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摘摘摘要要要

近年来，大语言模型展现出了从训练语料中存储并提取知识的优秀能力，但相应地，
其可靠性也容易遭受训练语料中错误信息的破坏，进而产生信息过时、错误回复等问
题。基于神经元识别的知识编辑方法通过在模型中识别并微调与目标知识相关的知
识神经元，实现对模型内部知识的精确修改。然而，本文研究发现，知识的表达形
式会显著影响知识神经元的识别结果，例如，现有神经元识别方法对于同一知识的
不同表达形式识别得到的神经元集合平均重叠率只有21.86%。这就导致只对单一的表
达形式进行知识编辑无法覆盖到与这个知识相关的所有神经元，所以现有知识编辑
方法的鲁棒性往往较差。为了全面且准确地识别到与某一知识相关的所有神经元，
本文设计了一种轻量级关联神经元识别器（Lightweight Associated Neuron Detector,
LAND），通过学习不同表达形式的知识识别出的知识神经元集合之间的差异，从而
在知识神经元识别的过程中，自动补全因表达形式差异而未被检出的知识神经元。实
验结果表明，LAND方法能够将不同表达形式的文本识别出的知识神经元平均重叠率
提升至96%以上，在不同句式的知识编辑成功率上较基线方法多提升了至多10.83个百
分点。
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Abstract

In recent years, large language models (LLMs) have demonstrated remarkable abilities
in storing and retrieving knowledge from their training corpora. However, this capabil-
ity also makes them vulnerable to inaccuracies within the training data, which can lead
to issues such as outdated information and erroneous responses. Neuron-based knowl-
edge editing methods attempt to precisely modify internal knowledge by identifying
and fine-tuning specific knowledge neurons associated with a target fact. However, our
study reveals that the expression form of knowledge significantly influences the iden-
tification of knowledge neurons. For instance, current neuron identification methods
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exhibit only a 21.86% average overlap in neuron sets when processing different expres-
sions of the same knowledge. As a result, editing based on a single expression form fails
to cover all relevant neurons, thereby undermining the robustness of existing knowl-
edge editing techniques.To address this, we propose a Lightweight Associated Neuron
Detector (LAND) that aims to comprehensively and accurately identify all neurons
related to a specific piece of knowledge. LAND learns the differences among neuron
sets identified from various expressions of the same knowledge, allowing it to auto-
matically supplement undetected knowledge neurons during the identification process.
Experimental results show that LAND increases the average overlap rate of knowledge
neurons identified from varied expressions to over 96%, and improves the success rate of
knowledge editing across different sentence structures by up to 10.83 percentage points
compared to baseline methods.

Keywords: Natural Language Processing , Large Language Model , Knowledge
Editing , Neuron Recognition

1 引引引言言言

近年来，随着深度学习技术的快速发展，大语言模型（Large Language Models, LLMs）在
自然语言处理领域取得了突破性的进展(Chang et al., 2024)，其在记忆和提取事实知识方面的
出色能力也引起了学术界的广泛关注。大语言模型通常通过海量文本语料预训练而成，这些文
本数据中通常包含大量的事实性知识，而通过在这些语料上进行自监督学习，大语言模型能够
在其参数空间中编码这些事实知识。Petroni等人(2019)提出，大语言模型可以被视为一种隐式
的知识库，其中存储了从训练数据中提取的海量事实知识，通过填空任务等方式引导大语言模
型生成文本，能够有效地激活和提取其存储的知识。

然而，大语言模型虽然在知识提取任务上展现出了显著的潜力，但在实际应用中仍存在
一定局限性：一方面，大语言模型的预训练语料通常是从互联网收集的大量文本数据，而其
中可能包含一些错误信息，导致模型在训练过程中学习到错误的知识；其次，知识本身也具
有动态性和时效性，例如科学进展和社会变化会不断更新现有的知识，但大语言模型在预训
练完成后，其参数空间中的知识通常是静态的，无法自动适应知识的更新，导致模型可能输
出包含过时信息的内容。虽然在包含新知识的数据上进行小规模的有监督微调（Supervised
Fine-Tuning, SFT）可以实现模型知识的更新，但由于大语言模型参数量巨大，频繁对模型进
行SFT不仅训练代价极高，还容易引发灾难性遗忘现象(Kirkpatrick et al., 2017)，导致模型遗
忘原有知识。此外，一些工作引入检索增强生成（Retrieval Augmented Generation, RAG）方
法，利用外部知识源来缓解大语言模型中信息过时或不正确的问题(Zheng et al., 2023; Mitchell
et al., 2022)。然而，由于RAG依赖于维护外部知识库来更新知识，因此它无法永久性地改变模
型的内部知识。此外，随着外部知识库随时间的推移而扩展，可能会导致查询延迟和计算开销
增加。

为了高效修正模型中的错误知识和过时信息，提升大语言模型的可靠性，许多研究工作致
力于对大语言模型进行知识编辑（Knowledge Editing）(Zhang et al., 2024)。在众多的知识编
辑方法中，Dai等人(2022)提出的知识神经元理论为解决大语言模型知识编辑问题提供了新的
视角。该理论认为，一条特定的知识在大语言模型中的存储往往仅与若干关键神经元相关，这
些神经元被称为知识神经元（Knowledge Neurons）。这一发现推动了基于神经元识别的知识
编辑方法研究。与SFT相比，通过在大语言模型中识别出与特定知识密切关联的少量知识神经
元，并对其进行针对性微调，实现知识的精准更新，既能避免全局参数调整带来的计算开销，
又能最大程度保留模型的其他知识不被破坏。而与RAG方法相比，基于神经元的知识编辑方法
能够对模型的内部知识进行永久性、轻量化的修改，不会影响其长期的推理性能。

然而，目前基于知识神经元识别的知识编辑方法仍存在一些缺陷，特别是对于基
于Transformer架构(Vaswani et al., 2017)的自回归式语言模型而言，模型的训练目标主要是
通过预测句子中的下一个词来学习语言规律，而非显式地存储结构化的知识，而这种训练方式
会导致模型的知识提取受提示语影响极为严重。例如，当询问大模型“某明星的母亲是谁”时，
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模型通常能够正确回答；然而，当询问同一个模型“这位母亲的孩子是谁”时，模型却可能难以
给出正确答案。这一问题被广泛认为与训练数据的分布特性有关：在该大模型的训练语料中，
形如“该明星的母亲是某某”的语料数量较多，而形如“该母亲的孩子是某某”则相对稀少。这种
数据分布的不均衡性导致模型虽然能够学习到“该明星的母亲是”这一提示语的相关知识，但却
难以有效学习“该母亲的孩子是”这一提示语的相关知识。

这种现象促使研究者们对大语言模型的知识存储机制进行了深入探究。研究表明(Niu et
al., 2024)，知识的表示形式（如主动句与被动句、同义句式等）对知识神经元的识别影响极
大。例如，“北京是中国的首都”和“中国的首都是北京”这两句文本虽然在语义上等价，但在大
语言模型中可能识别出不同的知识神经元集合。本文的研究结果则进一步表明，对于描述同一
知识但表达形式不同的两条文本，使用积分梯度归因法识别出的知识神经元集合平均重合率仅
为21.86%。这种形式敏感性会导致基于不同表达形式识别出的知识神经元存在显著差异，进而
影响知识编辑操作的鲁棒性：在大语言模型上执行知识编辑任务时，如果仅针对某一种表达形
式（如“北京是中国的首都”）进行修改，模型可能无法同步更新其他形式的同一知识（如“中国
的首都是北京”）。这一缺陷显著制约了基于知识神经元识别的知识编辑方法在实际应用中的可
靠性。

为了缓解上述问题，本研究提出了一种关联知识神经元识别方法：在原始大语言模型
的基础上，引入一个轻量级的关联神经元识别器（Lightweight Associated Neuron Detector,
LAND），旨在对于输入的单一形式文本，通过学习不同句法表达在模型中识别的知识神经元
集合之间的差异，自动识别出因表达形式差异而未被检出的知识神经元，并在执行知识编辑任
务时，对这些神经元同时进行编辑操作，从而缓解大语言模型在知识神经元识别上的形式敏感
性问题，提升知识编辑的鲁棒性。实验结果表明，LAND方法能够将不同表达形式的文本识别
出的知识神经元平均重叠率提升至96%以上，在不同句式的知识编辑成功率上较基线方法至多
提升了10.83个百分点，为知识编辑技术的实际应用提供了可靠的方法支持。

2 相相相关关关工工工作作作

大语言模型从预训练语料中记忆并提取事实知识的能力已得到广泛证明，但这一能力的
内部工作机制仍旧不够明晰。因此，近年来，许多研究试图结合基于神经元的可解释性分析
方法(Sajjad et al., 2022)，通过在大语言模型中识别与特定事实知识相关的神经元来解释这一
能力。Dai等人(2022)在该领域做出了开创性的贡献。他们的研究表明，在BERT(Devlin et al.,
2019)模型中，一个特定的事实知识可以定位到2-5个前馈神经网络（FFN）层中的神经元，且
当手动抑制这些神经元时，大语言模型对相关事实知识的检索能力出现显著下降，失去正确回
答与该知识相关问题的能力。基于这一实验现象，他们提出了知识神经元假说：大语言模型将
事实知识存储在FFN层的神经元中，每个事实知识仅与几个特定的神经元相关，这些神经元被
称为“知识神经元”。

这一假设在提出后迅速得到学术界关注。基于这一假设，一系列后续研究进一步发掘了许
多与知识神经元有关的现象。Meng等人(2022)发现在GPT等自回归式架构的模型中，事实信
息由中层FFN层的神经元进行检索和提取，而注意力模块则负责将提取出的事实信息复制到顶
层。Chen等人的研究(2024a)在大语言模型中发现了两类神经元：语言无关知识神经元能够以一
种跨语言的形式存储事实知识，退化知识神经元则表明一个事实知识可能由多个独立的神经元
簇存储，这可能与训练阶段采用dropout范式有关。后续工作(Chen et al., 2024b)对退化知识神
经元又进行了进一步探究。Hu等人的研究(2024)则表明，与负责逻辑推理的神经元不同，不同
语言的知识在大语言模型中是分散存储的。IRCAN(Shi et al., 2024)则利用知识神经元识别来解
决模型内在知识与上下文中知识的冲突。

另一方面，部分学者对这一理论假设仍持保留态度。Niu等人的研究(2024)对知识神经元理
论提出了质疑，认为该理论过度简化了大语言模型内部对事实知识的处理机制。论文指出，大
语言模型的FFN层中主要编码的是token的表达模式，而非传统认识论所定义的“知识”概念。尽
管这些模式能够在一定程度上反映语法或语义层面的规律性特征，但其本质上更倾向于编码语
言特征的统计性规律。例如，“scattered”一词因其在语料中与复数名词高频共现，而被大模型
错误识别为复数限定词。

上述研究从不同角度丰富了知识神经元理论。然而，上述工作均沿用积分梯度归因法进行
神经元的识别，未能注意到知识神经元识别过程中知识表达形式对神经元识别的严重影响。本
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工作首次深入分析了这一影响，并提出了一种轻量级的关联神经元识别器，有效地缓解了此问
题，这是与现有工作最主要的区别和贡献。

3 知知知识识识神神神经经经元元元识识识别别别

3.1 数数数据据据集集集及及及增增增强强强方方方法法法

为深入探究知识的表达形式对知识神经元识别结果的影响，本文对大语言模型中识别出的
知识神经元进行了系统的分析实验。本文的实验基于PARAREL数据集进行。PARAREL数据
集是基于T-Rex 数据集(ElSahar et al., 2018)，由多名人类语言学专家构建的一个事实关系数据
集，描述了27 738对实体之间37种不同类别的关系。该数据集由两部分组成，分别是实体数据
（vocab）和模板数据（graph）。实体数据部分存储了实体对及其关系的具体信息，每条数据
包括一个主语实体（Sublabel）和一个宾语实体（Objlabel），表示这两个实体之间存在某种特
定关系；模板数据部分则由多组句式模板构成，每组描述一种[X]和[Y]之间的关系，包含多个
句式模板，至少1条，至多20条。表1展示了数据集中的部分模板示例，其中每个关系仅展示前
三条模板。

Relations Template 1 Template 2 Template 3

P39(positions) [X] has the position of [Y]. [X], who has the position of [Y]. [X], whose position is that of [Y].
P1303(musician) [X] plays [Y] . [Y] player [X] [X] plays the [Y]
P27(citizenship) [X] is [Y] citizen. [X] is a citizen of [Y]. [X], who is a citizen of [Y].

表 1: PARAREL数据集中模板数据部分示例

通过组合PARAREL数据集中不同的实体数据对和模板，将模板中的[X]替换为实体数据中
的Sublabel，将[Y]替换为空，将对应的Objlabel作为问题的答案，共可构建出253 448句包含事
实知识的问题文本。表2展示了部分构建出的问题文本的示例。

Relations Query Answer

P39(positions) Sheila Dixon has the position of mayor
P1303(musician) Frederick Grinke plays violin
P27(citizenship) Rubens Barrichello is a citizen of Brazil

表 2: 适配后的PARAREL数据集部分示例

PARAREL数据集具有丰富的表达形式多样性，使其适合研究大语言模型中知识表达形式
对知识神经元识别的影响。然而，现今的大语言模型大多基于自回归的生成式模型架构：与基
于掩码语言建模的模型不同，在进行填空式问答时，生成式大语言模型要求待预测的答案必
须位于句末。然而，PARAREL数据集在征集人类专家编写模板时，并未对[X]或[Y]的位置进
行严格限制，数据集中许多模板的目标实体（即需要预测的答案）并不位于句子的末尾，导
致PARAREL数据集难以直接适配生成式模型的知识提取任务。

为了在自回归式架构的模型上有效应用PARAREL数据集，本文对PARAREL数据集中的
模板数据进行了适配和增强。首先，本研究对模板进行了一次筛选，仅保留以[Y]为结尾的模板
数据；之后，由于筛选后某些关系的模板数量大幅减少，对于模板数量不足10条的关系，本研
究利用大语言模型（如GPT-4）的仿写能力，生成表达同一关系但句式不同的模板，从而扩展
模板数据集的覆盖范围和表达能力。而对于模板数量已经超过10条的关系，为了保证数据集中
不同关系的公平性，本研究仅保留前10条模板。此过程中具体使用的提示语见附录A。

3.2 积积积分分分梯梯梯度度度归归归因因因法法法

为了与前人工作(Dai et al., 2022)保持一致，本文使用积分梯度归因法来进行大语言模型
中知识神经元的识别。积分梯度归因法(Sundararajan et al., 2017)的主要思想是：通过对模型
的输入进行微小扰动，监测输入值变化时特定神经元的激活值变化，用这一变化的梯度积分来
量化神经元在模型预测过程中的贡献，从而识别模型中与特定知识紧密相关的神经元。具体而
言，给定一条询问语句x（如“中国的首都是 ”）及该询问对应的正确答案y∗（如“北京”），预
训练语言模型正确预测出答案y∗的概率为：

Px(ŵ
(l)
i ) = p(y∗|x,w(l)

i = ŵ
(l)
i ) (1)
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其中，w
(l)
i 表示第l层FFN的第i个神经元，ŵ

(l)
i 则表示扰动时赋予该神经元的值。在此基础上，

积分梯度归因法计算每个神经元的归因分数（Attribution Score）的公式为：

Attr(w
(l)
i ) = w

(l)
i

∫ 1

α=0

∂Px(αw
(l)
i )

∂w
(l)
i

dα (2)

这一计算公式的核心理论依据为：对于一条包含给定知识的询问，如果模型中的某一神经元与
这一知识高度相关，那么在模型预测正确答案的过程中，该神经元激活强度的微小变化将显著
影响正确答案的预测概率，即预测概率对于该神经元输出值的变化梯度较大。在这一公式中，
归因分数AttrΦwΦlΨ

i Ψ通过累积神经元输出值变化对模型输出概率的影响，使得与给定知识强
相关的神经元得到较高的归因分数。因此，归因分数可有效衡量模型中的神经元wΦlΨ

i 与给定知
识的相关程度。在实际应用中，由于难以直接计算连续积分，为平衡计算效率与精度，本研究
采用黎曼和离散近似策略，来近似计算积分梯度法的归因分数，具体公式为：

Attr(w
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i ) ≈ w
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)
∂w

(l)
i

(3)

其中m为离散化采样时选取的路径上的近似采样步数。此外，在选取知识神经元的判定上，为
了平衡不同模型的表现，本研究取阈值t（0 1之间的实数）为所有神经元的归因分数中最大归
因分数的t倍，神经元的归因分数高于最大归因分数t倍的神经元被识别为模型中与输入文本相
关的知识神经元。

3.3 知知知识识识神神神经经经元元元识识识别别别存存存在在在的的的问问问题题题

本小节深入探究了知识的不同表达形式对知识神经元识别效果的影响。Geva等人的研
究(2021)表明，在基于Transformer架构的大语言模型中，虽然注意力模块和前馈网络模块中均
存在神经元结构，但由于知识神经元通常被认为存在于模型的FFN层中。本研究也基于这一理
论基础进行探究，所做实验仅关注FFN层的神经元，暂不考察注意力模块中的神经元活动。
实验所使用数据集为增强后的PARAREL数据集，按照9:1的比例进行随机划分，形成训练

集与测试集。为了方便与后续实验结果对比，本部分实验仅使用测试集进行现象的观察。本研
究在多个大语言模型上进行了实验，所有实验均在配备8张NVIDIA TITAN V显卡的服务器上
完成。实验采用的模型及其超参数配置如表所示。表中B表示采样时并行推断批次的大小。

Model t m B

GPT-2 0.3 20 20
LLaMa3.2-1B 0.2 20 10

表 3: 实验超参数设置
为探究表达同一知识但表达形式不同的句子在大语言模型中识别出的知识神经元的差异，

对于数据集中每组表达同一语义知识的10条文本，本研究设计了如下量化指标：
（1）Ns：单句文本识别得到的知识神经元集合中，神经元的平均个数。
（2）Nu：10句文本识别得到的知识神经元集合的并集中，神经元的平均个数。
（3）Nso和Rso：任意两句语义相同但表达形式不同的文本识别得到的两个知识神经元集

合中，知识神经元的重叠数及重叠率。重叠率越低，表示知识神经元的识别结果受文本表达形
式的影响越大。
（4）Nuo和Ruo：单句文本识别得到的知识神经元集合，与对应的10句文本得到的神经元

并集中，知识神经元的平均重叠数及重叠率。重叠率越低，表示10条文本识别得到的神经元集
合之间的差异越大。

其中，Rso和Ruo的计算公式如下：

Rso =
Na ∩Nb

Na ∪Nb
(4)

Ruo =
Ns

Nu
(5)
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式中，Na和Nb分别表示两条不同文本识别得到的知识神经元集合。
基于上述实验设置，实验结果如表4所示。实验结果表明，在GPT-2和LLaMa3.2-1B两个大

语言模型中，任取表达相同知识但形式不同的两条文本，所识别出的知识神经元集合平均重叠
率分别为20.97%和22.76%，任意一条文本识别的知识神经元与10条文本识别的神经元并集的平
均重叠率分别为22.80%和22.18%。这一现象充分表明，具有不同表达形式的知识文本在大语言
模型中激活的知识神经元集合具有显著差异。

Model Ns Nu Nso(Rso) Nuo(Ruo)

GPT-2 23.79 106.97 6.87(20.97%) 21.88(22.80%)
LLaMa3.2-1B 16.50 90.88 3.82(22.76%) 14.58(22.18%)

表 4: 神经元重叠率实验结果
为了深入揭示该现象，本研究基于GPT-2模型的实验数据，绘制了知识神经元重叠率的频

数分布直方图，如图1所示。子图（a）呈现了GPT-2模型中随机句对间神经元重叠率的频数分
布，子图（b）则展示了单句与多句并集间神经元重叠率的频数分布，并用红色虚线标识出了平
均值（即Rso）的位置。直方图显示，绝大多数句对的知识神经元重叠率显著低于平均值，呈现
出明显的长尾分布特征。换言之，仅有少数不同表达的句子激活的神经元集合高度相似，大部
分句对识别得到的神经元集合中相同的神经元占比不足20%。

(a) 任两句间神经元重叠率 (b) 单句与并集间神经元重叠率

图 1: 知识神经元重叠率的频数分布直方图

为了更直观地展示该现象，本研究基于LLaMa3.2-1B模型的实验数据，选取了其中一个典
型实例进行深入剖析，如表5所示。该案例展示了表达“Michael Maleinos的出生地”这一语义
知识的三种不同表达形式在大语言模型中识别出的知识神经元集合。前两个句子虽然分别采
用“was born in” 和“comes from” 两种不同表达形式，但其表达的语义知识一致，因此两个句
子识别出的知识神经元集合存在显著交集，重叠率为40.91%（9/22）；然而，第三个句式与第
二个句式仅存在时态差异（“comes”和“came”），识别得到的知识神经元集合却完全不同，体
现了同一知识的不同表达形式在模型中激活的神经元集合的差别。

Sentence Neurons

Michael Maleinos was born in [(3, 3604), (11, 1415), (12, 2684), (13, 3437), (14, 79), (14, 185), (14, 2336), (14, 3861),
(14, 5250), (14, 5845), (14, 6421), (14, 6516), (14, 6648), (14, 6812), (14, 6882),
(14, 7047), (14, 7072)]

Michael Maleinos comes from [(1, 1976), (4, 7411), (13, 6286), (14, 185), (14, 1975), (14, 3861), (14, 4071), (14, 5250),
(14, 5705), (14, 5845), (14, 6421), (14, 6812), (14, 6882), (14, 7047), (14, 7072)]

Michael Maleinos came from [(15, 647), (15, 1594), (15, 2515), (15, 2897), (15, 4790), (15, 5237), (15, 5243),
(15, 5407), (15, 7379), (15, 7827)]

表 5: 知识神经元重叠率案例分析，表中数据格式为（层号，神经元序号）

4 方方方法法法

4.1 关关关联联联神神神经经经元元元识识识别别别方方方法法法

为了减轻不同句式引起的识别结果差异，缓解输入文本表达形式对知识神经元识别过程的
影响，本研究设计了一种轻量级关联神经元识别器（Lightweight Associated Neuron Detector,
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LAND）。该识别器基于轻量神经网络模型架构，通过学习不同表达形式的文本从大语言模型
中识别出的知识神经元集合之间的差异，对识别结果进行优化，从而拉近不同表达的文本识别
出的知识神经元集合，增强知识编辑的鲁棒性。

LAND模型的输入为单条文本经大语言模型初步识别后生成的知识神经元集合，输出则是
经过模型优化后更具鲁棒性的知识神经元集合。因此，为了让模型学习不同表达形式的文本在
模型内部神经元的激活模式，本研究依据增强后的PARAREL数据集，将数据集中描述同一关
系的10条不同表达形式的文本输入到大语言模型中，获取10条文本各自识别出的知识神经元集
合，之后将这些集合取并集，作为模型的优化目标。

然而，尽管这一设计能够有效地让模型建立从单条文本激活神经元到多条文本激活神经元
的映射，但在实际应用中存在三点主要缺陷：首先，并集中的神经元数量过多，而一次编辑过
多神经元会影响知识编辑操作的局部性；其次，大部分神经元仅被某条特殊表达识别到，这些
神经元可能是模型中用于处理特殊表达形式的神经元，与核心知识的存储和提取并无紧密关
联；最后，研究发现，并集中存在部分对于任何输入都有高概率被识别到的神经元，该部分神
经元可能是大语言模型中的通用神经元，与句子表达的知识语义无关。这些缺陷都会对后续知
识编辑操作的效果造成影响。

为了缓解上述问题，本研究在获取不同表达形式的文本识别出的知识神经元并集后，通过
两步操作对该并集进行优化：首先，参考输出以每个神经元被识别到的次数作为该神经元的权
重，引导LAND模型对多次出现的知识神经元赋予更高的关注，并对LAND模型的输出设定一
个筛选阈值P，仅保留输出中权重超过P的知识神经元，从而大幅减少神经元数量；之后，随机
构建一些与输入句表达形式相似，但包含的知识不同的文本，获取其在大语言模型中识别出的
神经元，将这些神经元从集合里去除，从而筛除语义无关的神经元，留下与知识强相关的神经
元。

综上所述，LAND模型的整体训练流程如图2所示。该流程可以总结为以下四个步骤：

（1）获取模型输出：对于包含待编辑知识的输入文本，采用积分梯度归因法在大语言模型
中进行知识神经元的识别，并将其输入LAND模型，获取LAND模型优化后的输出；

（2）计算参考输出：向大语言模型输入数据集中描述同一关系的10个句子，提取各句式对
应的知识神经元集合，构建其并集，并根据出现次数赋予权重；

（3）筛除反例神经元：构造反例数据并获取其对应的知识神经元集合，通过集合运算剔除
步骤（2）所得并集中与反例集合的交集部分，确保保留的神经元具有语义相关性；

（4）计算Loss并更新模型参数：计算步骤（1）的输出和步骤（3）得到的参考输出之间的
均方误差（MSE Loss），并通过反向传播更新LAND模型参数。

Step 4:计算Loss并更新模型参数

“Michael Maleinos
was born in __”

LAND

“Michael Maleinos
was born in __”“Michael Maleinos

was born in __”“Michael Maleinos
comes from __”

MSE Loss

Step 1:获取模型输出 Step 2:计算参考输出

“Emanuel Larsen was
born in __”

Step 3:筛除反例神经元

图 2: LAND模型训练流程示意图
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4.2 LAND模模模型型型架架架构构构设设设计计计

…

|← L →|

…

|← L →|

|←
R

→
|

…

|← L →|

|←
H

→
|

LAND
编码线性层

LAND
解码线性层

输入张量 输出张量

图 3: LAND模型架构

LAND模型的详细架构设计如图3所示。LAND模型的输入和输出均为大语言模型中识别出
的知识神经元集合的张量表示。设原始的大语言模型共有L层，每层有H个神经元，那么可以
用维度为[L,H]的0-1张量表示模型中知识神经元的位置。对于张量中的每个位置而言，当该位
置取值为1时，表示对应神经元为与文本所含知识相关的知识神经元，取值为0则表示是无关
神经元。以LLaMa3.2-1B模型为例，其架构包含16个网络层，每层神经元个数为8192，故对应
的LAND模型输入输出均为16×8192的张量。
在对知识神经元的处理上，识别器采用分层处理的方式，对各层的神经元进行独立处

理。考虑到单条知识对应的有效知识神经元相比神经元总数通常占比较小，为提升计算效
率，LAND模型从自编码器架构的思想出发，基于低秩分解的轻量化架构，设计了两个核心线
性变换层：

（1）编码线性层：实现从高维空间到低维空间的映射，将输入张量从[L,H]降维至[L,R]。
该层权重矩阵维度为[H,R]，通过降维操作降低计算复杂度；

（2）解码线性层：完成从低维空间到原始维度的重建，将中间表示从[L,R]恢复至[L,H]。
该层权重矩阵维度为[R,H]，实现重构知识神经元表示矩阵。
这种双线性低秩架构在保证关键神经元识别效果的前提下，通过降维-重构机制有效控制了

计算开销。
LAND模型训练的目标为最小化单句识别的知识神经元集合张量与参考输出张量之间的差

异。参考输出张量的生成过程依照如下三个步骤：
（1）初始化张量：构建维度为[L,H]的零值张量作为基础矩阵；
（2）知识神经元并集构建：依据4.1小节中介绍的方法，获取用于参考的神经元集合；
（3）神经元频率统计：遍历参考神经元集合，在张量中对相应位置进行累加计数。

5 实实实验验验

本研究选取了GPT-2和LLaMa3.2-1B两个大语言模型作为实验对象。针对不同模型在层数
和每层神经元个数上的差异，本研究对LAND的关键超参数进行了适应性调整，具体参数配置
详见表6。实验数据采用增强后的PARAREL数据集，仅使用训练集数据进行LAND模型的训
练。模型在训练集上进行了3个epoch的训练，batchsize取8，学习率取1e-4。

模模模型型型 L H R 总总总参参参数数数量量量

GPT-2 12 3072 64 4,718,592
LLaMa3.2-1B 16 8192 64 16,777,216

表 6: LAND转换器模型大小

5.1 神神神经经经元元元重重重叠叠叠率率率变变变化化化实实实验验验

表7展示了经LAND模型优化后，模型中依据文本识别得到的知识神经元数量及其重叠率。
其中，Ns和Nso延续表4的定义，分别表示单句激活神经元平均数和任意两句激活神经元集合的
神经元重叠数；NL和NLo则对应经过LAND转换后的相应指标。实验结果显示，经过LAND转
换处理后，不同句式的提示语激活的知识神经元集合之间的重叠率显著提升至96%以上，充分
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证明LAND模型能够有效缩小不同表达形式的提示语激活神经元集合之间的差异，显著提高知
识神经元识别的鲁棒性。

Model Ns NL Nso NLo

GPT-2 23.79 27.93 6.87(20.97%) 25.02(96.58%)
LLaMa3.2-1B 16.50 20.43 3.82(22.76%) 20.18(97.66%)

表 7: 神经元重叠率实验结果

为了更具体地展示LAND的优化效果，本研究以LLaMa3.2-1B模型的实验数据为例，选取
了一个经LAND转换后的具体实例进行实际展示，详见表8。经过LAND处理后，三个语义相近
的输入语句经LAND处理后识别出的知识神经元集合仅有一个神经元不一致（即，神经元（14,
2536）未被第3条文本识别到），展示了LAND模型在处理具有不同表达的语句时的稳定性。此
外，表中加粗的神经元在表5中的前两行同样出现，进一步证实了LAND模型在转换过程中保持
了良好的前后一致性。

Sentence Neurons

Michael Maleinos was born in [(0, 231), (0, 7298), (1, 1976), (8, 4180), (9, 349), (10, 2308), (11, 177), (13, 3193),
(13, 6286), (14, 185), (14, 368), (14, 2536), (14, 4293), (14, 5250), (14, 5845),
(14, 6280), (14, 6421), (14, 6516), (14, 6812), (14, 7072), (15, 7258)]

Michael Maleinos comes from [(0, 231), (0, 7298), (1, 1976), (8, 4180), (9, 349), (10, 2308), (11, 177), (13, 3193),
(13, 6286), (14, 185), (14, 368), (14, 2536), (14, 4293), (14, 5250), (14, 5845),
(14, 6280), (14, 6421), (14, 6516), (14, 6812), (14, 7072), (15, 7258)]

Michael Maleinos came from [(0, 231), (0, 7298), (1, 1976), (8, 4180), (9, 349), (10, 2308), (11, 177), (13, 3193),
(13, 6286), (14, 185), (14, 368), (14, 4293), (14, 5250), (14, 5845), (14, 6280),
(14, 6421), (14, 6516), (14, 6812), (14, 7072), (15, 7258)]

表 8: LAND优化效果案例分析，表中数据格式为（层号，神经元序号）

5.2 知知知识识识神神神经经经元元元增增增强强强实实实验验验

受Dai等人(2022)实验设计的启发，本小节首先进行了知识神经元增强实验，即在在模型的
推理过程中，将事先识别出的知识神经元的激活值提升至原激活值的200%，观察增强神经元后
正确答案token输出概率的变化情况。此实验设计的理论依据在于：若本章节提出的方法能够准
确识别出模型中与某一事实知识相关的神经元，增强这些神经元则应使正确答案token输出概率
显著提升；反之，若识别效果不够准确，概率提升幅度将相对有限。

为量化评估神经元增强效果，本研究引入目标token输出概率的改变率（Change Rate,
CR）作为评价指标，计算公式为：

CR =
PAfter − PBefore

PBefore
(6)

式中，PBefore和PAfter分别表示知识神经元增强前后正确答案token的输出概率。实验对比了三
种不同的知识神经元识别方法，分别是原始的积分梯度法（Baseline）、基于多句式交叉验证
的改进方法（KN-refine）(Dai et al., 2022)，以及本文提出的关联神经元识别方法（LAND）。
为验证本文提出的方法能否减轻句式变化对知识编辑的影响，本研究设置了三项实验：

（1）Same：神经元提取过程中与知识编辑测试过程中使用相同文本；

（2）Related：提取与测试使用语义等价但句式不同的文本；

（3）Unrelated：提取与测试使用语义不同的文本。

基于上述实验设计，表9展示了神经元增强实验的结果。

实验结果显示，Related组的CR指标普遍低于Same组，即如果用于识别神经元的句子与真
正进行知识增强实验测试的句子采用不同句式表达时，增强知识神经元对正确答案的输出概率
的提升效果会衰减，再次验证了不同句式表达会激活不同神经元的理论假设；而在三种识别方
法中，LAND方法的性能提升最为显著，充分证明本文提出的关联神经元识别算法能够更精准
地定位知识神经元。
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Model Method Same Related Unrelated

GPT-2 Baseline 2.48 2.23 1.74
KN-refined 3.10 (+0.62) 2.53 (+0.30) 2.43 (+0.69)
LAND 3.21 (+0.73) 2.44 (+0.21) 2.44 (+0.70)

LLaMa3.2-1B Baseline 6.24 5.48 4.10
KN-refined 7.02 (+0.78) 6.01 (+0.53) 6.00 (+1.90)
LAND 17.30 (+11.06) 16.40 (+10.92) 14.04 (+9.94)

表 9: 知识神经元增强实验

5.3 知知知识识识编编编辑辑辑实实实验验验

为进一步验证该方法在知识编辑任务中的实际应用效果，本研究设计了基于知识神经元识
别的知识编辑实验。对于每个识别出的知识神经元，本实验对大语言模型FFN模块中对应的值
向量进行调整，从原始值向量中减去目标token t的向量表示，并加入新token t′的向量表示。该
操作的数学表达式为：

FFNval
i = FFNval

i − λ1t+ λ2t
′ (7)

式中，FFNval
i 为第i个神经元的输出值，λ1和λ2为调节系数，用于平衡编辑过程中的向量调整

幅度（为了与前人工作保持一致，本实验中均取2）。本实验计算了编辑前后模型回答问题的平
均正确率（Success Rate, SR），计算公式为：

SR =
1

N

N∑
i=1

I(yi = ŷi) (8)

式中，N表示问题总数，yi是第i个问题的真实答案（或标签），ŷi是模型对第i个问题的预测
答案，IΦ · Ψ是指示函数，当括号内的条件成立时取值为1，否则为0。本实验的实验组设计
与5.2小节的知识神经元增强实验保持一致。实验结果见表10。

模模模型型型 Same Related Unrelated

GPT-2 Before 7.13 4.99 0.10
Baseline 14.98 (+7.85) 11.69 (+7.70) 1.30 (+1.20)
KN-refined 20.49 (+13.36) 17.45 (+12.46) 3.40 (+3.30)
LAND 25.81 (+18.68) 21.57 (+16.58) 2.86 (+2.76)

LLaMa3.2-1B Before 15.31 11.94 0.18
Baseline 16.65 (+1.34) 12.67 (+0.73) 0.97 (+0.79)
KN-refined 16.76 (+1.45) 12.70 (+0.76) 1.01 (+0.83)
LAND 21.75 (+6.44) 18.24 (+6.30) 1.44 (+1.26)

表 10: 知识编辑实验结果

实验结果表明，相较于基准方法Baseline和KN-refine，使用LAND方法进行神经元识别，
模型进行知识编辑后回答正确率提升的幅度最为显著。这一结果充分验证了本文提出的神经元
识别优化方法的有效性。

6 结结结论论论

本研究深入分析了基于神经元识别的知识编辑方法受知识表达形式影响严重的问题，
并提出了一种基于关联神经元识别的知识编辑方法，有效缓解了该问题。首先，本研究基
于PARAREL数据集，提出了一种面向自回归架构模型的适配方法，并通过大语言模型辅助的
数据增强技术，显著提升了数据集的多样性和覆盖范围。在此基础上，实验验证了大语言模型
在知识提取任务中对知识表达形式的敏感性，即同一知识的不同表达形式会激活不同的神经元
集合，揭示了现有知识编辑方法的局限性。在此基础上，本研究提出了一种轻量级关联神经元
识别器（LAND），能够将不同句式表达下的神经元平均重叠率提升至96%以上。此外，本研
究通过神经元增强实验和知识编辑实验，验证了LAND在知识编辑任务中的有效性。实验结果
显示，基于LAND的知识编辑方法在正确答案输出概率和回答准确率上均取得了显著提升，有
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效缓解了知识表达形式对知识编辑效果的干扰。在未来的工作中，我们也计划将我们的方法推
广到更多不同类型和规模的大模型上进行验证。
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