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Abstract

Self-supervised learning (SSL) speech models have achieved remarkable performance across
various tasks, with the learned representations often exhibiting a high degree of generality and
applicability to multiple downstream tasks. However, these representations contain both speech
content and some paralinguistic information, which may be redundant for content-focused tasks.
Decoupling this redundant information is challenging. To address this issue, we propose a Self-
Supervised Contrastive Representation Learning method (SSCRL), which effectively disentangles
paralinguistic information from speech content by aligning similar content speech representations
in the feature space using self-supervised contrastive learning with pitch perturbation and speaker
perturbation features. Experimental results demonstrate that the proposed method, when fine-tuned
on the LibriSpeech 100-hour dataset, achieves superior performance across all content-related
tasks in the SUPERB Benchmark, generally outperforming prior approaches.

Keywords: Self-Supervised Fine-Tuning , Feature Disentanglement , Pre-trained Speech
Model , Contrastive Learning

1 Introduction

Self-supervised speech models, such as HuBERT (Hsu et al., 2021) and WavLM (Chen et al., 2022), have
advanced the field of speech processing by generating versatile representations through the exploitation of
large-scale unlabeled data. These pre-trained models provide effective representations and initialization for
downstream tasks (Evain et al., 2021; Chang et al., 2021), greatly facilitating applications like Automatic
Speech Recognition (ASR), Phoneme Recognition (PR), and Speaker Identification (SID), among others.
Compared with models trained from scratch, self-supervised models notably reduce training time and
computational costs while delivering superior performance (Chang et al., 2021; Chan and Ghosh, 2022).

Despite the broad applicability offered by the high versatility of these models, they also present certain
challenges in content-centric tasks. Particularly in tasks that require higher semantic consistency for
similar content, the performance of SSL models may be constrained (Wang and Liu, 2021; Wang and
Isola, 2020). This is primarily because learned speech representations often conflate linguistic content
with paralinguistic cues. For instance, variations in pitch, background noise, and speaker identity can
induce substantial feature disparities in the same semantic content, thereby diminishing the semantic
relevance of semantically equivalent representations within the feature space. This misalignment not only
impacts the accuracy of downstream tasks but also limits the model’s generalization ability when the
distribution of pre-training data diverges from that of the target domain data.

To address these issues, researchers have explored methods to disentangle content representations from
speaker characteristics. For instance, the ContentVec model proposed by Kaizhi Qian et al. (Qian et al.,
2022) achieves speaker disentanglement, thereby enhancing content-specific representations. Despite
its effectiveness, this approach requires substantial data and computational resources. Peyser et al.
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introduced Disentangled Speech Representations (DSR) (Peyser et al., 2022), which separate content and
contextual information through self-supervised learning, offering new directions for speech recognition
and generation tasks. However, this method still demands significant computational resources. Chang
et al. developed a self-supervised fine-tuning approach called Spin (Chang et al., 2023), which uses
speaker-invariant clustering to improve content-related representations. While ContentVec requires
substantially higher training time and resource costs, our method achieves comparable performance with
only 45 minutes of fine-tuning on the 356-hour LibriSpeech dataset (Panayotov et al., 2015). However,
this approach exclusively relies on speaker perturbation while neglecting prosodic variations across
different intonations from the same speaker, which may degrade model performance in downstream
tasks involving same-semantic different-prosody scenarios. Building on this, Meghanani et al. proposed
the SCORE (Meghanani and Hain, 2024b) and LASER (Meghanani and Hain, 2024a) methods, which
randomly decouple content-related representations from speed-perturbed audio and achieve satisfactory
results with only one-third of the data required by Spin, albeit at the cost of some performance degradation
compared to Spin. Therefore, existing decoupling frameworks exhibit inherent trade-offs between
computational costs (e.g., training expenses in GPU hours) and disentanglement quality, while data-
efficient fine-tuning strategies for resource-constrained scenarios remain systematically underexplored in
both theoretical and practical dimensions.

To address the limitations of existing models in content-centric tasks, we propose a novel Self-
Supervised Contrastive Representation Learning (SSCRL) framework for disentangling content-specific
features from speech signals. Our method employs randomized pitch perturbation and speaker identity
obfuscation on speech data, which are then fed into a pre-trained model and further fine-tuned using
our designed self-supervised contrastive learning framework on the LibriSpeech 100-hour dataset. By
explicitly enforcing semantic proximity between semantically equivalent features within the feature space,
this approach effectively decouples linguistic content from paralinguistic attributes (e.g., vocal pitch and
speaker characteristics), thereby enhancing the semantic coherence of learned representations. The method
achieves this while maintaining low computational costs and minimal data requirements, narrowing the
distance between semantically similar content in the feature space. Additionally, SSCRL demonstrates
robustness in handling variations in pitch and speaker identity, offering an efficient and scalable solution
for advancing content-focused speech processing.

Experiments on the SUPERB benchmark (Yang et al., 2021) demonstrate that SSCRL achieves com-
petitive performance in content-related tasks such as Automatic Speech Recognition (ASR), Phoneme
Recognition (PR), Query-by-Example Spoken Term Detection (QbE), Keyword Spotting (KS), Intent
Classification (IC) and Slot Filling (SF). The main contributions of this work are as follows:

• We propose SSCRL, a low-cost yet effective method that achieves disentanglement of speech content
and paralinguistic information within self-supervised fine-tuning framework.

• The SSCRL exhibits strong performance on the TIMIT (Hinton, 2012) and LibriSpeech datasets,
demonstrating that the SSCRL method has robustness and generalization capabilities across different
datasets.

2 Methods

Our approach draws inspiration from methods in image processing (Pan et al., 2023), where supervised
contrastive learning was employed to fine-tune pre-trained models using labeled data, thereby achieving
superior performance on downstream tasks. However, our method diverges from that of Pan et al. (Pan et
al., 2023) in that we fine-tune the pre-trained model through self-supervised contrastive learning (Gunel et
al., 2020; Zhang et al., 2021). During this fine-tuning phase, we do not use labeled data but instead learn
content-related speech representations solely from the relationships between perturbed speech samples.

Our method is illustrated in Figure 1. Initially, our method employs tone-perturbed speech and speaker-
perturbed speech as inputs to the pre-trained models. For the tone-perturbed speech, we adopted the
method from ASR (Ko et al., 2015), implementing it using the SpeedPerturbation and PitchShift functions
from the torchaudio.transforms library in Torchaudio (Yang et al., 2022). For the speaker-perturbed speech,
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Figure 1: Architecture of the Self-Supervised Contrastive Representation Learning Fine-Tuning Method.

we used algorithms from (Choi et al., 2021; Eide and Gish, 1996) that alter speaker-related information
while preserving more of the content-related information in the speech.

We paired the speaker-perturbed utterances and tone-perturbed utterances derived from the same
source audio and fed them into a pre-trained model. Simultaneously, we extracted representations for
both the speaker-perturbed utterances and the tone-perturbed utterances. These representations were
then normalized and passed through a linear projection to obtain the final speaker-perturbed utterance
representation Z1 and tone-perturbed utterance representation Z2, each with dimensions (batch size ×
seq length, D), D is the linear projection dimension. The two types of speech representations, Z1 and
Z2, are subjected to unsupervised contrastive learning in a cross-manner, using this as a loss function
to fine-tune the pre-trained model. During training, we found that directly using representations Z1 and
Z2 can lead to unstable model training. Therefore, we adopted the Sinkhorn-Knopp algorithm proposed
in (Cuturi, 2013), which normalizes a matrix into a probability distribution matrix that satisfies specific
marginal constraints. This algorithm helps balance the similarity between samples when calculating the
contrastive loss, making representations more effective for learning. Thus, after applying the Sinkhorn-
Knopp algorithm for row and column normalization to Z1 and Z2, we obtain Z ′

1 and Z ′
2, which are then

used in a cross-manner for self-supervised learning. The algorithm is shown in Equation (1).

Z ′ = diag(u(k))Z diag(v(k)) (1)

Let Z ∈ Rm×n, where u(k) and v(k) are hyperparameters representing the row and column scaling factors
at the k-th iteration, respectively.The function diag(·) constructs a diagonal matrix from a vector, with
the vector elements on the diagonal and zeros elsewhere. They are typically initialized as u(0) = 1m and
v(0) = 1n, where 1m and 1n denote vectors of ones with dimensions m and n. The iterative formulas for
u(k) and v(k) are shown in Equations (2) and Equations (3):

u(k+1) =
Q(k)v(k)∑m

i=1

(
Q(k)v(k)

)
i

(2)

v(k+1) =
Q(k)⊤u(k+1)∑n

i=1

(
Q(k)⊤u(k+1)

)
i

(3)

In the 0-th iteration, Q needs to be initialized as shown in Equation (4):

Q(0) =
1

ϵ
exp

(
Z

ϵ

)
(4)
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Here, ϵ is a hyperparameter used to control the smoothness of the matrix. Z ′ represents the final result
after normalization by the algorithm. The algorithm yields Z ′

1 and Z ′
2. The final contrastive loss function

is shown in Equation (5):

Ltotal =
1

2
(LA + LB) (5)

The formula for LA is shown in Equation (6):

LA = − 1

N

N∑
i=1

log

 exp

(
Zi·Z

′
i

τ

)
∑

j ̸=i exp

(
Zi·Z

′
j

τ

)
 (6)

Here, τ is the temperature parameter used to control the smoothness of the distribution. N is the first
dimension of Z. Z ′ is the normalized matrix obtained through the Sinkhorn algorithm. Similarly, the
formula for LB can be derived similarly as shown in Equation (6).

3 Experiments

3.1 Configuration and Parameters
Pre-trained Models: We used the base models of WavLM (Chen et al., 2022) and HuBERT (Hsu et al.,
2021), fine-tuning only the last two layers while keeping others frozen.

Experimental Data: In our experiments, we fine-tuned the pretrained models on the train-clean-100
hour LibriSpeech dataset (Panayotov et al., 2015), employing the dev-clean and dev-other datasets for
validation. For testing purposes within the SUPERB Benchmark framework, we utilized the test-clean
dataset for Automatic Speech Recognition (ASR) and Phoneme Recognition (PR) tasks. For Query-by-
Example Spoken Term Detection (QbE), Keyword Spotting (KS), Intent Classification (IC), Slot Filling
(SF), and Speaker Identification (SID) tasks, we used the QUESST14 (Anguera et al., 2015), Speech
Commands (Warden, 2018), Fluent Commands (Lugosch et al., 2019), SNIPS (Coucke et al., 2018), and
VoxCeleb1 (Nagrani et al., 2017) datasets, respectively. Our findings align with those obtained by methods
such as SCORE, where increasing the LibriSpeech dataset (Panayotov et al., 2015) to 360 hours for model
fine-tuning did not yield performance improvements. Furthermore, we incorporated the TIMIT (Hinton,
2012) dataset into the S3PRL framework to evaluate the effectiveness of our approach in ASR and PR
tasks when there is a mismatch between the training and target datasets.

Experimental Setup: The learning rate was linearly increased from 0 to 10−4 over the first 2500 steps
and then decayed to 10−6 over the next 2500 steps, for a total of 5000 fine-tuning steps. The Sinkhorn
algorithm used k = 3 iterations and a smoothing parameter ϵ = 0.02. Gradient clipping was set to 3, and
the embedding dimension D was fixed at 256. For contrastive loss, we used a temperature hyperparameter
τ = 0.1 and applied PyTorch’s clamp function (Imambi et al., 2021) to ensure training stability. All
experiments were performed on a single RTX3090 GPU, and the fine-tuning process took approximately
3 hours. The model checkpoint at step 5000 was selected for downstream task fine-tuning within S3PRL.

3.2 Performance Evaluation on SUPERB Benchmark
All our downstream tasks were tested using the open source S3PRL toolkit (S3PRL). S3PRL (Self-
Supervised Speech Pre-training and Representation Learning Toolkit) is a toolkit for speech processing
that focuses on self-supervised learning methods. It provides a variety of pre-trained models and evaluation
frameworks. Within this framework, we report the results for ASR, PR, QbE, KS, IC, and SF. The results
are shown in Table 1.

From Table 1, we can clearly observe that our method excels in three metrics for both the IC and SF
tasks on both the WavLM and HuBERT models, showing a significant advantage over other methods. In
the ASR task, our method achieves a word error rate (WER) of 5.78% on the WavLM model, placing
second only to ContentVec500. In the HuBERT model, it achieves a WER of 6.16%, outperforming all
other methods. For the QbE task, our method surpasses all other models in the WavLM model with a
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Table 1: Performance Metrics on the SUPERB Benchmark for ASR, PR, QbE, KS, IC, and SF Tasks
Using the LibriSpeech Dataset. The metrics include Accuracy (Acc%), Phoneme Error Rate (PER%),
Word Error Rate (WER%), Maximum Term Weighted Value (MTWV%), F1 Score, and Concept Error
Rate (CER%). The boldface represents the SOTA performance, while the underline denotes the top-3
performance.

Index Method
ASR PR QbE KS IC SF

WER↓ PER↓ MTWV↑ ACC↑ ACC↑ F1↑ CER↓

#01 FBANK 23.18 82.01 0.58 41.38 9.65 69.64 52.98

#02 HuBERT 6.42 5.41 7.36 96.30 98.34 88.53 25.20

#03 WavLM 6.21 4.84 8.70 96.79 98.63 89.38 22.86

#04 Wav2vec2.0 6.43 5.74 2.33 96.23 92.35 88.30 25.27

#05 data2vec 4.94 4.69 5.76 96.56 97.63 88.59 24.77

#06 ContentVec500 5.70 4.54 5.90 96.40 99.10 89.60 23.60

#07 HuBERT + Spin256 6.34 4.39 9.12 96.53 98.34 89.00 24.32

#08 WavLM + Spin256 5.88 4.18 8.79 96.20 98.52 88.84 24.06

#09 HuBERT + SCORE 6.35 4.84 8.10 96.04 96.78 85.95 29.47

#10 WavLM + SCORE 6.15 4.72 9.18 96.29 97.86 88.63 25.10

#11 HuBERT + LASER 6.18 4.61 8.91 95.84 98.62 86.09 28.68

#12 WavLM + LASER 5.92 4.28 9.27 95.74 98.99 87.77 26.19

#13 HuBERT + SSCRL 6.16 4.83 8.73 96.65 99.23 89.24 23.28

#14 WavLM + SSCRL 5.78 4.61 9.67 96.13 99.15 88.90 22.85

#01−#08 Reported in (Chang et al., 2023; Baevski et al., 2020; Baevski et al., 2022). #09−#10 Reported in (Meghanani and

Hain, 2024b). #11−#12 Reported in (Meghanani and Hain, 2024a).

We re-implemented the KS, IC, and SF metrics for models #09−#12 to ensure a fair comparison.

result of 9.67%. In the KS and PR tasks, our method also achieves favorable results compared to other
approaches.

In general, our method achieves efficient and superior performance using just 100 hours of training
data, demonstrating its effectiveness and robustness in content-related tasks.

3.3 Evaluating Generalization on Out-of-Domain Data

To evaluate the generalization capability of SSCRL across different datasets, we conducted ASR and PR
experiments on the TIMIT dataset using WavLM and HuBERT models fine-tuned on LibriSpeech data.
Notably, no fine-tuning was performed on the TIMIT dataset. For the ASR task, we trained for 100,000
steps, while for the PR task, we trained for 50,000 steps. Performance for both tasks was evaluated based
on the final layer. The results are shown in Table 2.

From Table 2, we can see that our method achieves WER of 27.38% and 24.66% on the ASR task using
the HuBERT and WavLM models, respectively. This places our method second only to the ContentVec500
model but surpasses all other methods. For the PR task, our performance with the HuBERT model is
second only to HuBERT + Spin256. On the WavLM model, our results are slightly behind only the
WavLM + SCORE approach. These findings highlight that SSCRL effectively extracts domain-invariant,
content-focused representations, achieving consistent performance across diverse datasets with only 100
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Table 2: Performance Metrics for PR and ASR on the TIMIT Dataset. The underline denotes the boldface
represents the SOTA performance, while the top-2 performance.

Index Method FT Data Hours
ASR PR

WER↓ PER↓

#01 HuBERT 0 31.49 14.61

#02 WavLM 0 28.31 14.63

#03 ContentVec500 76K 20.49 15.63

#04 HuBERT + Spin256 356 28.93 14.1
#05 WavLM + Spin256 356 26.56 14.61

#06 HuBERT + SCORE 100 31.08 14.44

#07 WavLM + SCORE 100 28.53 14.31

#08 HuBERT + LASER 100 30.31 14.76

#09 WavLM + LASER 100 28.53 14.71

#10 HuBERT + SSCRL 100 27.38 14.2

#11 WavLM + SSCRL 100 24.66 14.59

#01−#11 were implemented using the S3PRL toolkit.

hours data. The ability to maintain strong results on both ASR and PR tasks under varying domain
distributions further underscores SSCRL’s robustness and adaptability.

3.4 Ablation Implementation For Disturbed Audio

We also verified the impacts of two different perturbed audios on model fine-tuning respectively.

Table 3: Performance Metrics for QbE, PR and ASR across various input speech conditions. TP denotes
tone-perturbed speech, while SP denotes speaker-perturbed speech.

Model Augmentation
QbE ASR PR

MTWV↑ WER↓ PER↓

HuBERT SP+TP 8.73 6.16 4.83

-SP 8.71 6.31 4.85

-TP 8.44 6.37 4.89

WavLM SP+TP 9.67 5.78 4.61

-SP 9.69 5.92 4.69

-TP 9.73 5.99 4.82

As can be seen from Table 3, through comparative testing, it can be found that both the HuBERT
and WavLM models are significantly affected by tone-perturbed, especially in ASR and PR tasks,
which highlights the importance of prosodic information. Despite facing similar challenges, WavLM
demonstrates stronger robustness and better adaptability to tone changes.

CC
L 
20
25

Proceedings of the 24th China National Conference on Computational Linguistics, pages 807-817, Jinan, China, August 11-14, 2025.

(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China 812



China National Conference on Computational Linguistics

3.5 Discrete Unit Quality Evaluation

Table 4: Discrete unit quality evaluation. Cls Pur, Phn Pur, and PNMI denote cluster purity, phone
purity, and phone-normalized mutual information.The ”L” refers to the optimal layer based on the metrics
reported by the model. The underline denotes the top-2 performance, while the boldface represents the
SOTA performance.

Index Method L Cls Pur↑ Phn Pur↑ PNMI↑

#01 HuBERT 7 0.154 0.639 0.630

#02 WavLM 11 0.178 0.624 0.640

#03 Data2vec 4 0.173 0.652 0.630

#04 ContentVec100 12 0.169 0.650 0.643

#05 ContentVec500 8 0.154 0.639 0.629

#06 HuBERT + Spin256 12 0.150 0.641 0.655

#07 HuBERT + Spin2048 12 0.151 0.654 0.666

#08 WavLM + Spin256 12 0.137 0.644 0.658

#09 WavLM + Spin2048 12 0.153 0.650 0.666

#10 HuBERT + SSCRL 12 0.158 0.652 0.674

#11 WavLM + SSCRL 12 0.148 0.659 0.685

#01−#09 Reported in (Chang et al., 2023).

We evaluated the performance of the SSCRL method using three metrics: Clustering Purity(Cls
Pur), Phoneme Purity(Phn Pur), and Phoneme Normalized Mutual Information(PNMI). These metrics,
proposed in HuBERT, aim to assess the quality of discrete units after model discretization. Clustering
Purity measures the extent to which each clustering result is predominantly composed of samples with a
single label. Phoneme Purity evaluates how well phoneme information is retained in audio representations
after discretization or clustering. Phoneme Normalized Mutual Information(PNMI) quantifies the overall
alignment between clustering results and phoneme categories.

The results for all three metrics are presented for the best-performing layer. We randomly selected
10 hours of data from the train-clean-100 subset of the LibriSpeech dataset and fine-tuned our models
using this subset. We then trained a K-Means clustering model with 256 clusters on the fine-tuned
representations and calculated these three metrics on the dev-clean and dev-other datasets using the
K-Means Clustering algorithm (Kodinariya et al., 2013).

As shown in Table 4, the SSCRL method achieves higher PNMI scores than other models on both our
WavLM and HuBERT models. For the Phn Pur metric, our method outperforms other models on the
WavLM model and is second only to the HuBERT + Spin2048 model on the HuBERT model. For the Cls
Pur metric, our method is competitive with the Spin model. These results clearly demonstrate that our
method effectively enhances the quality of discrete units.

3.6 Visualization of Perturbed Audio Features

We randomly selected an audio clip from the dev-other dataset, applied pitch perturbation and speaker
perturbation to it, then extracted original and perturbed audio features using both the pre-fine-tuned and
post-fine-tuning WavLM-base models. Finally, we mapped these features onto a 2D plane using Principal
Component Analysis (PCA) (Greenacre et al., 2022) dimensionality reduction algorithm, with the results
shown in Figure 2.

Figure 2(a) shows the two types of audio features extracted by our pre-fine-tuned WavLM-base model
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Figure 2: PCA visualization of raw and perturbed speech representations in 2-Dimensional space

from this audio clip, while Figure 2(b) presents the two audio features extracted by our fine-tuned model.
The figure clearly demonstrates that before fine-tuning, the original audio features and speaker perturbed
features exhibited noticeable uneven distribution in the feature space, indicating the original model’s
difficulty in distinguishing pitch perturbation and speaker perturbation features without fine-tuning. After
fine-tuning with our method, the perturbed audio features show uniformly distributed and aligned patterns
compared to the original speech features in the feature space, further demonstrating that the fine-tuned
model exhibits enhanced robustness against perturbed audio while maintaining discriminative power for
speech characteristics. This disentanglement in the feature space suggests that the model can effectively
separate domain-specific perturbations from invariant speech representations.

3.7 Visualization of Features Aligned with Phonemes

Figure 3: PCA visualization of speech representations in 2-Dimensional space

To demonstrate the efficacy of our method in feature space, we separately extracted representations using
both the pre-finetuned and post-finetuned WavLM-Base models. These representations were obtained
from the final layer of each model, subsequently processed through Principal Component Analysis
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(PCA) (Greenacre et al., 2022) for dimensionality reduction, and finally mapped to a two-dimensional
space with phoneme labels. The comparative analysis is presented in Figure 3.

As illustrated in Figure 3, panel (a) presents the representations extracted by the pre-finetuning WavLM-
Base model, while panel (b) displays those obtained from the post-finetuning counterpart. Notably,
following the application of our fine-tuning methodology, homogeneous phonemes demonstrate closer
proximity within the feature space, exhibiting tighter clustering patterns. In contrast, the non-fine-tuned
WavLM model reveals comparatively scattered phonemic representations with more disorganized spatial
distributions.

3.8 Speaker Identification Accuracy
To validate the capability of our method in disentangling speaker information representation, we conducted
an in-depth study on the speaker recognition task to assess the effectiveness of the SSCRL method in
decoupling speaker information from speech content representations. In our experiments, consistent with
the Spin approach, we utilized the last six layers of the HuBERT model to analyze speaker recognition
performance. To ensure a fair comparison, we matched the number of training steps used in Spin, training
for 50,000 steps.

Figure 4: Speaker Identification accuracy analysis on HuBERT-base model

As clearly demonstrated in Fig. 4, after fine-tuning with our SSCRL method, the recognition accuracy
of HuBERT’s final two layers drops to 11%, outperforming ContentVec500 while achieving comparable
results to Spin methods. This outcome evidences that SSCRL effectively reduces speaker information
and tone information interference in speech representations, demonstrating its effectiveness in content
representation disentanglement. Notably, these results are achieved using only the 100-hour LibriSpeech
dataset.

4 Conclusion

This paper introduces Self-Supervised Contrastive Representation Learning (SSCRL), a fine-tuning
approach that disentangles speaker information from speech content, improving semantic consistency in
content-centric tasks. SSCRL achieves competitive performance across multiple benchmarks, including
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lower WER and enhanced Intent Classification and Slot Filling accuracy, while using only 100 hours
of training data. Its strong generalization across diverse datasets such as TIMIT further highlights its
robustness. Additionally, SSCRL effectively clusters semantically similar features, validating its ability to
enhance content-specific representations.

For future work, we plan to explore advanced self-supervised fine-tuning techniques to enhance the
adaptability and performance of pre-trained models on diverse downstream tasks, pushing the boundaries
of self-supervised learning in ASR and related applications.
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Quesst2014: Evaluating query-by-example speech search in a zero-resource setting with real-life queries. In
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5833–5837.
IEEE.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in neural information processing systems,
33:12449–12460.

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. 2022. Data2vec: A general
framework for self-supervised learning in speech, vision and language. In International Conference on Machine
Learning, pages 1298–1312. PMLR.

David M Chan and Shalini Ghosh. 2022. Content-context factorized representations for automated speech
recognition. arXiv preprint arXiv:2205.09872.

Xuankai Chang, Takashi Maekaku, Pengcheng Guo, Jing Shi, Yen-Ju Lu, Aswin Shanmugam Subramanian, Tianzi
Wang, Shu-wen Yang, Yu Tsao, Hung-yi Lee, et al. 2021. An exploration of self-supervised pretrained repre-
sentations for end-to-end speech recognition. In 2021 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pages 228–235. IEEE.

Heng-Jui Chang, Alexander H Liu, and James Glass. 2023. Self-supervised fine-tuning for improved content
representations by speaker-invariant clustering. arXiv preprint arXiv:2305.11072.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda,
Takuya Yoshioka, Xiong Xiao, et al. 2022. Wavlm: Large-scale self-supervised pre-training for full stack speech
processing. IEEE Journal of Selected Topics in Signal Processing, 16(6):1505–1518.

Hyeong-Seok Choi, Juheon Lee, Wansoo Kim, Jie Lee, Hoon Heo, and Kyogu Lee. 2021. Neural analysis
and synthesis: Reconstructing speech from self-supervised representations. Advances in Neural Information
Processing Systems, 34:16251–16265.
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