AA数据集上的实验结果表明，本文提出的检测方法比强基线模型提升
了10.0%的识别性能，达到了新的最优性能。

2 相相相关关关工工工作作作

区别于人类撰写的文本，大模型生成文本（LLMs Generated Text, LGT）指的是通过大语
言模型，利用巨量的训练数据和计算能力，自动生成的具有上下文理解和连贯性的自然语言文
本。根据对大模型生成文本检测分类的类别数量，可以将其分为二分类任务和多分类任务。
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2.1 面面面向向向二二二分分分类类类任任任务务务的的的大大大模模模型型型生生生成成成文文文本本本检检检测测测

二分类任务指区分人类撰写的文本和大模型生成的文本，只关注文本来源的真假而不区分
具体的大模型类别。面向二分类任务的方法主要包括基于训练、基于统计和水印三类，其中水
印需要对大模型本身进行修改，属于生成中检测的方法，而另外两种都属于生成后检测的方
法。基于训练的方法指在同时包含人类和人工智能生成的文本示例的数据集上对预训练模型进
行微调，以区分这两类文本。对于源模型未知的情况，常使用跨域迁移的方法进行检测 [Tian
et al.2024]。基于统计的方法使用语言模型为文本生成分数，并从中创建统计特征。最初的方
法侧重于检测语言特征的差异，使用困惑度（perplexity, PPL）、相对熵和风格相似性等统
计量度 [Beresneva2016]，而近期的方法偏向使用更高级的特征，如扰动概率曲率 [Mitchell et
al.2023]、条件概率曲率 [Bao et al.2024]、对数秩信息、token频率、token内聚性等。基于统计
的方法往往需要访问模型的输出对数或损失进行检测。然而，许多商业公司提供的大模型服务
在推理时并不公开模型的输出对数或损失。因此，这些方法不得不依赖本地代理模型来获取
输出信息。然而，在线模型与本地代理模型之间的不一致性可能会导致检测性能低下 [Zhu et
al.2023]。

2.2 面面面向向向多多多分分分类类类任任任务务务的的的大大大模模模型型型生生生成成成文文文本本本检检检测测测

二分类任务无法关注标签层面更细粒度的检测，比如模型生成文本的具体来源，因此出
现了多分类任务。多分类任务指区分人类撰写的文本和大模型生成的文本，细分到大模型
的具体类别，也被称为对于作者归属（Authorship Attribution, AA）的判别。目前面向多分
类任务的检测方法研究较少，基于统计的方法难以对文本的具体来源进行准确的判别，更多
都是基于训练的方法。Venkatraman等人提出的GPT-who，利用基于统一信息密度(Uniform
Information Density, UID)的特征对每个大模型和人类的这一独特统计特征进行建模，以
实现准确的多分类检测 [Venkatraman et al.2024]。生成概率反映了大模型对当前上下文的
语义理解及生成下一个词的偏好。受DetectGPT [Mitchell et al.2023]的启发，Sniffer通过比
较开源模型对之间的对比概率值进行分类 [Li et al.2023]，而SeqXGPT在Sniffer基础上结合
了Fast-DetectGPT [Bao et al.2024]的条件概率曲率特征，通过比较开源模型的概率列表进行分
类 [Wang et al.2023]。MAGRET对同一个文本使用多个闭源大模型生成“相似”文本，计算相似
度等特征，然而这种方法成本高昂，依赖于API的生成效果和反应时间 [Huang et al.2025]。

2.3 大大大模模模型型型生生生成成成文文文本本本数数数据据据集集集

现有研究提出了一些大模型生成文本的基准数据集，它们选用各种大模型在给定的人类
生成文本提示上模仿生成新的文本，但是这些基准数据集选用的生成模型都比较少，更偏
向同一大模型的不同版本或不同参数配置（如LLaMA-2-7B/13B），而这些版本和配置之间
的文本生成差异较小。例如，MAGE声称的27个模型实际上是7个模型和20个不同版本 [Li et
al.2024]；M4GT-Bench仅在M4的5个模型上加入了GPT-4 [Wang et al.2024]；RAID [Dugan et
al.2024]和MULTITuDE [Macko et al.2023]都使用了8个不同的模型。而这些benchmark也仅仅
选用二分类任务在数据集上检测。

3 数数数据据据集集集

本节首先介绍数据集构建方法，之后对构建的数据集LGT-AA(LLMs-Generated Text
Dataset for Authorship Attribution)进行详细的介绍。

3.1 数数数据据据集集集构构构建建建方方方法法法

数据集构建的流程如图1所示，包含源数据选择、提示设计、文本生成、后处理等四个环
节，以下对方法具体介绍。

源源源数数数据据据选选选择择择：我们选用了HC3-English [Guo et al.2023]和Fast-DetectGPT [Bao et
al.2024]构建的数据集作为源数据集。其中，HC3-English包含金融、医药、百科和开放问答四
个领域的7,210个问题、7,210个人类回答和10,243个ChatGPT回答；Fast-DetectGPT构建的数
据集包含新闻、学术文章和创意写作三个领域的1,300个人类撰写的文本和7,100的由7个大模型
生成的文本。我们这样选择是因为前者为二分类方法常用的问答数据集 [Liu et al.2024,Yang et
al.2024a]，后者为二分类方法常用的连续文本数据集 [Mitchell et al.2023,Yang et al.2024b,Yu et
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Figure 1: 数据集构建流程示意图

Your task is to complete the article to make it coherent according to the given beginning. An adolescent's environment
plays a huge role in their identity development. While most adolescent studies are conducted on white, middle class
children, studies show that the more privileged upbringing people have, the more successfully they develop their
identity.

Your task is to complete the novel to make it coherent according to the given beginning. A man invents time travel in
order to find a cure for his sick wife and succeeds, only to find out he can't go back. I've taken the title and gone my
own way with it a bit, I hope that's ok. It also didn't turn out quite the way I wanted it.

Your task is to complete the news to make it coherent according to the given beginning. Maj Richard Scott, 40, is
accused of driving at speeds of up to 95mph (153km/h) in bad weather before the smash on a B-road in Wiltshire.
Gareth Hicks, 24, suffered fatal injuries when the van he was asleep in was hit by Mr Scott's Audi A6.

学术文章

创意写作

新闻

Figure 2: prompt示例

al.2024b]，而这两个任务分别考验了大模型在信息检索和逻辑连贯性上的能力 [Liu et al.2023]。
这些数据集均选用了2020年及以前人类撰写的文本作为负样本，保证了人类撰写文本部分的真
实性，不会受到潜在的大模型污染。

提提提示示示设设设计计计：对于问答数据集，我们直接提取问题作为prompt；对于连续文本数据集，为
了维护生成的多样性，参考SeqXGPT [Wang et al.2023]的采样方法，我们随机提取文本开头的
几个句子，所提取的句子满足单词数量∈ [20, 60]且句子完整。此外，续写文本还需要补充额外
的prompt，示例如图2所示。

文文文本本本生生生成成成：对于人类撰写的文本，我们直接应用了3.1中源数据集中人类撰写
文本的部分；而对于大模型生成的文本，我们选用了Baichuan2-13B-Chat1，GPT-Neo-
2.7B [Black et al.2021]，GPT2-xl [Radford et al.2019]，LLaMA-3-8B-Insturct2，Mistral-7B-
Insturct-v0.33，OPT-2.7B [Zhang et al.2022]，PULI-GPTrio [Yang et al.2023]，GPT-3.5-
turbo，GPT-4o [Hurst et al.2024]，Claude-3.5共10个模型作为待检测文本的生成模型，
这些模型在大模型生成文本检测领域及日常生活等真实场景中被广泛使用。其中，除

1https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
2https://huggingface.co/meta-Llama/llama-3-8b-Insturct
3https://huggingface.co/rubra-ai/Mistral-7B-Instruct-v0.3
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了GPT3.5，GPT4o和Claude模型使用官网API，其它模型均为本地调用生成数据。
后后后处处处理理理：大模型生成文本中普遍存在的格式化特征（包括但不限于加粗符号、序列编号等

结构化标记）对生成文本检测模型的性能具有显著影响 [Yu et al.2024a]。例如，SeqXGPT方法
在清洗后的数据集中较清洗前检测准确度下降了23.66% ，见附录A。为此，本文采用正则表达
式和语法树分析相结合的方法，系统性地去除了生成文本中的结构化标记。

3.2 数数数据据据集集集分分分析析析

本文基于上述方法构建的大模型生成文本数据集LGT-AA含有94k条由10个不同的常用大模
型生成的文本，具体模型和各个模型生成的数据规模如表1所示。这些文本均来自于真实场景下
的人类撰写或由大模型在给定prompt的条件下生成。此外，我们还对数据集进行了词法分析实
验，如附录B所示。

模模模型型型 金金金融融融 医医医药药药 开开开放放放问问问答答答 百百百科科科 学学学术术术文文文章章章 创创创意意意写写写作作作 新新新闻闻闻 合合合计计计
Baichuan2-13B-Chat 3475 816 1033 461 278 415 420 6898

GPT-neo-2.7B 3917 1241 1174 840 300 500 500 8472
GPT2-xl 3909 1111 1175 838 300 500 500 8333

LLaMA-3-8B-Insturct 3932 1244 1185 842 300 500 500 8503
Mistral-7B-Insturct-v0.3 3931 1247 1184 840 298 500 500 8500

OPT-2.7B 3859 1213 1102 829 300 500 500 8303
PULI-GPTrio 3813 1227 1149 724 297 492 471 8173
GPT-3.5-turbo 4503 1334 3546 842 300 499 499 11523

GPT-4o 3933 1244 1183 842 300 497 496 8495
Claude-3.5 3928 1248 1185 842 300 500 499 8502

human 3933 1248 1187 842 300 500 500 8510
合合合计计计 43133 13173 15103 8742 3273 5403 5385 94212

Table 1: 面向多分类任务的大模型生成文本数据集LGT-AA

4 方方方法法法

4.1 问问问题题题定定定义义义

检测给定的文本是由人类撰写还是由某一个已知大模型生成的问题可以定义为一个多
分类任务：给定输入文本序列X = [x1, x2, ..., xλ]（其中λ表示序列长度），以及一个标签集
合M = [H,M1,M2, ...,Mk]，其中H为人类，Mi为第i个大模型，检测任务在于构建分类器F

F : X → m,m ⊂ M (1)

我们的模型包含三个模块，即输入编码器模块、特征提取模块和检测器模块。其中，
输入编码器模块通过分词算法和预训练词表映射将输入文本X转换成模型可理解的编码序
列s = [s1, s2, ..., sn]，特征提取模块使用大模型提取并融合两类不同特征，检测器模块构建分类
器得到预测结果。在特征提取模块中，我们采用了多种不同的模型组合设置，即1-model（单
模型），2-models（双模型组合），3-models（三模型组合）以及4-models（全部模型）。
以4-models为例，模型的整体结构如图3所示。
以下分别介绍特征提取模块和检测器模块的具体内容。

4.2 特特特征征征提提提取取取模模模块块块

特征提取部分包含对两类不同特征的提取和融合：一类是分布特征，分布特征基于大模型
生成概率，通过字节对齐及卷积网络提取文本局部信息；另一类是显著特征，利用大模型最后
一层隐藏状态最大池化捕获文本全局信息，二者具有互补性。最后，将两部分特征进行融合，
以得到最后的分类特征。以下分别介绍两类特征和特征融合部分。

4.2.1 分分分布布布特特特征征征

本文沿用SeqXGPT [Wang et al.2023]的对数特征作为模型的分布特征。具体而言，给定输
入序列s = [s1, s2, ..., sn]，已知模型M，可以得到输入文本X对应的对数概率列表llM (s)，其中

llM (si) = logpM (si|s<i) (2)
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Figure 3: 以4-models设置为例的模型整体结构图
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Figure 4: 对数概率列表字节表示对齐操作示例

然而，由于不同大模型的分词策略并不相同，其生成的对数概率列表不能通过简单地对
齐加以合并。考虑到即使是不同大模型m的分词序列sm = [sm1, sm2, ..., smn]，其对应的字节
表示bm = [bm11, bm12, ...bm1len(sm1), ..., bmn1, bmn2, ...bmnlen(smn)]均长度相同（其中len(smi)表

示由大模型m第i个token s的字节长度），可以进行对齐合并操作，如图4所示。因此，通过
将分词序列转换成字节表示的方法，我们能够将不同长度的对数概率列表对齐到统一的分
词序列w = [w1, w2, ..., wn′ ]，n′为序列w长度，得到对齐后的对数概率列表，也即基础分布特
征llm(w)，其中

llm(wi) = logpm(wi|w<i) (3)

基础分布特征能够反映模型对语言模式和句法结构的理解。

基础分布特征是一个列表，不能被直接应用到已有的预训练模型中。参考语音信号的处理
方法，我们将其分别通过五层卷积网络进行特征编码，以捕获基础分布特征中的上下文信息，
从而得到分布特征d ∈ Rl×e。其中，l为可检测文本的最大长度4，e为该五层卷积网络输出通道
大小。该卷积网络的详细参数设计包括：卷积核大小为(5,3,3,3,3)，步长为(1,1,1,1,1)，输出通
道为(64,128,128,128,64)。

4.2.2 显显显著著著特特特征征征

我们通过提取大模型最后一层隐藏状态的最大池化作为模型的显著特征。大模型的隐藏状
态本质上是由多个自注意力机制和前馈神经网络层堆叠形成的中间表征空间，在Transformer架
构中，每一层的隐藏状态都对应着不同抽象层级的特征编码。具体而言，底层隐藏状态主要捕

4l=1024
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捉词汇的局部共现模式、句法结构等表层特征，而随着网络层数的加深，模型通过多头注意力
机制的特征交互，逐步构建起文本的语义关联、逻辑推理等高阶抽象特征。
特别地，大模型的最后一层隐藏状态具有独特的表征价值。作为经过数层非线性变换后的

最终中间输出，该层隐藏状态不仅融合了各层级特征提取的结果，还直接关联着模型输出层的
预测结果生成过程。从信息流的角度来看，最后一层隐藏状态处于整个模型特征处理管道的
末端，既保留了原始输入的语义核心要素，又经过深度语义蒸馏去除了冗余信息，形成了任
务相关的紧凑特征表示。相对于分布特征，基于隐藏状态的显著特征能够包含更多的隐藏知
识 [Gekhman et al.2025]。
给定输入序列s = [s1, s2, ..., sn]，模型第l层的隐藏状态可以表示为H l ∈ Rn×d，其中n为序

列长度，d为隐藏维度。其中，最后一层隐藏状态表示为HL（L为模型总层数）。由于参数量
和容量等影响，不同大模型的隐藏维度可能不同。因为隐藏维度一般较高，且最后一层隐藏状
态中呈现明显的稀疏性，我们选择最大池化操作沿序列维度将最后一层隐藏状态HL映射为低维
向量，即对序列中所有token位置i(1 ≤ i ≤ n)，取隐藏状态的每个特征维度j(1 ≤ j ≤ d)的最大
值，生成池化后的基础显著特征vf ∈ Rn，如式4所示。

vfj = max
1≤i≤n

HL
i,j (4)

最大池化操作通过保留最显著的特征激活值，突出文本中的关键语义单元，不需要因隐藏维度
不同进行对齐操作，同时规避了平均池化对噪声敏感的问题 [Lee et al.2025]。具体而言，大模
型最后一层隐藏状态中呈现明显的稀疏性，即对于任何一个输入样本，其对应的隐藏状态向量
中，大部分维度的值接近零或非常小，只有少数维度被显著激活，即具有较大的正值或负值。
平均池化计算所有激活值的平均值。如果特征向量中存在少量但显著、代表重要特征的强激活
值和大量代表背景或噪声微弱与零值，平均值会被这些微弱与零值显著拉低，从而削弱重要特
征的贡献。我们选用最大池化捕获稀疏表示中的关键信息，有效地将每个维度的信息浓缩为该
维度上最重要的单个值，以便进行特征融合。
类似于4.2.1中的基础分布特征处理方法，我们将基础显著特征通过两层卷积网络进行特征

编码，取序列维度每一位的均值，从而得到显著特征v ∈ Re。其中，e为该两层卷积网络输出通
道大小，为了便于特征对齐，与分布特征中五层卷积网络输出通道数相同。该卷积网络的详细
参数设计包括：卷积核大小为(3,3)，步长为(1,1)，输出通道为(32,64)。

4.2.3 特特特征征征融融融合合合

对于通过大模型获得的分布特征和显著特征，还需要特征融合以实现进一步的分类检
测，即将两个不同维度的特征向量进行特征对齐。在特征对齐过程中，我们将显著特征向
量v ∈ Re沿序列维度重复l次进行扩展，形成扩展后的特征矩阵v′ ∈ Rl×e，随后与同维度的分布
特征矩阵进行融合。
具体而言，给定输入特征v，首先通过序列维度扩展操作将其复制l次，生成扩展矩阵

v′ = v · [1, 1, ..., 1]l = [v,v, . . . ,v]︸ ︷︷ ︸
l

∈ Rl×e (5)

随后，将扩展后的显著特征v′与分布特征d ∈ Rl×e相加，得到对齐后的特征

f = v′ + d ∈ Rl×e (6)

对于由不同模型得到的对齐特征fi，我们将其在特征维度e进行拼接，得到融合特征

F = [f1, f2, . . . , fk] ∈ Rl×(k·e) (7)

最后，我们将上下文网络应用到融合特征F中，以构建整个序列的上下文特征F′ ∈
Rl×(k·e)。上下文网络包含两个transformer层，每层包含16个注意力头，隐藏层大小为512，
采用最简单的绝对位置编码P [Vaswani et al.2017]。

F′ = T (2)
16,512(F,P) where T (n)

h,d := Transformer(h, d)×n (8)
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4.3 检检检测测测器器器模模模块块块

值得注意的是，鉴于分布特征d ∈ Rl×e，经过处理后的融合特征F ∈ Rl×(k·e)，融合特
征F在l维度也可以看作对应于统一分词序列w中的每个token。因此，我们训练了一个线性分类
器，将每个单词的特征投影到对应的模型标签上，通过统计每个单词的预测标签得到句子级检
测概率，选择出现次数最多的标签作为句子的最终预测结果。

5 实实实验验验

5.1 实实实验验验设设设置置置

我们选用了GPT2-xl、GPT-Neo-2.7B、GPT-J-6B5、LLaMA-2-7B-hf6四个开源模型作为
特征提取模块所使用的白盒模型，通过这四个开源模型，我们提取了两种不同的特征以进行实
验。如4.1所述，我们对不同的模型组合均进行了实验。

我们将epoch设定为20，batch size设定为32，学习率lr设定为5e-5，weight decay设定
为0.1。数据集按照9:1的比例随机分为训练集和测试集。对分布特征和显著特征提取部分的
实验运行在NVIDIA Tesla A40 GPU上，特征融合及分类检测部分实验运行在NVIDIA GeForce
RTX 3090 GPU上。我们选用了SeqXGPT [Wang et al.2023]作为多分类任务的基线模型、Fast-
DetectGPT [Bao et al.2024]、DetectLLM-LRR [Su et al.2023]、DNA-GPT [Yang et al.2024b]作
为二分类任务的基线模型。

此外，遵循以往工作，我们选用精确率P.和召回率R.分别评判每个类别的检测效果，选
用ACC（分类的准确性）和Macro F1（每个大模型类别的F1分数）作为方法整体的评估标
准。

5.2 实实实验验验结结结果果果及及及分分分析析析

面向多分类任务的实验结果如表2所示，该表展示了在1-model (GPT-Neo)，2-
models (GPT-Neo和LLaMA2)，3-models (GPT-Neo、LLaMA2和GPT2)以及4-models的条件
下对比SeqXGPT我们的模型效果。其中，所展示的四种模型组合分别是在固定模型数量的
条件下SeqXGPT在其上表现最好的组合，更详细的实验结果参见附录C。

models
1-model 2-models 3-models 4-models

SeqXGPT our work SeqXGPT our work SeqXGPT our work SeqXGPT our work

Baichuan
P. 32.1 41.3 47.3 57.3 52.4 59.0 55.1 62.2
R. 18.3 18.6 40.8 42.5 47.3 49.8 49.4 54.6

GPT-Neo
P. 71.8 78.8 87.3 93.1 93.5 96.6 93.6 96.9
R. 63.0 75.6 85.8 93.2 91.8 96.3 92.9 97.7

GPT2
P. 52.7 59.3 77.5 82.2 95.1 97.9 95.1 98.4
R. 52.4 61.1 65.4 75.1 95.2 98.1 95.9 98.3

LLaMA3
P. 40.6 48.3 51.9 61.8 57.1 67.3 60.8 73.3
R. 44.7 43.0 55.5 58.0 65.6 69.6 67.4 75.2

Mistral
P. 50.2 51.6 65.7 73.1 71.3 75.8 73.2 78.5
R. 41.8 60.9 55.3 71.8 61.1 73.3 61.8 75.0

OPT
P. 30.7 33.0 50.7 58.1 63.8 68.7 66.3 75.3
R. 29.6 21.2 56.2 51.7 67.2 63.6 70.6 73.7

PULI
P. 45.9 45.5 61.9 66.7 75.9 82.4 79.2 87.3
R. 42.5 48.2 64.3 76.9 73.1 86.1 75.8 88.5

GPT3.5
P. 78.3 76.4 84.0 83.2 84.8 86.5 85.4 88.8
R. 77.4 80.2 82.4 85.8 86.5 88.3 88.2 91.5

GPT4o
P. 48.5 63.7 62.6 77.2 73.4 81.1 75.9 84.3
R. 60.9 74.7 69.2 85.6 73.8 86.8 76.9 88.5

Claude
P. 51.3 60.4 65.8 73.0 76.4 78.4 79.5 82.2
R. 59.4 62.0 66.4 72.2 72.6 74.7 76.4 79.6

human
P. 51.7 70.6 65.5 72.3 72.6 84.8 76.0 87.3
R. 64.6 80.7 74.3 85.7 79.2 86.3 83.0 87.6

ACC 51.8 61.5 66.0 77.1 74.6 84.2 76.9 86.9
Macro F1 50.0 56.4 65.1 72.8 74.0 79.5 76.2 82.9

Table 2: 面向多分类任务的实验结果

5https://huggingface.co/EleutherAI/gpt-j-6b
6https://huggingface.co/meta-llama/Llama-2-7b-hf
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总体而言，我们的方法相对SeqXGPT提升了10.0%的准确度和6.7%的Macro F1分数，精
确率平均提升了6.8%，召回率平均提升了6.5%，这说明该方法在综合分类性能上显著优
于SeqXGPT，不仅整体预测准确率更高，且在正类别的识别能力和预测结果的可靠性之间
实现了更优的平衡。Macro F1分数的提升进一步表明，我们的方法在类别不均衡或复杂样本场
景下的鲁棒性和泛化能力更强，通过改进特征提取有效提升了模型的判别边界清晰度。此外，
在不同的模型组合条件下我们的方法效果均有明显的提升，准确度平均提升了10.1%，Macro
F1分数平均提升了6.6%，这说明方法效果提升并不是特定模型组合的偶然结果，具有普适性和
稳定性。

(a) ACC (b) Macro F1

Figure 5: 不同模型组合下ACC和Macro F1变化趋势

在不同的模型组合下，我们可以观察到ACC和Macro F1有相近的变化趋势，如图5所
示。从3-models组合到4-models组合，增加了33%的成本但是仅仅提升了2.7%的准确度
和3.4%的Macro F1分数，这一方面说明4-models组合设置已经饱和，再增加新的模型不会
带来更多的性能提升，另一方面我们的方法在3-models设置上比SeqXGPT在4-models设置上的
效果还要更好，在限制成本的条件下可以被应用，具有较高的性价比。

对于不同的生成模型，我们可以观察到GPT系列的模型相较于其它大模型更容易被检
测，即使是性能更强的GPT4o也是如此。原因是：1）我们选用的特征提取模型中包含三
个GPT系列的模型，对于生成概率的提取结果会和GPT系列模型的生成结果更加吻合，
因此容易判别；2）对数概率这一用于大模型生成文本检测的特征的提出来自零样本方
法DetectGPT对GPT-3生成文本扰动结果的观察，可能为GPT系列模型的固有特征而对其它
大模型适用效果一般。

我们还计算了实验的效率分析。对于使用4-models作为特征提取模型的相同实验设置下，
我们的方法对比SeqXGPT的效率如表3所示。由于引入了额外的显著特征，我们的模型相对
于SeqXGPT增加了约27%的耗时。其中，在特征提取阶段，SeqXGPT和我们的方法平均提取
每一条文本数据的特征耗时分别为0.70s和0.88s，在真实应用场景（如单条文本检测）下相差较
小，可以认为我们的方法具有实际应用价值。

方方方法法法 特特特征征征提提提取取取 训训训练练练 合合合计计计

SeqXGPT 18.27h 6.57h 24.83h
Ours 23.03h 8.48h 31.52h

Table 3: 实验效率分析

此外，我们进行了面向二分类任务的实验，实验结果如表4所示，在该任务上也达到了更优
的效果。虽然Fast-DetectGPT识别大模型生成文本的精确率更高，DetectLLM识别大模型生成
文本的召回率更高，但是其识别人类撰写的文本的效果却不尽如人意，将更多的文本误认为大
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模型生成，实际应用价值较低,存在着较高的误检风险。此外，误检风险可能会造成较为深远的
社会后果，如“假阳性”风险下学术论文被错误标记为大模型生成，损害学术声誉和未来风险。
总体而言，在精度更低的二分类实验中，我们的方法也能准确识别待检测文本的作者。

models Fast-DetectGPT DetectLLM DNA-GPT SeqXGPT our work

LLM
P. 99.2 90.1 90.1 98.2 98.6
R. 64.9 99.1 89.1 98.5 98.5

human
P. 21.3 3.7 9.2 86.8 87.1
R. 94.6 0.3 10.1 84 87.5

ACC 67.6 89.4 81.4 97.0 97.4
F1 37.7 47.5 49.6 91.9 92.9

Table 4: 面向二分类任务的实验结果

5.3 消消消融融融实实实验验验

为了验证方法中每个模块的有效性，我们在4-models的条件下分别对分布特征模块和显著
特征模块进行了消融实验，如表5所示。

models our work w/o 分分分布布布特特特征征征 w/o 显显显著著著特特特征征征

Baichuan
P. 62.2 33.5 55.1
R. 54.6 11.6 49.4

GPTNeo P. 96.9 48.6 93.6
R. 97.7 62.5 92.9

GPT2 P. 98.4 38.8 95.1
R. 98.3 35.7 95.9

LLaMA3 P. 73.3 35.1 60.8
R. 75.2 34.4 67.4

Mistral P. 78.5 42.7 73.2
R. 75.0 42.9 61.8

OPT P. 75.3 33.6 66.3
R. 73.7 21.5 70.6

PULI P. 87.3 44.1 79.2
R. 88.5 26.4 75.8

GPT3.5 P. 88.8 62.6 85.4
R. 91.5 75.2 88.2

GPT4o P. 84.3 54.7 75.9
R. 88.5 70.4 76.9

Claude
P. 82.2 50.9 79.5
R. 79.6 55.4 76.4

human P. 87.3 60.8 76.0
R. 87.6 70.2 83.0

ACC 86.9 48.9(-38.0) 76.9(-10.0)
F1 82.9 44.9(-38.0) 76.2(-6.7)

Table 5: 消融实验结果

总体而言，w/o 分布特征任务准确度下降了38.0%，Macro F1分数下降了38.0%；w/o 显著
特征任务准确度下降了10.0%，Macro F1分数下降了6.7%。这说明两个特征模块都对实验有正
向贡献，存在正向协同效应。其中，分布特征提供了基础判别框架，显著特征对其进行了补充
优化，二者结合实现了最佳效果。

6 结结结论论论

本文提出了一个面向多分类大模型生成文本检测任务的数据集LGT-AA，支撑细粒度模型
生成文本溯源研究，涵盖了常用大模型和多领域的数据。本文还提出了提取不同大模型生成文
本的区分性特征的方案，通过提取大模型最后一层隐藏状态的最大池化构建显著特征，使用特
征对齐与分布特征进行融合以构建句子级检测器，提升了对生成文本的检测能力。对比最优基
线SeqXGPT，我们的方法提升了10.0%的准确度和6.7%的Macro F1分数，在不同模型组合下和
不同生成模型类别下都达到了更优越的效果。我们未来的工作包括对未知模型、混合文本和对
抗攻击鲁棒性的进一步研究。

CC
L 
20
25

第二十四届中国计算语言学大会论文集，第598页-第612页，济南，中国，2025年8月11日至14日。

(c) 2025 中国中文信息学会计算语言学专业委员会 607



中国计算语言学大会

参参参考考考文文文献献献

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, et al. 2024. Fast-detectgpt: Efficient zero-shot detec-
tion of machine-generated text via conditional probability curvature. In Proceedings of the 12th
International Conference on Learning Representations.

Daria Beresneva. 2016. Computer-generated text detection using machine learning: A systematic review.
In International Conference on Applications of Natural Language to Information Systems, pages
421–426. Springer.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-Tensorflow, March.

Souradip Chakraborty, Amrit Bedi, Sicheng Zhu, Bang An, Dinesh Manocha, and Furong Huang. 2024.
Position: On the possibilities of ai-generated text detection. In Forty-first International Conference
on Machine Learning.
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A 数数数据据据集集集后后后处处处理理理实实实验验验结结结果果果

我们对SeqXGPT在清洗前后的数据集上的表现进行了实验，实验结果如表6所示。

models
SeqXGPT

清清清洗洗洗后后后 清清清洗洗洗前前前

ACC 76.9 92.2
F1 76.2 93.7

Table 6: SeqXGPT在清洗前后的数据集上的表现

B 数数数据据据集集集词词词法法法分分分析析析结结结果果果

我们对LGT-AA数据集进行了词法分析，结果如图6所示。可以观察到，数据集中的词汇总
体分布较为均匀，SPACE和X等非语义符号和结构化标记占比都较低，清洗操作有效降低了数
据集中的格式特征。此外，Claude、LLaMA-3、Mistral、GPT-3.5、GPT-4o生成文本中的代
词含量相对较低，因为它们相对于其它模型更偏向使用代词代替名词。

C 面面面向向向多多多分分分类类类任任任务务务的的的实实实验验验结结结果果果

以下列出了SeqXGPT和我们的方法在不同模型组合的条件下的详细实验结果，1-model组
合结果如表7所示，2-models组合结果如表8所示，3-models组合结果如表9所示。CC
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Figure 6: LGT-AA数据集词法分析结果

models
GPTNeo LLaMa GPT2 GPT-J

SeqXGPT ours SeqXGPT ours SeqXGPT ours SeqXGPT ours

Baichuan
P. 32.1 41.3 29.0 30.6 31.6 37.7 28.0 31.1
R. 18.3 18.6 19.7 18.2 17.0 22.5 17.3 19.2

GPTNeo
P. 71.8 78.8 47.3 53.6 50.9 56.8 51.3 56.0
R. 63.0 75.6 54.5 72.7 53.4 73.1 51.9 67.3

GPT2
P. 52.7 59.3 60.2 66.9 63.2 73.6 56.8 62.5
R. 52.4 61.1 49.5 59.9 62.4 74.2 52.9 61.6

LLaMa3
P. 40.6 48.3 45.3 50.1 40.2 48.7 42.2 47.6
R. 44.7 43.0 45.0 41.2 44.4 51.3 48.0 44.7

Mistral
P. 50.2 51.6 51.8 52.1 47.5 51.6 49.7 49.6
R. 41.8 60.9 47.0 60.6 44.7 55.7 43.3 60.0

OPT
P. 30.7 33.0 33.1 35.3 28.7 30.8 31.1 35.1
R. 29.6 21.2 35.7 25.1 26.5 18.6 31.0 25.2

PULI
P. 45.9 45.5 41.9 43.6 39.5 40.9 40.5 42.5
R. 42.5 48.2 31.1 26.4 30.2 25.2 30.7 30.0

GPT3.5
P. 78.3 76.4 79.8 77.3 76.9 76.0 80.3 78.2
R. 77.4 80.2 78.8 80.2 77.2 75.1 79.1 79.6

GPT4o
P. 48.5 63.7 57.7 67.1 51.1 62.0 50.2 63.7
R. 60.9 74.7 67.7 81.3 62.5 74.7 59.0 76.5

Claude
P. 51.3 60.4 41.7 49.0 48.6 55.2 58.5 48.1
R. 59.4 62.0 52.1 45.4 54.5 58.0 62.6 39.8

human
P. 51.7 70.6 53.1 67.5 52.7 67.1 51.1 65.1
R. 64.6 80.7 63.5 77.6 65.1 75.5 69.4 73.9

ACC 51.8 61.5 50.8 57.9 50.4 58.8 51.2 56.6
F1 50.0 56.4 48.8 59.6 48.2 60.0 48.9 52.1

Table 7: 在1-model条件下的实验结果
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models
GPT2+LLaMA GPT-J+GPT2 GPT-J+GPTNeo GPT-J+LLaMA GPTNeo+GPT2 GPTNeo+LLaMA

SeqXGPT ours SeqXGPT ours SeqXGPT ours SeqXGPT ours SeqXGPT ours SeqXGPT ours

Baichuan
P. 48.2 55.0 44.3 49.4 41.1 51.4 45.6 51.2 38.7 48.0 47.3 57.3
R. 42.4 44.0 32.4 38.1 28.5 33.6 38.8 41.6 29.8 30.8 40.8 42.5

GPTNeo
P. 60.0 62.8 60.4 63.9 89.1 94.8 56.7 61.8 86.9 94.2 87.3 93.1
R. 62.0 78.8 61.3 76.5 89.7 95.1 59.2 73.3 85.1 93.1 85.8 93.2

GPT2
P. 87.5 94.2 91.1 96.6 74.5 74.2 72.5 79.3 92.0 96.8 77.5 82.2
R. 91.5 96.6 93.2 97.8 62.8 70.9 60.3 70.5 92.3 97.3 65.4 75.1

LLaMa3
P. 53.2 60.0 49.0 60.6 44.8 57.8 50.9 60.5 47.2 56.1 51.9 61.8
R. 59.0 58.3 58.1 61.2 47.9 52.1 54.7 55.7 56.2 59.5 55.5 58.0

Mistral
P. 66.6 72.7 62.5 68.4 61.5 67.8 65.4 70.3 59.7 61.4 65.7 73.1
R. 56.8 71.4 50.5 67.2 48.9 66.6 56.3 71.8 48.9 60.0 55.3 71.8

OPT
P. 49.2 53.4 42.9 47.5 44.0 55.2 43.6 45.9 47.2 52.5 50.7 58.1
R. 51.4 45.1 47.4 37.7 49.9 47.4 50.6 38.6 46.1 35.3 56.2 51.7

PULI
P. 53.0 52.6 55.9 55.5 63.0 65.8 51.3 50.0 65.5 71.8 61.9 66.7
R. 45.2 36.7 47.9 43.0 63.5 72.6 45.3 45.5 62.5 81.0 64.3 76.9

GPT3.5
P. 83.0 83.4 82.2 82.5 80.1 80.8 83.5 82.6 80.2 81.0 84.0 83.2
R. 85.8 84.8 82.8 87.1 83.8 83.2 83.9 84.4 82.0 82.6 82.4 85.8

GPT4o
P. 70.1 76.7 65.3 73.6 61.1 70.7 66.2 76.6 66.1 70.1 62.6 77.2
R. 71.2 84.7 67.9 81.3 64.9 80.4 71.3 84.1 66.9 79.8 69.2 85.6

Claude
P. 70.0 73.2 67.6 70.9 63.7 67.0 65.9 71.7 65.1 65.0 65.8 73.0
R. 68.9 71.5 70.5 69.9 68.4 70.5 66.5 73.1 68.6 67.8 66.4 72.2

human
P. 68.0 81.4 64.5 78.3 60.3 77.5 63.9 79.7 61.9 74.5 65.5 82.3
R. 75.9 82.9 72.9 80.7 71.4 82.5 73.7 82.1 72.0 79.5 74.3 85.7

ACC 65.6 71.7 63.3 70.9 63.0 73.9 61.3 67.7 65.5 76.4 66.0 77.1
F1 64.4 68.8 62.1 67.4 61.7 68.7 60.1 65.7 64.4 69.5 65.1 72.8

Table 8: 在2-models条件下的实验结果

models
GPT-J+GPT2+LLaMA GPT-J+GPT-Neo+GPT2 GPT-J+GPT-Neo+LLaMA GPTNeo+GPT2+LLaMA

SeqXGPT ours SeqXGPT ours SeqXGPT ours SeqXGPT ours

Baichuan
P. 52.7 59.4 48.9 54.6 48.5 57.8 52.4 59.0
R. 46.0 52.9 35.4 39.1 45.3 50.3 47.3 49.8

GPTNeo
P. 65.9 70.0 93.5 96.7 92.1 95.5 93.5 96.6
R. 62.5 76.6 92.9 97.3 90.1 95.4 91.8 96.3

GPT2
P. 93.7 96.9 95.0 98.0 80.5 84.0 95.1 97.9
R. 94.4 98.0 94.3 98.1 69.5 77.6 95.2 98.1

LLaMa3
P. 56.9 66.5 53.2 62.8 54.0 67.3 57.1 67.3
R. 63.5 66.2 59.6 66.5 57.4 60.8 65.6 69.6

Mistral
P. 72.1 76.5 66.8 71.2 71.0 74.8 71.3 75.8
R. 60.7 74.8 52.2 68.6 59.7 73.2 61.1 73.3

OPT
P. 54.4 58.6 55.8 67.2 57.1 65.1 63.8 68.7
R. 57.9 49.5 60.9 64.0 62.5 59.2 67.2 63.6

PULI
P. 59.0 63.2 77.8 85.6 67.2 71.3 75.9 82.4
R. 56.6 60.0 72.2 86.7 72.1 81.7 73.1 86.1

GPT3.5
P. 85.7 85.5 82.1 84.8 84.5 85.2 84.8 86.5
R. 87.2 88.4 85.2 85.9 85.7 89.0 86.5 88.3

GPT4o
P. 71.5 81.5 67.3 77.4 71.0 79.7 73.4 81.1
R. 74.7 87.4 71.5 84.2 71.6 85.8 73.8 86.8

Claude
P. 75.7 81.0 72.8 76.4 73.2 77.1 76.4 78.4
R. 73.8 77.2 73.9 74.8 72.4 75.8 72.6 74.7

human
P. 70.8 85.6 67.1 80.6 70.6 85.5 72.6 84.8
R. 79.5 84.5 79.5 84.7 79.1 86.0 79.2 86.3

ACC 69.7 76.7 71.5 82.8 70.4 80.1 74.6 84.2
F1 68.8 74.5 70.5 77.4 69.6 76.2 74.0 79.5

Table 9: 在3-models条件下的实验结果
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