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Abstract

In recent years, Large Language Models (LLMs) have achieved remarkable progress
in general translation tasks, yet their performance significantly drops in multi-domain
scenarios. Enhancing domain-specific translation using limited parallel data remains
a key challenge, especially as existing methods rely on manually assigned domain la-
bels, which limit their ability to capture disambiguation knowledge. To address this,
we propose a Topic Steering Wheel approach to improve semantic disambiguation in
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multi-domain translation. It includes: (1) a topic-based semantic representation mech-
anism, where fine-grained topic embeddings are obtained using the ETM model and
mapped from LLM outputs via a TopicModel function; and (2) a domain-aware dis-
ambiguation mechanism that learns projection matrices to model topic shifts across
domains, enhancing domain-specific semantic cues. We evaluate our method on En-
glish—Chinese and German—Chinese translation tasks using Qwen-2.5-1.5B. Results
show consistent improvements in BLEU and COMET over strong baselines, with fur-
ther analysis demonstrating the link between disambiguation and translation quality.

Keywords: Large language models , Multi-domain translation , Word semantic
disambiguation , Topic steer

1 58

L, KBS (Large Language Models, LLMs) FfEEIE KR CAREREE T, 78 H
S EILESEI1E  (Machine Translation, MT) EZSHEUE T BE A (Feng et al., 2024; Feng et
al., 2025; Zhang et al., 2025; Tan and Monz, 2025) - #R1, 24 HXF 240 EI1E  (Multi-domain
Translation, MDT) 1E550, HENEMEGEDARWAR - B 1R, FAERE-DOERIET
] b, I T Qwen-3.2-3BAE/S MU (BF ~ WEEE - | Bl D8 DUGE FH )
R . S5RER, HETEASE, 2RI LR E S BLEUS COMETYE FR A
TR, RAESSEIE LSRN DENE - OEMRRE, XFEEERFZIRT BN
W2 (A AE BRI X (Man et al., 2025) » AdfF— B35 uEX —ml#, AT 2 Ao & & «—i
Z SO MGHAT T Gt . BRER (WMRTTR) |, EZAEOUR EHERENE SURAFLE,
X R Z AU SR £, RIEFRADS TIaC B R BRI BANE - FHIbrT I, 2
R B AR 2 AU _ETE SUH I RE ST, SRR E BRI 2 B R TE -

BLEU and COMET Scores on Qwen-2.5-1.5B
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Figure 1: KA Qwen-2.5-1.5BIEAZE £ Aftel SCA R - 320

KHFLIOR,  qufer R B At (5 B0 BRI AT 18 SUTH B, — B 2 AU B 13 A1 55 P B0 ]
e BIRFERE TN EIE RS T, BF90 N G108 W 15 B SN AT ] SR BR ) 017 75 AN [R] 451
H)1% 18 (Hiroya and Honda, 2013) - FEEMHEILEEIE (NMT) HERMELZRE, B ARR
T <RI L BOME R, RE BRI AR A A A AR FRIE SURL — PP AT B, AT 2 I AR A ] 45
1 HF A0 TE SUIR ] (Jiang et al., 2020; Man et al., 2023) . S8, AT, FIEAAES 40
BNFREA AL, FEANR ST B AR AR T S, AR A L f51] 1) 7 VR M DL 4 THT 9
©2025 FEFTRIEF¥KE
RIE (Creative Commons Attribution 4.0 International License) ] AR

' Z AR IR SR B UM-Corpus, 38 AR FH WM T22 general 5UIE £ -

TR EEE SRS SE, BT09T-H7210, W, TE, 202548 H11HE14H.
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- A I - A,
B e HEtim T BES A
power AEE = manageable  Z4h#H Z L

Table 1: HIA 115 RS2 T8 2 TSR E : power E [F]— 4 _EFEANF]; manageableft:
AR 45l B

PRI TE I8 S - MRIPZR,  [Fl— > B 72 [R]— s P a] BEXT R 22 FHE s, T A8 A ] At
MIAT BE AL Z AR FEE, X R B B 1015 AR SE 2 M AU T IRE , UF) A S bR 25 2 5
T RN TCIERE R 17 AR AR

N T REG AR AR T VA AR ARE AR N, AR T — s/
FOHESR, FT 2 AUENE R UEE - SEGRSEERISANE, SRR A R )T
REFOR PSR E T, T2 N ORI RS SRR, RN IR RAE N EER
RAD, BEEN B —8H 5 S R AR 4R (Dieng et al., 2020; Wang et al., 2021; Man
et al., 2023; Xezonaki et al., 2023) F I, 1EBEAEEGS W IIZREGE H B 5h & I 40 iR &
SCEEIRHLEE, 1298 B AU E R B piE R, B AR — AU A — P R gt B E L E
FFIEM . Bk, EUIGME, 1RSSR A R p B E URRERESES, MK
TH SRR AN BT AR e, DRI B 2 AU N IR B L E R RS @
AT . FEMEEEMN B, TR TR R H A RIRAE LR RNE, 5] FERBEENH A G F 7
TEATSSUE I, T SE BN AU 5 B A REE S, $e A H AR F AT R g E i RE

b, AXEBEZEAU T = (1) AT —METIESRET 115 LR R
MUH, BEWS N Z AT TR B SIS IR 7E 0 TE SLEEH, $R AR X 1A] SUAEAN [R5 55 A 28 1 By
MS@IEEETT - (2) FATERH —FETIE U7 [0 £ AATEE B AR R BOLE], 8 AN [R]
AT 1 R A AT RS T R AR B AT b AIE SUTH BR324 KB B AR R AT, N /O
SMOHEREST . (3) ETHIRKESHEE, HAFEE-HSE-EHMNE S LT 2
B . GERERM, RTBEELF2EMANERT, EERA TEURE . ~Fl5HTHE—
SPRSUE T & T 1] £ AE SR v SORLEE KA [n] @ 77 THT R RECE -

2 MXIIE

2.1 ZPUEI R

A 2 AN 5 P [ SR E T R T AR o A, RO E BB R, FE A4
RWRE: (1) ETAFHRI 02 SUEENE T % %2R 7R 5K B0 71000 S i
AR ETT, W LRSS B A S A 5N R EUR SRR (Kobus et al., 2017), HAN[FEIAR
WA E# % JE S % (Britz et al., 2017; Tars and Fishel, 2018; Bapna and Firat, 2019; Man et al.,
2024b) o SR, HTXLETIENCRER RG] 7 R AU E B, USRI 9 a) o IR 2
e (2) ETHRIENH M MEEIETE: MR, BIiRg 7% RE R E A
REEE (Zeng ot al., 2018) - Jiang S5 A(2020) T T U HL G 73k, 4 28 0 & ATids o )
BEBEN —F A, TR EAU R A - Man %5 A (2023) M@ B R SCEhAREI IR [ & 3R
IR EREST o MAN, E PR IRREHER I (Zhang et al., 2021) 8 EF SUREN SRS
g SO TR R . REX R TIEEIIEHBES T EEFEERI, BE LN URHE
BIEAAE, EEFAEREATEE /R -

2.2 ETKRESHEEMHLESHIE

haE G S HEMAE BRES OB TR ZMAH, AREFERET AN GSIRES, LIS
By ECRR R HIE S @RAENMARIT A, IRINEESHER THE RS —8UE . S5,
ETLLM MIZAUEEFE A EFER R (1) ETRUAMVLSENEE: %R TR
RGBT 2SS SRR, FlIALoRA (Hu et al., 2021), PISEIIRES
AN R P RVERL S UL (Zhu et al., 2024; Qian et al., 2024; Hu et al., 2024a) - HLEFTTE
FE P BERSR A T BENS 3 1R T AN B A EN R T &, U EN AR — B B SRR I
HEEAES - (2) ETIRARS S HIVLERENFEAEEIFE % MR B AR AT R TE

TR EEE SRS SE, BT09T-H7210, W, TE, 202548 H11HE14H.
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T, H—RITEET BRIESERR (prompt) 515 KIE S BRI B B ARAUEUKAS 42 B30 -
n, (Vilar et al., 2022; Jiao et al., 2023; Zhang et al., 2023; Moslem et al., 2023; He et al., 2024;
Man et al., 2024a) BT T USRS BAL S AR, 51 SRAFE IR BT IRATE 4 i 75 675
BRI ZRITER SRR B, ST O AR E AR AT % -

ZEEETA, MBETIAEMR, AOTEEFNTEERASMHS: (1) BEARERIE X
BEAE S MBS ZAEEIETE, T A EEIEEL, NPEAEIE SUEE 1 TRz i e B2 45
WA R, BRURR T R —A 8 s AR L EARRE . (2) ERARMA, &
HIPLHIE RVE: MR TETRESEREEE, TNENET2SBBORRERR T, @i
TERA T (A SALEN T 518 L RRES], ERA LR E FR 7RISR -

3 & THB RGBT

TSR B RAE £ AU BN AL 55 T AOTE SGHIBCRE Ty, JUE AR B e B MR AR TR
A B R ICERE, %% Han(2024) TIAERE A, HE2FR, B 188 H—F0 T 2 SU8#0 i H
BHTE@T M (Topic Steer) BUBIIETTIE - TEANIE S HA EASEOHITIER, (EH
AR A S BN — D AT A E e, S5 BRPAEES AE R, 5158 S A GE
Wy o BARGIEFTR, SARAOOESR. (1) BETIEEREEK)E LRRIKBLE 1
(2) ZETFIE-TT 1 2 A DUIH BORRBOLH], BIRR SRR AR TR -

Output y
e T N
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Figure 2: 25 TSR 13 15 SCIH B BT8R o) 2 VERE R

3.1  ET AR E SRR IRBULH

79 TRBUE R AR B SRR, BfT5I ATERIRZIETM (Dieng et al., 2020)% > 4ikL
FERTE SGOR, JURBGHBIRMOE R, B, 3R 2 A SUsTIGE 17 15 AR E
BOOR, ETIHEEAETMIX ESO MEMEEITRE, MR GUsdE L risEiE Sk
e G, MHET OF LE(Jiang et al., 2020), HATRTERELITHRSE: (1) %76
ST ICEE KHEJEE 7 S o, IE T AT LSRR BURL BE B ANAN N TE S, D e SRR & HE SUH
BORIREEE A o ©F J7 VA6 A S H RO4ERE (SEUETINERD) 1ERAUEATE LR,

TR EEE SRS SE, BT09T-H7210, W, TE, 202548 H11HE14H.
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LA SURIUREL B2 3 L FR T BRR R AREE AL - (2) %05 1538 B B R IKBUE SU0RLEE Y
FoR, HENS BRI AR 2 AR BOE U oRIT B R BRI . BLRH, B8 5 IR B AR 2
TER2ES] BbR, —HH &S EEEA B R — S A FEE R FoR T, mA—
7 T 2 S B A B R AN [R] sk _E AR FE SRR IR ST ANE] o AR ST VA FT LR EEX
LR . (3) ITIEIRG AR E NG LG S, I & & 1R B/ ME SCR T G SRR -
EVF 78 A AT R AR ORIE X, KT “Economic” ~ “IT” i AT R A1 AT ATE LR 1
FORTE N, (RS2 5 BRI/ X T “Spoken” ;X FE AN I FE 1 & — PB4, HAE
PR L LRE S AAEXT “News ) XFERIAURRT], LR EEE T “Economic” ~ “IT”, 31X
FRETUIE S X M S BGE LFR>] ERRIE -
ST IE2 o, BATRE MR x BN — 1K 45/ -9 15 1 & -

65 = TopicModel(x) € R¥, (1)

YK g, =1, 6, FRATESE MEELERARER . RITRAETM (Dieng et al,
2020) HKEEBLIRAIRIE oA, Eiliid 4 A TSR AR5 7, SCBINS A TR B8 X
FURERS . A MERILL MR R TR, A0 TIN5 T §R L 2 R ] R 95 77

3.2 ETIEJT [ & A0 U BRI B 1

FATTEH R T [0 SR R IE SRR3R S A TR R TG SRR B0 A AT 7 A T )
TEE KRR, T RRBIAE A Rl 2 S0 SC_E i SUTH B . BiRss, X FIRES A7 R0k,
BA AT —H AT 22 5] R AR W B RN R AT R VR R AR AR Tr ], k%5 240
1 L TR SH BN « AW, € RO, d NTAMRAYERE, ETIHAUT M &5 CGRR AT
HAA IR

K
e;tee’r = (I +e€- Z eka> €rLLM = (I +e- W(HX)) €LLM, (2)
k=1

H, eppn BEFHREENIVIRTFARNRRR, € il iElT M2 ERIERE, 2
BALJERE, e NIREBSE, HTEHENEET R ERE . WS gy m - g b
WA, TEEUE CRORERIGTHESIIRE , E1E R R E ROEAHE LSRRI, HmaR
el K8 B AT R e TR R IR A0 3, AT SE AN R] AU T B3] PR SCTHE -

3.3 IEETT MGG IE

T INERGERTT W B R Wi . BATTRS RIE SR SEET . (38D s
LB TT T8 B RERE W M| o INZRIT AR R RV A 55 P A B AR e A T8 T [ LR, (8
FLAEVE S5 (A AR 2 5 B AE AR N R A 2 BB

e ENGREERT (x,y), IRAIx BFIERD AR N0y, BATTE SCIIZR Biroh fe MUZIE—T
[f] 5 28 H i R0 S R i H 50 A 55 2 13 SCZ R B S SRR -

T
L=— Z log P M-steer (yt ’ Y<t, X5 W(ox)) : (3)
t=1

HoA B H IR 52 A0 Posteer s I0 AN TE BT [0 2 28 e 5 A8 LK TRegpeer i X BT 15 2|
Asoftmax i H -
4 TENSELR 5 5 Hr

RIS, BATFERFT AT A EARE: (1) MLEARZSEEEEETE, &
TR M T ERIBIFERCR I (§4.4) © (2) MHCHERSSUEEIEHE TIE, BARE T
AR R T (85.1) 2

TR EEE SRS SE, BT09T-H7210, W, TE, 202548 H11HE14H.
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Algorithm 1: 2 JUsiHl 2 o8 HEGE BT [ 2 1)1k
Input: ZAVHFATIEERN (x,y), K, MALEREL, REFHEILLM, 2>
Ky, Steer 5HEe
Output: YIZREFHITE-Steer FEFE{WL I,
1 MR (W E | e RIXd, 2y THERE;
HREEIE S HAILM 24

2

3 foreach Y%K do

4 | foreach YA (x,y) do

5 FHETMRBURA)x FiE#2 100, € RE;

6 FESE AN Steer FEFE: W (0,) + Zle 0.1 Wh;

7 foreach KR BIF Rk Aer s do

8 | BB €leer + (I + €W (02))erras;

9 e, TTHEBIFEIE: L+ CrossEntropy(Prm(y | x));
10 i B Wiy Wy < Wy — 1 %;
1 HEFFTE

Input: MHHA]Fxiest

Output: ¥ ygen
12 [HHETMIRE BT SR I H1E SR T Y Qe ;
13 ng\ﬁw(otest) — Zk etest,ka;
14 foreach KIZHEIA Kk Aer ) do
15 | Rifflsteer: egeer < (I + €W (Brest))eLLis;
16 T ARG BIHR AT IESCAE AL

17 return yge,

4.1 FIES

BN BIESE-DOE M AE- B DB SS LTS5 (1) EB-DOE: FHRFE-IX
BIEAESS, Tl A 2 A &R £ UM-Corpus_I B9 1418 (Tian et al., 2014) 2 : #E -~ O
B Bl HE - 8 (News, Spoken, Science, Education, Laws) - (2) ZCiE-fE15. £FXf
FEREES, B EHZMEEIEEOPUS? A /M, B, A BB . =
2. B2 FR (Laws, It, Koran, Medical, Subtitles) o @FR2F3FT/R, FAIFIH T ERIE-IX
AR IERNEAE S EVIZRE - Bk AR R R A St 5 R -

A3, g BursE ks i YIRS RIEE WS
Education 445K 2K 462 Laws 467K 2K 2K
Laws 208K 2K 456 It 233K 2K 2K
News 444K 2K 1500 Koran 17K 2K 2K
Science 263K 2K 503 Medical 248K 2K 2K
Spoken 216K 2K 455 Subtitles 1445K 2K 2K
Table 2: FEE-PUBEIREES T E R Table 3: fEIE-FIBEHIRESITER

4.2 KPWE
R F, FATEFEQwen-2.5-1.5BIE N E AR JEATIIE, R TIHEEE ke FE ]
BEFE{10-100 AT 500 - FHXT SRR EIRE I EE, H 5L, AU HMoseshil & (Koehn et al.,
2007) W BEEFITEE A) FHAT A SE 0 H . RT SRR, A EABLEU (Papineni et al.,
2002)FICOMET*(Guerreiro et al., 2024){ERIFAEANE « ZEMALEREEE L, T 1A Adam i
http:/ /nlp2ct.cis.umac.mo/um-corpus,/

3https://opus.nlpl.eu/
“https://github.com/Unbabel/COMET

TR EEE SRS SE, BT09T-H7210, W, TE, 202548 H11HE14H.
(c) 2025 FEFLEFEEESUHEIBES L WENS 714
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BIE-DUR £ SR AESS

& ‘ Education Laws News Science Spoken AVG Para
PT 22.37/79.60 23.54/80.18  23.44/80.91 25.56/79.05 14.97/79.43  21.98/79.83

PTDT 23.00/79.93 24.27/81.49 23.60/80.36  26.28/80.96 15.12/80.21 22.45/80.59

DP 23.69/80.10 24.77/81.25 23.81/80.56 26.57/81.22  15.32/80.40 22.83/80.17 231M
WDSRL | 23.82/80.42 24.85/81.30 23.91/80.60 26.85/81.08 15.44/80.53  22.97/80.79  482M
Ours 24.01/80.67 25.20/81.65 24.10/80.98 27.12/81.43 15.72/80.83 23.23/81.11 325M

TETE- 27 2 U 1255

Tk ‘ 1T Koran Laws Medical Subtitles AVG

PT 25.57/72.93 10.81/66.92 21.04/76.96 29.05/77.22  19.98/72.73 21.29/73.35

PTDT 26.56/73.99 11.05/67.31 22.70/77.09 29.68/78.10 20.66/72.95  22.13/73.89

DP 26.68/73.87 11.51/67.54 22.81/77.56 29.74/78.64 20.94/73.01  22.34/74.12  148M
WDSRL | 26.69/73.44 11.54/67.64 22.90/77.89 29.71/78.65 21.18/73.26 22.40/74.18 355M
Ours 27.03/74.10 11.88/68.13 23.40/77.92 30.11/79.25 22.07/73.69 22.90/74.62 268M

Table 4: PIEBINIEMEE-RELZ MM FES LOLRER . <78 G 9 5 &
SRBLEUFICOMET 444 -

1£2%(Kingma and Ba, 2014), %3] A1 x 1072, JIZR100052 - 51 SHEFEW BI9TIAE Ik A
HHRO~ HENL x 1073 EITSMA - EFEEEY, BAMEHBEVLFT0 1+ 2 ##17 =i
25 . Bl TER AL & & EH16GB CUDA EF M Tesla V100 GPU -

4.3 WHAE

PT (Prompt Translation) (Jiao et al., 2023): BN KESHEABMA—MEHRR,
Hh: BRI ATFNRESEIE RN ENES: [FES 30K 7

PTDT (Prompt Translation with Domain Tag) (Hu et al., 2024b): 7EPT HIZEff_EAIA
PEAREFR, B0 9ERU T AT NRESHIENBNES . HAT & (S &) S %
M XU [JRTE E O] . 7

DP (Domain Proportion) : A T X L OF £ A E B 77 1%, HATE Tliang &
A (2020) $& H RS L0 SRS, R IR R B RIE SR AL AV IR I A E B £ o T EERE D
A R RE RN B M 22 A0, 8 TRk 0 A58 o 38 25 PR L A oy A, B — S ]
Eox € RP, HAD HAEL 6 BARBMAATx BTH] MR, WESL 6=1-
B, AN B — D MELR A % S R IERE W, € R, W8 5 R
TRk A e, HEAT AR T ANANZS e

D
e = <[ +€- Zéde> ey, (4)
d=1

Hp ZEAERE, ¢ ZESE, HTRTHRNAFBRRE .

WDSRL(Man et al., 2023): ETRRESNZAEENFETE, ET Qwen-2.5-1.5BIR AL
TR, )RR RIS, TGS AN R ST ) B2 2R -

Ours (Topic Steer) : AT TG H AR R 1%, FAT5E BT EF HIRIES 6
TRV I Ry A R B N YR T R H R ON DT SE I BE AR R A IE SO s, BRSEIR AT
3T
4.4 FEILPHER

WM 4R, B4 HBE-D0E DL RS TE-551E 2 AU AL 55 D RSER S R, ATHy
JIEEM DB E S L BLEUS COMET®E T T B4k, B3 7 &Kmtkae - BikH, Al
SILIE R TE, BRI oM. ERE-TOEESH, MBS KE SRR HRR %
SVEERGESCIPT TV, 5 NSRS (P TD T AT BT A ST ok T 32, BB AR N 4
R MIRNE B T R AT 2 AU ENEE - AR, PTDTRVIR AR HRR, RAHAERE
TG B U TEAS B o — 22 51 NS L 7 7% il VD P 5 V&, (R A5 B B8 ip 5% v AR Y

TR EEE SRS SE, BT09T-H7210, W, TE, 202548 H11HE14H.
(c) 2025 FEFLEFEEESUHEIBES L WENS 715
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-1 % TV S5

J7i% ‘ Education Laws News Science Spoken AVG

PT 33.14/88.10 50.82/88.94 30.04/84.51 28.76/84.82 19.20/77.00 32.39/84.67
PTDT | 33.46/88.21 51.39/89.20 30.36/84.92 28.78/86.13 20.89/77.46 32.98/85.18
DP 33.88/88.41 52.14/89.67 31.68/85.66 29.08/86.52 21.39/77.88 33.63/85.63
Ours | 34.15/88.97 53.02/90.68 32.55/86.47 30.60/87.95 22.80/78.12 34.62/86.44

Table 5: ZEiB-PUEEQwen-2.5-7TB L HILIREER - </ HiJ5 4 BI#E RBLEUMCOMET 4344 -

AR, MIPTAIPTDT A%, DPEE R4 EBLEUSCOMETTE MR H IR A, TTH
7EScienceFNewsAits, - 3R 5 R B3 - fEScience®ilE,, DPHHHLBLEUFMCOMET 2 P T4 5l
/AT 1.00F02.17, FHHEPTDTHHEO0.29F10.26 05 F, FBHIZ 7 1EXT T8 S 5% « RIEFHE
KSR B HR A IEIERE ] - ZENewsSilE, DPHHIPTBLEUSAERF T70.37, RECOMET4%
BURF0.35, EAEPTDT, DPABLEUMCOMET FAB4r BIHRF T0.21F10.20, #RER H FHF4%
S 47 AT OV B SR X5 3T [ R SR ORI G — B AR - (R, DPJTVERERS AR B 1A £ AN [F]4
5 AT A 2 AR UFRIE, AR E -

FE UL E A E o, AT IR B ATopic Steer 7 VEFE PTG A Y BUIE B & E R, P
¥BLEUMCOMET > %1 43 5 74 #1/23.23 #181.11. #H FLDP, Topic SteerfE Ti ™ 4% 18 A1 15
H— B RA, FHBLEUMCOMET ) £ 5 5l & F+ 70.40F10.94. H o 7 &l M B
fJScienceflLaws2iifs, Topic SteerfJ#& LA L : FESciencefs,, BLEUFMICOMET4 5|2
F+70.55%00.21; FELaws2iss, 43 AIFEH 170.43F100.40 - AL I, Topic SteerfeF A R HIFE Hi
R HAE ST ), AT B ZF IR AR W AUS SR B E - SRR L E A A TR
FIRREE, VEEURTY RERS 22 ) B AR B RE WE R, B3| T HIEmPIRR -

FEEERIEMFELSHS, BEAERS5EENETLSZSEUME —HMEH - Topic
SteerfE 2 N F M PETR A AR (40IT ~ Medical FlLaws) ¥JSEHLE EERER T, B {F £
BEUR AR 8 5 6 fOKoran®i d8 , HWIREL T IERE TRA - 5 EIB-DOGES R, Topic
SteerfEBLEUFICOMETW 5 bn LA Bl mitEfe, #—PRIE T AEELHES LHEN
.

WERSTR, AFEFEEQwen-2.5-7TBIEA! T AR I « A5 L T ZA 7 EPTAIIN A S 2 7R
FIPTDT, FATHITELERE LA LG T & FFBLEUMICOMET 7040, ~F341& A BH
I, JUHFEScienceFINewsSUH R H, UiEHFTR T IEERA Z AU EIERE T mEG BE
Beo LELEPTR, Topic Steerifiid 5| ANVERISER 5| S 58S MENL S, BEWER T RBAHE X
B SRR RE T, AL E BRI N LARME IR, 1EEUETY BERS 22 ) B AR B AR UE R -

5 atr5itie

FEIX—HR9Y, FATIGE-DUERIEES I — P IHRFTHEOERE (§5.1) -~ THRUEIL MR
LERAORNE (85.2) VASORBIHT (8§5.3) , i@ iXEE ik BRR BT VA RERS H AR AR ATAL
FREEXER, ROUSBAE— DR, EERER2IERRIE, IMRARERE .

TH B HERA 2% H

AR TR F 2 B An2 2 A i iayE ks, SR A EERE . F, i
FEAERIE SUECSCRIRE ST BN T R R - Oy T IRASIECCRIFE RS, AT TAES, ]
%o 22 A B AR AT IR 5, R AN 5F T B Awesome-Align® (Dou and Neubig, 2021)7E%
AR A Y 2R TR _E ARG BIRN Z [ R R R, PURTE B W OR8] —X 2 iR 5 LR 2 SiF
WE, #H— BRI AR N H MR R, BRI N TR R - o, &K
13— 50T T 75X e % SR A5 RO UM B EER(E B, B — M FE S BRI A« =
A 1A BAUEAA L BB, MRTFR - XEEIRSOHE BAH— P T HE%
SR BN B IR, B RN T AR AR R E Y -

Shttps://github.com/neulab/awesome-align

5.1
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‘ Education Laws News Science Spoken

P[RS 30K 54K 33K 50K 21K
AR 492 636 720 471 4929

Table 6: FEiE-T0E & ABREE £25 AR AN 4 _E HOBE A%

BAEE ZFE OEE BAEE B4 LA

1120 1060 724 23 4

Table 7: J&iE-PUEZ AU AL S5 WO SR AN SR L5 SRR A e 45 R

w3afroR, BARIBECSGAFRIE T DPIEAFA 3R M IR AHEER R A L, Fefl1%
UAE LA E R AT IR B RV R B = T DP, X AT T2 B B0iE R T [m fAR 2 T B/ NE
SRR, AMERIRT AN LS AREEns T U8R a2 3], T R B T s S ] R -

5.2 IEBURTLE R O SIS A R AR

0Tt — B R AT R T A R T R RO B R RE RO R e, FRATTAE LS
WIT AR EEBE NG EBREE, WEB R, BMNAHE THREKERE
79508, BLEUMCOMETH) 7> 8 #5828 7 @ HITERE - 1AL, AT S TR &
BCEAE10-40 2[RI, 7E A% RE A A Al B 18] 38 ] &2 AOVEE RS LR B B LLRAE AU E B
SEIFEMEREIRAR; Y F IR R EE60-100Z (A1, X Ui B 2 1) 3 IR A 2 5 B4
BRE TN, NS EEE I RERE TR -

5.3 RBIST

FAIFNH PTG IR 1T TERTERLUE, ik PR, BRA “power” £E[F] — 2B AU H B
ATE L, HATREE N “GER7 B “REN”, RN YIS Sh S5 R T % A RIE X - DPTEL
HERA X X — 4 E R, AR L F P4 M — s RSB, R “power” —BERE N )
B, EAOE SRR BIR . MEATER HATER—T M (TS) Jrikisd 51 AR B AiE RS
B FEVE SRS R A B SOE TS S, T B AR RO [X 5[] — & A AR A AR S
E5F7 o R IPR, B “manageable” EHE SIAEM N ARSEHREE N ERLEE, HE
BURAEE B, BIAER G A B AT H . DPARYE SR 2 > B B T Ae 2L
AORNIR, ToIRE LA R A8 SRR « MBS, FATTHR H AOTE U ) 8 1 5 | S 4 5
TGRS TR S -

BLEU and COMET Scores vs. Number of Topics

Disambiguation Accuracy

90 TS 88.66
84.36

73.60 7460 7645
71.20 69.66 69.87
63.56
> 60.22
60 g BLEU
@ COMET

) <X
<« Number of Topics

(a) (b)

Figure 3: (a)BiE-DUBBIRESS M EVEF RS R, (b)1E A g s &5 B &
)20
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AR, | HE AU

RES Human generates power through biochemical processes to perform physical.
BIrE S MNEE NS T AR, DHATEED) -

DP NET A R 7= A ) B R TERS ESS -

TS NAE AR R A2 T N BT & B

W | HE A

FES Education gives people the power to change their lives and achieve dreams.
HIrE S HEWT ATGES EBE NEFESLIEAE -

DP HEET BERERE - SN & -

TS HEWT A5 E280 N LLSEIEE -

Table 8: BE/REI: FIAAE [Fl— U8 _EBE AN HH O

W A b

RiES Narrow the question down to a coherent and manageable set of issues.
HinES TR BARE]— R 5 K S AL B A T2 -

DP R [l /INh — 2R S B B 28 PR -

TS [ B ARy — R FE K B2 i [l

A5 | AU

RES Ensure that all terms are manageable within the legal framework.
HinES FERETR 2 AR IE AL B N H AT b 3

DP FRPRETE Sk TR SR R AT B 3

TS HPRFTR T TA BRI Y

Table 9: #REZRBI:  BFEA R U8 _E B AR 0FH 00

6 LHBSERKHRIME

A RIE SR B RE S B 2 M, AR R TR SR EEE
Ko SR, FETEN 22 ARUSCCAR RS, B AL A 7 SCTH 87 T A I B AR - BT X — ]
A, ARSI M7 —APEETIE T [0 SR 2 AR T, O TR R T I SRR I
HL TG 1] 5 0 TS SRR AR BL A e 2 > AIDREEE V8 SRR, M5 K S AL I AE 2 40
SR SO EOTHSCRE ) < SRS RINUE T BT J7 IRAE £ 1 brife £ sl i3 1 i Dl
e, UM TSRS A EAESR TR SHIBRE ) 5 BRI L& 7 A R - AEARRE TR,
FATIT RIAEA AR B R 78 = 1R DU B8 22 038 50 Bt AT SEAR RIE 52 H T B A A -

S|
AR ZERBRB¥ESE FTHEH (No.62376019, 62476023, 61976015, 61976016,

61876198, 61370130) AN [EZKE S LT H (2020AAA0108001) HIHETEN - EE IR E 4
PEH B RET B E St R R DR RG -
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