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Abstract

With the widespread adoption of social media, memes have emerged as a prominent
medium for information dissemination and public opinion shaping. However, hateful
content embedded in memes poses significant risks to online ecosystems and public
safety. In particular, implicit hateful memes—conveying harmful messages through
visual insinuation, cultural metaphors, or symbolic cues—exhibit high levels of seman-
tic concealment and misdirection, making them especially challenging to detect. To
address this issue, we propose the Hateful Meme Understanding Model (HMUM), a
multi-stage, multimodal prompt-based framework built upon the Qwen2.5-VL-72B-
Instruct model and fine-tuned using LoRA. HMUM guides the model through three
semantic reasoning stages: text recognition, affective context modeling, and hateful-
ness inference. This progressive prompting strategy incrementally enhances the model’s
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capability to comprehend meme content and evaluate underlying emotional and ide-
ological bias—especially in Chinese memes with implicit hateful expressions. Experi-
ments conducted on the public ToxiCN MM dataset demonstrate that HMUM (Qwen)
achieves notable performance improvements over strong baseline models, particularly
on the subset of implicit hateful memes. To further assess generalization, we introduce a
newly constructed dataset, I'TTD-220, focused on implicit hate scenarios. Results show
that HMUM (Qwen) maintains superior performance on this dataset as well, confirming
its robustness and practical effectiveness in real-world multimodal hate detection tasks.

Keywords: Multimodal large language model , hateful meme detection
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BEREERN — PR A SRR ER, ITF R TEARFa T ZNA, ClhERE
BB RREMNEZIL A (Eftekhar, 2024) - HRFEHE T HEMGR S @ESCRER, HMwEMZ
FETAAER - 2MEH - BEERTIES, @S RELENE R E BRI A (Ma,
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S, BERGIERGERES - R, PR E R R 2R AT B B EA -

PURBERGE T SRR Bt SR - DA - BB KBS - BEEEER, Nt
FEEEEARAANE 5 B 5 BB (Lu et al., 2024), ERKEMESS AT E B SCHE A BT
BAEPIRHNE (Wang, 2024) - [EEFRFERE, EFERRMEIURER (Implicitly Hateful Meme)
REMMESS R B2 T, XREFE AT GEsk 2 B E PR AN A SR EAE S EREIGEE,
BB R E UL E & - ERERESIETIE, RKRFIReffE B A EERRRE S E L (Adak et
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AT KM LS (Huang, 2025), PAVILBERT (Lu, 2019)FILXMERT (Tan, 2019)RCE
©2025 FEVTHEIETEAE
R#E (Creative Commons Attribution 4.0 International License) ¥F7] Hhi

g BER BRI R (62466027,62266023)
WIRVEE: ZE5KF

TR EEE SRS, BIS3T-HTINT, W, TE, 202548 H11HE14H.
(c) 2025 FEFLEFEEESUHEIBES L WENS 784



FEITRIESYRZ

AN ZEA AL, B ML GRS b A ESE R, 2 X Transformer45#4 (Ashish
Vaswani et al., 2017) AT FHAERL A, X FRERM AU ME DUE B e e E LR N2 - 1 (b) &
NEJHMUMMEZERE Y DL Qwen?2.5-VL-72B-Instruct A Z£ A, 18 i34 LoRARUAFAR 5 Adam WAL 1L
#% (Loshchilov, 2019)SCHL =3B S ECEHr - FEHLEM ., AMUMERRLE T T “SCARIRR]-— 5%
B AR B = B R I HEZE: () AT O CREEER G H i A\ U (i) 14718
BEVE SR, FNFEEEPEROERE; (i) RS ESE U SHEEE R SRR .

A F P EZ TR :

1. 32 T4 8 LoRAS Z W Bt Prompt IEZE IR IYHMUM, 7EToxiCN MMEE S EBUE T
LT ARRIMIAE SR, SEEL T AR SCHURAR R A e R

2. NIRFNToxiCN MMEHRE & R MR ERE AN B, AR SCHEFFRE TITTD-2204008
£, NP R R 5T T BT rEdE =R -

2 FXRIE

2.1 HUIRRE R

IFER, ZESIIRBE RGN 57 BE T 27 E - Facebook ALK HE Y Hateful Memes
Challenge (Kiela et al., 2020) # KM TIXAURIL R, HAET 2RO TE . RHFRE
B FRFERL A SRRS, 71U Lippe(2020)3% H AR BURZEM FICao (2020) 1 S MERAITH IG5 75
1% . FEEDTRIERA, Pramanick (2021)# % FIMOMENTAMNE SR i 4 J&- R BB XA 5347 i
ERSA TR, MSharma (2022)1% 1T FIAIDISARME R GIF B A T 75 R EOR
TEE MBI T RIS W - H57, ETHNGERN TSR EZELE, Cao (2022)1
H I Prompt Hateif 13 Al 7 A3E /R 2 ) SRBR UG 280, [REem) TR —D9a R T B S H g e
71 BEE KRR S BESTN GRS R B & &, (6 2B R1E S (MLLMS ) #E AT SRS R R
B IA A (L et al., 2023; Yang et al., 2023) -

2.2 EHREKRESHEES &UHE

g Z RS RKIBESHEI (Multimodal Large Language Models, MLLMs) R % &
FRBEAEAIGPT-4 (Lyu et al., 2023)~ LLaVA (Liu et al., 2023)FfILLaMA (?)7F 515 75 21 fi#
55 R SR RE . T\ P SO R R IRE T AUE B, GFEGLM (Zeng et al,
2024) ~ DeepSeek (DeepSeek, 2024)FQwen (Bai et al., 2025)%, XA & E CEEAE
TIE SUEATERES) « AEBLBORE R T, FI5E TR AR MLLMSsAE UIRISE R I A AR - Bt L
TERI, B ZHOGR R TR AT R R THRTL N ST R 18 SURVBEE - 140, Cao (2024)%%
H AIEACHEZR BT I O F AR B IERBOR, Gl M S5 S M AE ACRRER , fEMLLMs7E/ME
KGRI AR R SZ A RETT « AR P A RRLE FH R IR 5] 5 U E kgt T F
RARIRTT S -
3 ik
3.1 (AR L

KT RET P XS ESERE P RMERRIESS - HEMRITNG Z SRER A SR T £ [F]4 R
REEARNCEM = (1,T) - Rel{ES SEFIBNZEERE T E & URNE, BT ZR AR L
H—= D RES -

g5 = [({wji25}), 95 €{0,1} (1)

Hop XIMXT 5 5 37588 5 IR ) R RS R SUA RS BN g, R FI 25 2R
g, = 1, WFETEE JUREER, 25, =0, NFRE N TEEEH .
3.2 ETHRRH=Hr B R EFHER

NIRTT 2 R RIE SR P SRR R AL S R R I, AT T —ME TR
F ) Z B BOR R B AR AELE - ZEZRENRRE AN 2PR, BISEEIBS SURZ I UL E R
#, oW BEISREBMKIRGEROUCRIRS] - EEEES URTEIETE,  IHZ P X R 75 SCHY
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BrBe—: HRASCARER « AR BOH A 2188 K8 B AR BGRB9SO BT 12
B, BRISURER:
Tyer = MLLM o (1165, OCRpronny) 2

BB 1B SIE SR - AR B SRR R P2 & RIS, LI SRR T PR A1
SCHA RVERRRES) - B BT ARRTES, SIS ZREESHEAEMETEHEE, AR
=B BRI OANY) - HRERUNEFAREEM R, 1505 SRR SRR - %
B B R H 12

Dimg = MLLMy;s(meme;, Tyoer, DIS,rompt) (3)

BB =: PUIRVEHETS 50 RAINWT - LM BEE SR BRI - A SURT,., 5168 Uik

A Dipg, 8IE G RS HEE, FIMRER S E & MRNZ, SERERE I RIM:

Qi - MLLMdetect (memej7 TOCT‘) Dimg’ Xprompt) (4)
4 %
4.1 BIEELSHT

AR ToxiCN MM REUE S, %8008 8 P & SR ARSI PO T & 4 8 fUIRELA -
TE5E RO B R B R R IR R MR S5 2 )5, #— B Rk BA R & R m AR SR 2
M ToxiCN MMl F ik H ER 5 SCRAE B AT B B A R UR N 2, (BAER DTS & e i
PRERPURFISEE LSS, XRBIRERE BB R - XOE - SUERE M - (277 5% 7 RKA
PR - TAERIFT7R, ToxiCN MM-1- 58 A B AT A) LR PR 25530 o R AR 5 SO 2 TR 55 2% )7 SCIBR
S SR E KRBT RE, BEBORRITESFERE, SRMMESR T AR .

ATONE BENSIE - SHriR il 1 S 1L S0 AR 5 R FF A T ARSI fUIRAR IR O = AIITTD-
2205UE S - FEPREEREF, HPIA B EERE RPN SRR E GRS BITIRE, PNE
RAGQFEREEEE . “BEEEE S5TE, NREMUINEEE L —ZEAR, REAMET
220 55 R FE A A ORI 2R - R R 2 2R 5 R SOESE P AR SR~ MBI AN 3
MEERTIFI PR, M ToxiCN MMEUE S I RBA ) 5 LR - ITTD-22083E % 5761
fl e T HMUMAE AL B REAL R R I VIR A = P 2 AL RE

PR  split A% BHEAR BEAE  Hit

ToxiCN MM train 6538 1984 1078 9600
test 1635 595 270 2400
ITTD-220 test 14 16 190 220

Table 1: ZIEE >

4.2 SLHEE

W RGN O SESS, VAL BT 5 77 BEHMUMAE Y SCOUIR A8E ERL RS T A 55 A B R - X
HEAEBESERMAERESS ZREEEE, B4R % E R ZRoBERTa (Cui et al,
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2019), BB 5 EFIVIT (Dosovitskiy et al., 2021), LA ESCHEA FIZERICLIP (Rad-
ford et al., 2021). A, ARIGEER T IEHRIME H N ZEERIE S EEQwen (Bai et al.,
2025)! « DeepSeck (DeepSeek, 2024)2FIGLM (Zeng et al., 2024)3, F7ES5HMUMMEZE —5k
MLoORAZEIL & T X AR T HOA - fEARSLEH, K ELoRARIBr = 8, %> X%
Hle—4, bR AdamW (Loshchilov, 2019) - #2451 T i LA B B AR AE B -
FEVERGHEPR T, AN SCfF i Precision(P) ~ Recall(R) SFUENE N EZEMERETEMInE, NEZHE
i g AR BT RS R G TUAE 25 VR RE ) 5 & 8 1 -

kit iR A
RoBERTa chinese-roberta-wwm-ext-base
ViT vit-base-patch16-224
CLIP chinese-clip-vit-base-patch16
Qwen Qwen2.5-VL-72B-Instruct
DeepSeek deepseek-vl-7b-chat
GLM glm-4v-9b-chat

Table 2: 58 B B AR A

4.3 ToxiCN MM EE4E 5

F3ER T A R FEToxiCN MMt & b A O IR 8 R I P e, B op 4 S0 R
T (WMRoBERTa) 5 B G (A0 ViT) FEiZ AR S5 R R IR AL, FUES BIR76.7%F167.6% -
X —EERFA, SURTERLE PR AT T 2 5 (R A R A0 TE ERIA - 7RSSR
55, CLIP - MKELLXZViT-RoBERTa% B4 i) B Ul & R AU B R RIS E , FUBEE S
TET8-80% X [A], AARIN H B B B A o R AR RE ) -

FNEAE Z RS RIE S EEENREE R NALES T EERE 77, EEGLM « DeepSeek
FQwen =" F AR HATH L LL « G5HRE/R, =3 FPrecision~ Recall XF1 ¥5hr L1
LT H A A o ESER R, GLMAEMERE LB T Qwen, X—ZERAIGES ZH KA
FUEZRA K - BAHEMEELE B R ERE 2 IR E (epoch) DISEERFESSULSL, THEM
FIIZRIZE T, Qwen HIVERERTRERI L ARRE TE 2 FERL -

B ki) BAER/AN | KR | GEZF | F1{E | F1 {E(har)
Text RoBERTa <1B 78.2 75.9 76.7 69.2
Image VIT <1B 67.1 68.3 67.6 54.1
CLIP <1B 7.4 79.8 78.4 69.3
MKE <1B 80.8 80.2 80.5 73.3
VIT-Roberta <1B 78.2 75.9 76.7 69.2
Multimodal GLM 9B 82.3 81.2 81.7 74.3
Deepseek B 75.7 74.9 75.3 65.5
Qwen 72B 82.1 80.6 81.2 73.6
HMUM(GLM) 9B 84.2 82.0 80.1 74.5
HMUM(Qwen) 72B 88.4 86.0 87.1 81.7

Table 3: ABAEIRBRERINESS HRMERERIL, I FRRILE

"https://huggingface.co/ Qwen/Qwen2.5-VL-72B-Instruct
https://www.modelscope.cn/models/deepseek-ai/deepseek-vl-Tb-chat
3https://modelscope.cn/models/ZhipuATl/glm-4v-9b
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NEIEZN BRAERNESE, AXEZDPFREEERE S HE 5] NZHE
ZR . ESERG A, BT B R A A IGLMAE R R R 7RSI AN Z M B iR o HE 42
J& ., HMUM(GLM)7EP - R~ F1#IF1(har)f8 %5 £ 50 AKX #184.2% ~ 82.0% ~ 80.1%H74.5% - R
EFUEISE T, HRERYE—ERA, HEERAEEER . HILZ T, ETQwenfi i
THMUM(Qwen) 7E PR VEAETEIR EIBUSRAMEAE R, Fl(har) i@ A E81.7% - X—R_AHHT=
B B PR R HE 2R Qwen SR S B0 FIA R E RO D), 58 T H X PUIREEERE LS TR IEIBEARRE ) -
BT L RIMKE (F1(har) = 73.30%), HMUM(Qwen)7E PUIR A #6455 5 e 1R 7+
B, Fl(har) 3&m 8.4% - B, A HEAEFEQwen2.5-VL-72B-Instruct{E A HMUM ) E: Al
R .

BRI A KR HEZEX F1{H F1 {H(har)

HMUM(Qwen)  88.4  86.0  87.1 81.7
w/o dis 82.5 84.1 83.2 774
w/o ocr 84.1 81.3 82.5 75.1
w/o def 82.8 84.5 83.6 77.8

w/o dis+def 83.9 79.6 81.69 73.8
w/o ocr+def 82.1 80.5 81.3 74.0
w/o dist-ocr 83.7 81.3 82.3 75.0
w/o distocr+def — 82.1 80.6 81.2 73.6

Table 4: JHEISLISLE R I F R ME

FEToxiCN MM - B AT LS008 RGPS T HMUM (Qwen )4 T BERR G H2 44 M R
MITTER, SEISLERMEATR - BEREE R (w/o dis)f5, BAAIF (har)(H FFERT77.4%;
FBRMIRMEREF R (w/o def) FIFES A BIHERE FFE, Fl(har)BEFEIRETT.8%; B SCHAIE
BRATBUE (w/o ocr) i B EAEREIRIL, Fl(har)PEET5.1% . A SHERECSERIBET, M4
REIRILE N EE - 7E =B &I ERAEE T (w/o distocr+def), HBAEIMEREMEZR &K, FUE
5F1(har) H5HIFEHNSL.2%573.6%, 55eBRAME, 45 FRE5.9%F8.1% - SHRE,
— R AR BRI REE BRI, R R SRR BT, RISUR B3 IR,
Ui B AR SRS R RS I R R A VR, Sk R SCHEIE TN AT, SCAVEERF I -

4.4 FEHERERIGE S VAL

FEToxiCN MMAL 8 £ B M IR F £ L, HMUM(Qwen)i& Y & B H 55 58 1 &
M RE 1o SEES4E B A0 FsFT R, HMUM(Qwen)iE B 72 1% T8 F WS TR = 70.6%
e = 82.8% MKMW R, BEMRMATHEMNILEE . MR TEZHEESKNESH
B(WGLM « deepseek), HMUM(Qwen) FAEH =M EAR/R TR, 7EREIE B 5 RIAFEIEH
HRLER] A 25 7 T 6 0 H o o PO B A

ki) R (har) F1 (har)
CLIP 53.0 69.2
MKE 61.5 76.1
vit-roberta 37.8 54.8
GLM 59.6 4.7
DeepSeek 50.4 67.0
Qwen 58.5 73.8
HMUM(Qwen) 70.6 82.8

Table 5: ToxiCN MMFPFSMEEIE FE (G455

HMUM(Qwen) £ B AIITTD-220 50885 Lot T T #AEIFAL, S5R TR, RAEZ
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HORE LRIE T T HREEHEA . HMUM(Qwen)7E PR 5 AN [F] AR R i 56 25 R
REATSE, Wi BIRRTUAE S B S T AR PUIRAR R AOFa (8 5 3802 AL RE

AR BEZ (har) F1 (har)

MKE 64.8 7T
GLM 63.7 76.5
Qwen 70.6 81.6
HMUM(Qwen) 73.5 83.6

Table 6: TTTD-2201Ff 45 5

4.5 ARG S5RASH

FTER T MKESHMUM(Qwen) £ 2 1 RISV UIRBR IR FEAR BRI KGRI H, Aoy
B AR PR REZE 57 - MKEZEACIE A ZIMREN G - 78 SCROME B SCREEC AR R, 532 31130
AR AR XTI, SEHRERAER AR R « THERAERERE A, Bk
PEAEE ARG R  XORHE  SUILREMT - 2 5SRATAEN, MKERZESES5LZ
ﬁ%%@ﬁgﬁ,%FéﬁﬂoM%ZTmeM@mm%%Eﬁﬁﬂﬁ%E%SiK@%
HRZE IR

KR 2H 4 i1 w2 ~13

1853 51%)Jennifer Aniston 2RO FE ERAOIEIL S

B3
18 ZFk, 51 % BRI T F \
UK #']Jennifer Aniston IERRRFEU = = RIE. ML
= ;V\EL hate hate hate
MKE non-hate non-hate non-hate
HMUM(Qwen) hate hate hate

Table 7: MKES5HMUM (Qwen) ZEFEEPURBIRFEA 5 R45 R

E3ER THMUM(Qwen)7E AN ER RIS B = Fr B fe e E i 72, I DL—s 48
HELA: 1) b5 AR A BB 7 45 B AR U B ARG I AR - B — BB, BAVKIE SR R IBE B i A SC
A (QneB A <N TEEEEY) , SEHMOCRICARIRA, FREUESUA AT RIRBEE - 5 ZMEGE
W AEREIGE ESEEY RS, BARRTE H BRSO T 5 BB S R & i S i AL
Yy, RIREHIMREE BGESE SR - M B, BRAIGE & B E SO BRAR, TR HT P B B
I SGE LS 1EZ(E B SE BB SRR, IR %5 R 18 o [ ST [ RE) RO xst Ao 8 B 4% 1) €7 T 1 i
ENRERIR, AT 2B RN IUREE « 8RBT ZBER RIS, EFEMRE5 5
ﬂi%g%%%ﬁgﬁé,ﬁﬁ%ﬁTﬁﬂE@W¢Iﬁﬁ¢%ﬁﬂ@W§N%ﬁ%%ﬁ5%
HIEEE

B E T EE S RS E, TSS9, BrEE, FE, 20254E8H11HZE14H,
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