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Abstract

The task of selecting appropriate interpretations for ancient Chinese texts presents
significant challenges in semantic understanding and contextual alignment for lan-
guage models. This paper proposes a reinforcement learning-based training framework
that guides large language models to optimize their interpretation selection strate-
gies through outcome-driven reward design. Experimental results demonstrate that
compared to supervised fine-tuning (SFT), the reinforcement learning approach yields
notable improvements in accuracy. Further analysis reveals that reinforcement learning
training focused solely on interpretation selection not only enhances the model’s an-
cient Chinese translation capabilities but also shows superior cross-task generalization
on the ACLUE benchmark. In contrast, models trained via SF'T exhibit a performance
decline in translation and other ancient Chinese tasks. This study introduces a novel
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training paradigm for ancient Chinese processing and validates the effectiveness and
generalizability of reinforcement learning in non-reasoning language tasks.

Keywords: Ancient Chinese Translation , Large Language Models , Reinforcement
Learning
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T CEEVE N SRR S R ) R BEEATT, IEEREBNE S 0 (NLP) Az
JZRE . HTHGESEMMET - W24 ERWE, IR RERS ULHEE N,
RN RA EINE B R PIB R (Zhou, 2023; Wu et al., 2024) - (E5ERIENFE J7 1EME LA 2
TR A P AIE AT S BN CR AR, BT E Z 5 A Ti SR SO sREoR, DR M A
TUFETE SCUEEL 5 H RIS (L et al., 2023) « 381 #7438 18 ) 7 SCAORE SRR, 5 H A3 a4 2|
B RS, RSB S AT

& RTE S A (Large Language Models, LLMs) ZENZRBIF TSR EL R, &
T TransformerZE A4 BRI I H T 58 K A01E 5 #ME S 4 AEE T (Hadi et al., 2023; Zhao et al.,
2020) - AT, WEMHRLZI, LLMAE S CEIFEESFTRRIMMANROAR, 5 HIE R
# . TR R R (Zhu et al., 2024), XRAEELIF HEF S5 ERHEE T EE
VAR

ITER, 58iL2~>] (Reinforcement Learning, RL) # R AT BREST EMIES, £E
FHMEEY R BoR BB KAINGRER SR IE R E M, B S E IR A s A R AT
% (W SCRE R AR SR BRI A THRRIN B - WA iE A T AR SR L2
SPNSRmAE, HIUEEAESEFRN A P RERE, 552 4 Bl EHR AR ST T7 A -

A ZRR RN OB SUR AL S 4 AR 2E 5] 5 R BGE SR I ZRReE - E 2ok
BLFE:

o ARLETRIEFHAME T —Fi&H T OB SGAFR SRR D IGRAE, Bk T 55
WEESHEZAR S P RVE R -

o KRILARGN I T 58I ES] 5 BRI (Supervised Fine-tuning, SFT) B Ik 77 X 7EZ
EFFHRINESR -

o ARG T AN RN SR SRBE SR Y AE T SCR 3 5 B SR A AR S TR Rz LR T, I8

i RIS UE SR 2 S FE 2RSS N B & R ILBE 1 Sl 4R e -

2 MXIE
2.1  EXEEPFRIR

W LA B R & R RECRT 53 BTN« SEF] < Seit Faf s j 2% DU B (ZE L et al.,
2018) o FHARFLN T EMRIR E N TAYERES AN, WELUENE B, SEF 7 B AL
FIVCHECSEINENIE, EEBRENER; U NEEEEN TR T MBS — et R, 1%
FRTERFGEL, MAEVLesEIE (NMT) FIFHZmiEas-iEas g5 A 118 R A1 A AT
Ae 1, ERChFER -

A B B YR B 5 | A UE BA B TR ARG POE R AR A SRR BE ), Gl ook X ]
P& D PAT BRI BT | N SN A A R 5 B 1A A O SRR BAE /) - eAh, SRR E IR
OB MRS5S (Zhao et al., 2020; Feng et al., 2017), #BEALE R SCHERET £ YA
MAEAIE X, MiREEEEREE R ETRE L - AOERMX—TT A, EFERA KRR
ST SORE SCRIAIRIRE ST, et — R HOGHRY 3 o & A B
2.2 REGESHEAAERETHINA

bEE RAEFEA (LLM) MHREL R, HIEVLSSHENE RO SE S5

A, BN YT ER T IEZ — o H FTransformerZ2 4 (ILLME i3 #E 5 19 5 1 & 71 01 H1 8 32
AR RKEFERE, BRCEEAESE UE B (Hadi et al., 2023; Zhao et al., 2020)-
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L 4h, Prompting - Few-shot Learning Pl X QLoRA R &L M FIERME, BERA
TLLMZER TR &= T HE N BEN 52 LI E(Zhang et al., 2023) . REWH, CHHARK
WLLMAE & ORI A AR R FE, anim UM ~ 1 SONE T S5 ), RAHEN I 523 S 3UL
EREEREE R R (Zhu et al., 2024)

RICAE TG EREEEEERN I, RS OB SURRIE N ML RS, FIAG
A NS AR, FRITEAG EO T ORISR S RE AT TR -

2.3 WUEI5EFEMEE

TR, mi2%>) (Reinforcement Learning, RL) # 2N AT BRIES ERES, TE
A NSRRI ES] (RLHF) ZEXTUEA R BUS T S8 AR (Xu et al., 2025; Dai et al.,
2023) - TEUNAFLEFEXT KB LL (Group Relative Policy Optimization, GRPO) %1 /7 i —
BRI TIHEREEMH R E, EEMEEESTRINHE(Guo et al., 2025) - IR, R
SRR AU EEE R S PRI R TR RN B, TTEAES CEIEES ., wf ARk
2 SJNGRE | ST AU RRE SR EE, 02— R 5T A )R

ARICRF R 2 S TE T N GRS, RRE IR BRI R AR 55 TR i ST B ]
T - B 5 W EROARERR L, R IR 7 278 SO R S 2 AL EE ) T E B 2
B ONEOES AR AL SR RS KIE 5 HIETE S

3 Hi

AT AT o OB SO AR S5 EIERI AR « WIGREZR S TR E - BRNEE
. BT EH T HARARSORFEGEE - WG CRBRASMIL>]) RSEHid
T, ANMAELLM Efill B RESE R 1% -

3.1 EiEME

R R OB GRS, ACETHBEW EA TR CF R E T — 4 F RS
BHE o ZEIRENETBFEECTF LT SR
3.1.1 B SUANA)HiE

RSB B A CE R R PR R S, FRIER B SR U 2 Al 3Ll Ay, B A
BIPREA TZF AR BN SCR R RLE I e Flan, T etk RS AT RES B ik - ik
B R SZHEN, SRRUBIEETRS, 1RSSR R R R R,
-TI‘EE[CHWO

R
|
I |
o] [ ]
[ I
\m&m%ﬁﬁﬁ, | |mmﬁﬁum§, | \&uﬁm}&, BUBBET . | |ﬂ§}&?&,%faﬁﬁu | |§ﬁ£&ﬁﬁﬁ, | |£)’E‘$&%X,?&Eiﬁ, \

Figure 1: & S i H25 15 &

3.1.2  HiE#Eiit

AR — BRI E B— N SOR RS SRR BSE BRINE - R A A S —
HAfn BN HF, B AR ZIEEAR S . N, AR

BT REREIEE ST FFEREAR, BE30002 M A XEMT, HEE ZHE
555 I Af .
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TEIRYE L M SGEFEA) 7 P SORIER S S, R LN R AT RESOR X T R R
AT ARILeSE.

e LK, e 2. %k R 3.0 Rl EH . 40 BOF; WHL
BREENRFS, Fl: 1,2, 3 54, 50 TeIthiRE L

HpriH 9: 1

Figure 2: T 3UB SRR

3.2 BRLIZRHESR

IR E S TEERA RES A (LLM) & OB SGEFERE I T E R AT 5/
Mo BT E OB SORFEES AR TR AT HAERES, HEMRHT LT M5 7 LT,
Rt EsRIL>] (RL) AR RES ERRCR MR TR - L, ASCWE T — 152 %
FlgRineE, ZT5mib ] 5 WERAMFT 2 AR LLM #ATIIGRE XL, DIP A H A T
MRS PRRIESR -

TERETIBER T, AR SCR A Qwen2.5-1.5B-Instruct YENEMIE AL, H 5 A 7ELLaMA-
Factory HEZE(Zheng et al., 2024)5 VeRL HEZE (Sheng et al., 2024) F - B IIZRLES -

3.2.1 WEHIH(Supervised Fine-tuning)

WEROAR 7 B TLLaMA Factory HEZE5EAL - LLaMA Factory & —" & H H =R 8 KiE
EEINGFE, XFREREREMFAS IS, BRIt aTEIER . 5T AEE
MY TP EHFRAHME (SFT) ~ AL - RIS F0NZGREZ FIlgRet, &
BeZMns 5 &L, AR T RIFA SIS LA -

A5 B Qwen2.5-1.5B-Instruct 1A ZEMBEA, RHAELS R ERMIE T (Instruction
Supervised Fine-tuning) , {5 F i 30R SURFRAESME PIEGREH TN - M ASZCRAES
g, B s.1.27 -

A A2 T BUT AP RO SR

LoRA (Hu et al., 2022)f(¥d: 1 FHZ £ 5 30 KBS LoRA (Low-Rank Adapta-
tion) , TEAMREMERSZEMFRT, GIANPEFMINESHUSTEAMATRE, BEF
REAE S AR ERUR -

225 (Full-parameter Fine-tuning): E2ZHGAKE T, ARICKHDeepSpeed
PEHER A FNGRIELE , X Qwen R FEAT SEBERIRE B BE T - RUEZ T IETE T B B IEANS (8] FF
HEERGR, (EEATFREESEZENETIRNAE, ST RS B LR

AR AR (FP16) @ TII4R, FHEIIZR R ik s Bul U il 5 %5
EERR BRI A E AT 5 .

3.2.2 3 S]I% (Reinforcement Learning)

IRV RRAL 27 STHE i OB SO FX — A B S S PR HRUR, ASCRAVeRL 1
DR RAE S RAIEAT ISR « VeRL & — 11 [ K& SR B BRI STk, RETRIgRE
fithisht, SCFRFEFEPPO(Proximal Policy Optimization)(Schulman et al., 2017) 5GRPO (Group
Relative Policy Optimization)(Shao et al., 2024)7EA B2 Mgl 5 >) 5KEg, B& RIFT RME
SNGRRECK -

BE SRS JIGRIES S RERUAN BE—2, RARELSAREES (31280
R) o B TRAKIENNGRER, R RHE— SRR NParquet #30, HTILMNI/O &
R DINERER XX VeRL B A 2 ISR F2 0 8
BEULH  ARBFFEA T DU BRER L2 S) BE

PPO (Proximal Policy Optimization) (Schulman et al., 2017): 1Z%5EIET R SR HS
SR AR A IR i v - B BFRan T

LEMP(9) = E; |min (re(0) Ar,clip(re(0),1 - €, 1+ )4y |

Hrbiry (0) FFTIAKISHOMR LG, A, RIOCHEE I
B RECR AT UL (GAE) -
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[e.9]

At = Z(’y)\)l(st-‘rla 5t =r+ 7V(3t+1) — V(St)
=0

K RAEPPO HEZR A T =M. Actor~ Critic S5Reference 2 . HAXKFES
HAERIIZRE R IR (Reward Model, RM) $24t, T2 FHE TN KPES Rk (G
O RECEIT ) BERTEECLE - PPO WHE N R —#3 EHIEHTZR T, 5IA
BYERAL I L SRS R Z1 AR )

actor_loss = — min(Advy - 7, Advy - clip(r, 0.8,1.2))

GRPO (Group Relative Policy Optimization) (Shao et al., 2024): Z&EEE T HA
LINPLEIRACE R BT, 38 A T OO &2 i i token R EERFIILLM 5 - E %k B Fran
T

G o]
I 1§ ( . <we<oz-,t|q,oi,<t> X
7272 min Ait,
G i=1 ’0"’ t=1 ﬂ-eold(oi,t‘Q70i,<t)

Chp < W@(Oi,t‘q7 Oi,<t) ’1 * 1 oL E) Aiﬂf) o BDKL [7T9||7Tref] >:|

Tho1a (Oi,t |Qa 0i,<t)

jGRPO(‘g) = EQNP(Q):{Oi}iG:INﬂ-OOId (Olg)

Hep, KL AU T2 AR g 0 A M T2 B 1A 1) R -

7rref(0i t’(b 0; <t) Wref(oi t‘% 0; <t)
D1, |[mgl|mref] = : : — lo ’ : —1
[ H re] 7T9(0i,t\%0z‘,<t) : W@(Oi,t’% 0i,<t)

GRPO NMEFE2FEL, #idHNIF— AL, SRR T IGRAA -

LR BOST  ARBFE ARG ERAEET (Reward Model, RM) , M&EIT T #T
MNATEEEERI R AL, M T ERE T 8RR URE N ERERE, ROIGRREFRIEE
Mo X7 FGRESE T ASORMII SR R IR 75 5 BHROT 8, (T RET oI I ER AR B 1
T SORE SO AR S5 FORCRRE -

Bk, SR EE LAAF

o M By Y PR EUT 8 Ui 5 a € {A, B,C, D};
o Fa=a", H¥a* WIMEERE, MG TEr = 1;
o HREUKMEa # o*, MEFHNr=0-

BB B TR A,, WAPPO BiGRPO BIAFMIIL4ES, LFHEFSMNET
MLEERMZ S « 23T AR N 20, SREE B EHRRF N IERA RIBAKE, NEEE
e nbIN e WAL SRS GOE- S5

4 K540

RSEEG RGUEE A FE KRS (BN ERUASMES]) 8 E R & SO LERS
RSN - B9, AU EMENR GRS L &R TR ORI
R, DR ESINZEE TR - B, AW — 0 B 8RR IR R SRR 4R 5
AR A RIE R, NATFAERGEAEHTHN . &E. NEEITHEENFESHE
REALERRRE ST, AW E & DOEE I RE 1P E SR ACLUE (Zhang and Li, 2023) Li#4T
TR, RN - AR B S ANRERRFNEIS MESS, MBS R A
eI 5I1ZLRETT -
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4.1 B EFRESHER

F 1B RTEBRUERES FHFED . HE B AIQuen2.5-1.5B-Instruct [ 1E i K
$122.3%, TS S E RS EA SIS KRG RERA - Ed, PPO KHEIZE R
AR E75.10% B B, HHGRPO B BREH 5 773.61%, EnHERERECE
W& AE B IRSCE 51 RE B RE R -

kit EfZR
Qwen2.5-1.5B-Instruct | 22.30
SFT (LoRA) 39.34
SFT (Full) 70.93
PPO 75.10
GRPO 73.61

Table 1: B UEF TS BB ERE (%) LB NQwen2.5-1.5B-Instruct

KR E—F N LM AE DT T 2PPO NG HEMMZ D - W
HERR A A% IHEREE LT OB LA S (diffiword diffdef) -~ i 3]
ZFE R HIZ LI (same word diff def) ~ DL & B AH [ = SCAE 7] 6] A [A] B <

(same_word_same_def_diff ex) o 7F &x B PaLME FIdiff_word diff def UL T, A K IR B 15
T82.35% HIMERAZE; fEsame_word_diff def b UERHR NT74.03%, SRAAXTBEAR, E7EE M
TSFT £% . X—EREH, PPO G AMRS TN C WFERPIEGEES, FHGE T
HXTF UM A T R B R 512 (L RE

=il IEf
diff_word_diff_def 82.35
same_word_diff_def 74.03

same_word_same_def_diff ex | 77.97

Table 2: AR MHEcMH FPPO AR

it — 5 B W A AN R SCIE RS R ARAR I R A, AR SRERIEA AT T 087 - TR
RIL, HAHE R ARBONREME - ARG R S SR AE SO R, B TR IR
BER LR ST flan (W3) EA)T “JE A REERRE A, IR ESHA G, RO “HERIRE" ;
TR K 53 1 B DB 28 1 SCIRR - BRE”, S HEAEVISRE F Wad i R) 7« D RERFIR
M8 XRY, FEIEREAERHREEAEME RGN, B R e E A SR I
AR SOENE « RVEIXMRIGAE —ERE K _EARIL T BRALHA IR r Bt EWiRmENT
RIS BB PR A E R R 5 HITEE ) - iR, BTMERERIIR T AT REMKAS T
ORI INERICAC R BRE M - —MATRERIEGA T R, IR REP SIS, Wi B A=
PR SCHNERAT ORI — MR, DUMRHERE R N EAESE S -

T EEA [R] AN [F R SRR A

“sentence”: “JEHANEERRHL . 7

“dictionary”: “BR: 1. VPR; PRIE . 2. FERIRE - 7
“answer77 : “277

“model_answer”: “1”

T Bl R AR
“sentence”: “H-REAEFE, TREAEMR. 7
“dictionary”: “BR: 1. VIR; PRIE. 2. FERIRE . ”

“answer”: “1”

Figure 3: same_word_diff_deffHiR (]
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4.2 BFEESERER

FEIRSCEIEESS T, AT T AFIRBE G MR fEseen (1955 A I AH R S
WeFE) Sunseen (RIS AORESGARE) FEAR ERIBLEU 240, W13 Fios - AE55 8 H AOEEEL
PR H BB - AT DOE-IADGEPATAIRER, FEORIET (CSHMUE) Sl . 4R
KW, PPO IGADUER SOEFRI, ERIEES LOBUS TR - kB AR
BIERE 74 T SRR, AF A2 SFT-full i B IRTERE SGRFESS R IR AT, (HEXTEIE
RES L B RN, U H AEseen HHEF, BLEU [%Z9.27-

ki) unseen  seen
Qwen2.5-1.5B-Instruct | 16.07 16.12
SFT (LoRA) 16.53  15.76
SFT (Full) 15.71  9.27
PPO 17.88 16.90

Table 3: BlFESBLEU S#ULE:

Case Study AFIH, JFICHRERE IR, 0 MM, meE Ry RE; %
Bl EERE SO SRR TEITE L. A2 MREEHT, (XPPO BIZ HEREEI Rt « 7 5 <3k
T B R TE S, RETON R SCAAL R CRIEIRRE ) - AL 2N, EAHRAIAISFT 1R A
AJZUENR, (EAET EAAAEE SCRINERZE - 1 XRMPPO SRILE ST A CERTE TR GRS
P, AT B B A R iR SRR A BIEAESS T, SEINAE Iz AL -

WA fEZmE, TETRICESTEKEZA?

ST A BRI e bk, PR BN S B - VR KM T IR
Qwenl.5B-Instruct: MEEEEILE L, SEAEILA NIRRT 22 g

SFT (LoRA): M S#bR k77 i) ZE v IR T 5% 8 7K B Bt 77 FaUE s 2

SFT (Full): f[ZTmaETEARFRILRESTR M, IBEFEKE, UBTCEEFRE?
PPO: R A Zmimth b, PRAELT7 & FETo/KE fy i 7 i

Figure 4: #liF{£55Case Study

KR — L5t T AR RIS AT R RSS2 R SUE BRI HIE N - 5
WERAEWE 5FTR - BAE, E2FFXFRREEGHS BRI, Ha8, M AZE UE
LEER P ENIEEE TR, HHA T =T oM . BE, KIRREREEER (Qwen2.5-1.5B-
Instruct) HUBNELE R EGE SR, DA FEIZRER MR AOEIFERETO S . AR
ITEESEICRE S MG E A A & B BN, DO IR 8 UE B 5 AR -

CEREOR HSERETES BB (BIZRE X AE Y BB N Bk B A SLPR o)
FIREA T, EEEEAUE16.9% e ERIE P AR L . AT PPOYISR A fE L R A
HEN41.5% BINMERIEFRFEHT BB, K2, @328 G0H(SFT Full) /R
N23.5% . X—4EREH, ZIPPOIILE IR ER kR ) F E&Hmpz b, 68
B RO RZ R T E R ERNIE LS .

4.3 B SUEFEMBENFEESEA IR

KT H— DR B TS E A TRIGE S, ASO&EIT T A& B SOEFE B A)BIE W
W FAESSHIBR A 1ESS - AW RS A5 A1 7E B iR ~FAT A) 58 o DTHD H RIS X .

EAREPrompt ¥ AN6FTR:

FEXNAESS LA MAR P RBLE R SR AT S5 L A R I AT ST B BT N, W]
BEHTHIATESZEE ALY, N THEBBITESOME . SR, PPO HEAZEZERE TR
MR FF£68.06%, FNIEEE R/, ERHEEMTE L B ES R R iRz
fLEEST - FHHLZ R, LoRA fUAMTIRSH N (44.44%) , MESEHART R E &R
£17.36% -

o EIFEESH, PPO HAFE B &IERE, BLEU 9%04%(20.33, LT
7 (19.40) S5LoRA A (19.65) - MESEHFARAFBLEU 7540{{h1.03, FHE

TR EEE SRS SE, F640T1-565000, W, TE, 202548 H11HE14H.
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EBHELPRRRESL RE GRS R

BHEEEMREYL? NG ERBRT RN
”

2
¥

MR SO iR B B EE Gt AR A

AR E RS R

Figure 5: 7 ATEE SOZd(E BRI s M i SE3S e

MO TR MES, B
B —: AT <({word}} FIEMS X (ITEAEAT, 5 TILRREL) .
(55— FRMBENERI, BTN, e

HZE LN RTE:

input:

AT AMEEE, TETRIEEELKEL M?

B H: 10 B G MEM. 20 R, RE. 3. At R2. 4. 6, gEi. 5. A,
output:

TSR 4
B oA ARk, WERAEREIACDFERES - R KERITR?

input:
ﬂ? FIEBESE, HOAE .
B B 1 FW; HENS . 2. 08 B

output:
RESERE: 2
B ZIERIEE, HEHOAE .

input:
fi]F: {sentence}
B {dictionary}

output:
TS
B

Figure 6: B A IA$E R 1A

TR EEE SRS SE, F640T1-565000, W, TE, 202548 H11HE14H.
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Model B SUEFEERE (%) BLEU 7%
Qwen2.5-1.5B-Instruct 43.06 19.40
PPO 68.06 20.33
SFT (LoRA) 44.44 19.65
SFT (Full) 17.36 1.03

Table 4: BXA 25 5

FEENESESRLNIZLEN AL, ATRETI G —ESMSHE A ESHIERERG -

=B MBLI, FEFZEEMAA, F—DES (BIGER) 258 - 1MES (BF)
WA T L X(inconext) IR BIE B, BR T 2 HGOARASN, HpREMWEIEG & T
54277 Fp BUMBIIRAL S OIS SR - R RENS R R AP E SR B E T UE R, A
RITBIFEFE - SRR ERIREERER TR, eSS Hig < IREEHE /s DL S —
BURRIRIEFRE UH K -

LRERE, PPO BRI SIADERTE TR SURFEIR, WESEFSHFRTRE T BIFAE
EMSEMEET, AR T RSB (SFT) BRI ESTEENE -

4.4 BHAREANK: ACLUEMA

N T VBRSO 2 ALEE )], AR ACLUE (Zhang and Li, 2023) {1
EIERHEME - ACLUE & — 1 H M HARPGERAZNE S HEANVEE M, 8815 METLEFESUE
%5, WE A RDGEF AN « A1 B . RS E AN ER, & HRRRSHNEDOEHE
R AL —

kit BAF5
Qwen2.5-1.5B-Instruct | 44.40
SFT (LoRA) 43.45
SFT (Full) 45.33
PPO 49.07

Table 5: ACLUE Benchmark &7 & 154>

Evaluation Comparison

Figure 7: #EACLUE L& AES5HIERIN

I VEAE T MR (Qwen-1.5B-Instruct) -~ WA BHUFAKE (AFELoRA 4S5l
W), DUREZEPPO ML SR G BRI AEACLUE BuENNRE FROER, S58mE 5 Fr
Ko PPO WREVEEERIS S FiAT49.07, T TFRMER (44.40) FIFMSFT RIS (LoRA:
43.45, Full: 45.33) - #F— P9 EH, PPO BWAE B ERE XS (WHRFE GRAS

TR EEE SRS SE, F640T1-565000, W, TE, 202548 H11HE14H.
(c) 2025 FEFLEFEEESUHEIBES L WENS 648
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A SEAIRA]) BRI B, MARMRRESPRERRZE], BERIRE - Mt
2T, SFT i BER D AIRRES P A &R, HAELF¥ . RS HEES LAER Y
ERERETRE, SR HEE B LSS AT REr A — € B T PR -

PPO 3L >] FEIAMKL BURLTHRMLE, &8 T RFFEAEIS G 5 R a2 2 [F A+
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