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Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities in semantic under-
standing and text generation. However, when applied to downstream tasks such as Chinese
Grammatical Error Correction (CGEC), they often suffer from over-correction issues, where
grammatically correct parts are mistakenly altered. Moreover, some existing methods aim to
address over-correction in Sequence-to-Sequence (Seq2Seq) models, they are difficult to adapt
to decoder-only LLMs. To address these challenges, we propose a Chunk-based Chain of
Thought (CoT) Prompting Method. Our study is structured into three key components. Ini-
tially, we identify specific types of grammatical errors in the input sentences. Following this,
sentences are segmented into smaller chunks, and each chunk is analyzed to match the detected
error types. Ultimately, the aggregated information guides LLMs in performing localized cor-
rection within the input sentences. The experimental results have proved the effectiveness of
our method in mitigating over-correction, achieving higher F0.5 score while maintaining robust
grammatical error correction performance. This method provides innovative perspectives on em-
ploying LLMs to enhance the precision and granularity of CGEC task.

Keywords: Chinese Grammatical Error Correction , Over-correction , Chain of Thought ,
Large Language Model

1 Introduction

Input: 我的爸爸在一家厦门的公司上班,名字叫李华,所以
经常不在家。
Trans: My father works at a company in Xiamen, the name is 
called Li Hua, often not at home.

Correction

Output: 我的爸爸叫李华,在一家厦门的公司上班,他经常
不在家。
Trans: My father’s name is Li Hua and he works at a company 
in Xiamen, he is often not at home.

Trans: My father works at a company in Xiamen, the name is 
called Li Hua, he is often not at home.

Final Correction: 我的爸爸在一家厦门的公司上班,名字叫
李华,他经常不在家。

Error

Correction

Identification

Chunking 

Match
Input Output

……Type 1 75 6

Segment: My father works at a company in Xiamen, the name 

is called Li Hua, often not at home.

Segment: 我的爸爸 在一家厦门的公司上班，名字叫李华，

所以经常不在家。

Figure 1: Comparison diagram of direct correction and our method. The right part is an illustration of
addressing over-correction through chunk-based CoT prompting method. Grammatical errors and over-
correction characters are highlighted in red, correct modifications are highlighted in blue. Trans stands
for respective translations.
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Chinese Grammatical Error Correction (CGEC) focuses on identifying and correcting grammatical
errors in Chinese sentences, such as punctuation, spelling, and grammatical issues (Zhao et al., 2018),
adhering to the minimal-editing principle to produce a corrected version (Zhang et al., 2022a). CGEC is
crucial for improving translation systems, automatic proofreading tools, and language teaching (Wang et
al., 2021). The primary frameworks of CGEC include Sequence-to-Sequence (Seq2Seq) and Sequence-
to-Edit (Seq2Edit). The Seq2Seq framework treats CGEC as a monolingual translation task (Yuan and
Briscoe, 2016; Lewis et al., 2020), while the Seq2Edit framework transforms the input sentences into a
series of editing operations (Stahlberg and Kumar, 2020). Although Seq2Seq offers flexibility, it is often
susceptible to over-correction, a phenomenon where models modify parts of the sentence that were orig-
inally correct while correcting grammatical errors. In contrast, Seq2Edit provides greater precision but
necessitates the design of complex editing operations. Recently, advanced approaches have integrated
two frameworks, aiming to combine their respective advantages (Li et al., 2023a). The state-of-the-art
(SOTA) methods leverage the strengths of both Seq2Seq and Seq2Edit to enhance correction perfor-
mance.

Traditional methods based on Seq2Seq and Seq2Edit often rely on expensive labeled data for pre-
training. In contrast, decoder-only Large Language Models (LLMs) can be pre-trained on large-scale
unlabeled data, enabling them to achieve exceptional performance in CGEC task (Fan et al., 2023).
Existing research has demonstrated that when LLMs are applied to CGEC, they exhibit notable corrective
capabilities, generating revised sentences with high fluency (Li et al., 2024). However, their generation
mechanism, which prioritizes high-probability expressions by substituting low-frequency words with
more frequent alternatives, often leads to deviations from the minimal-editing principle (Qu and Wu,
2023). Specifically, this probabilistic bias causes LLMs to not only correct erroneous segments but
also unnecessarily modify correct portions of the input, resulting in over-correction. As a result, their
performance in CGEC falls short when compared to low-parameter, optimal models specifically designed
for CGEC (Li et al., 2023b). The left part of Figure 1 illustrates an example of over-correction issues
generated by LLMs. This direct correction method may over-correct or change the intended meaning,
violating the minimal-editing principles. Moreover, existing methods aim to address over-correction in
Seq2Seq models, they are often difficult to adapt to decoder-only LLMs.

To address the challenges described above, we propose a method based on chunk-based Chain of
Thought (CoT) prompting method. CoT is a reasoning process that involves breaking down complex
problems into a sequence of logical steps. The right part of figure 1 shows our Chunk-based CoT prompt-
ing method. Our method introduces a structured approach that first identifies grammatical error types in
the input sentences. It then segments these sentences into smaller, more manageable chunks, and matches
each chunk with known error categories. Finally, the model integrates the insights from the chunk-level
analysis to generate corrections, ensuring both grammatical accuracy and fidelity to the original sentence.
This allows LLMs to focus on localized errors and mitigate over-correction. Our contributions can be
summarized as follows:
• To mitigate the propensity of LLMs for over-correction when performing CGEC task, we propose

a chunk-based CoT prompting method. Experimental results on three datasets validate the effectiveness
and robustness of our method. Compared with direct correction, our method achieves higher F0.5 score
and mitigate over-correction problem. In addition, we find that LLMs perform worse in CGEC than the
traditional optimal model based on Seq2Seq or Seq2Edit, which is also worthy of further exploration.
• Our proposed prompting templates offer a novel insight for conducting CGEC, and our method is

training-free and can be applied to general-purpose LLMs. We also analyze the influence of our method
on different error types in detail. And the thorough analysis of different chunk granularity demonstrates
the role of chunking mechanism in performance improvement.

2 Related Work

2.1 Sequence-to-Sequence CGEC

CGEC has garnered significant research interest in recent years due to its importance in improving the
quality of written communication (Zhao et al., 2019). Early methods primarily focused on Seq2Seq mod-
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els, which utilize encoder-decoder architectures to transform erroneous input sequences into corrected
output sequences (Lewis et al., 2020; Zhao and Wang, 2020). These models typically rely on large-scale
datasets to learn grammatical patterns and error correction strategies. Existing optimal models also sup-
plement additional information on the basis of seq2seq (Zhang et al., 2022b). However, despite their
success, they are prone to issues such as over-correction.

2.2 Sequence-to-Edit CGEC

To address over-correction, Seq2Edit models were introduced as an improvement (Omelianchuk et al.,
2020). These models don’t generate entirely new sequences but rather predict a series of edits (inser-
tions, deletions, and substitutions) on the input sequence (Liang et al., 2020; Zhang et al., 2022a). This
approach is more targeted and reduces the risk of over-correction by focusing on minimal, precise adjust-
ments. The development of such models has led to improved accuracy in CGEC, especially in handling
complex grammatical errors in Chinese. Seq2Edit models require the design of complex editing oper-
ations, which often result in a compromise in the fluency of the generated sentences. In contrast, our
approach emphasizes localized error correction by segmenting sentences into smaller, more manageable
chunks. Each chunk is analyzed in relation to specific error types. The LLMs use the aggregated infor-
mation as a guide to generate fluent sentences. This method allows for precise error localization while
preserving high fluency in the corrected output.

2.3 Detection-Correction CGEC

Recent approaches to CGEC typically divide the task into two stages: error detection and correction.
SOTA methods combine the strengths of both Seq2Seq and Seq2Edit models to enhance correction
performance. Li et al. (Li et al., 2023a) utilize detection labels from the Seq2Edit model to construct
templates, which are then used in conjunction with a Seq2Seq model for consistency learning, thereby
improving correction accuracy. Similarly, DeCoGLM (Li and Wang, 2024)integrates both detection and
correction into a unified language model, fostering the multi-task learning capability of a single model
to enhance the overall correction effectiveness. Recent works have explored the use of CoT prompting
to enhance the performance of LLMs in generation and reasoning tasks (Lu et al., 2024). Leverag-
ing the strengths of prior approaches, we propose a CoT prompting method that executes grammatical
error correction in multiple steps. By identifying grammatical error types and performing sentence seg-
mentation, our approach achieves more precise error localization. This method effectively mitigates the
over-correction issue and enhances the overall accuracy in LLMs. Moreover, our method exhibits re-
markable universality. It can be applied to the general LLMs in a training-free way without additional
fine-tuning or training of the model.

3 Methodology

As depicted in Figure 2, we developed the Chunk-based CoT prompting method by surveying existing
prompt templates (Fang et al., 2023; Qu and Wu, 2023) and integrating our grammatical error correction
strategy. The process consists of three main stages: Grammatical Error Type Identification, Sentence
Chunking and Error Matching, and Chunk-Level Correction. Accordingly, we broadly divide the model
fine-tuning process into two stages. In stage 1, we fine-tune a classification model on the baseline to
identify the types of grammatical errors. Following this, we fine-tune the generation model to complete
CGEC in stage 2. In this section, we introduce the Chunk-based CoT prompting method proposed for
CGEC.

3.1 Grammatical Error Type Identification

The first step is to identify the types of grammatical errors present in input sentences. Consistent with
prior work on FCGEC (Xu et al., 2022), we define seven error types, as shown in Table 1, which include:
Incorrect Word Order (IWO), Incorrect Word Collocation (IWC), Component Missing (CM), Component
Redundancy (CR), Structure Confusion (SC), Illogical (ILL), and Ambiguity (AM). These error types
provide a clear framework for the model to identify and correct specific grammatical issues.
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User content 3: 

[Chunk-Level Correction]: Please correct the grammatical errors based on the results 

of identifying grammatical errors types and matching chunked sentences to error types.. 

Requirements: When correcting, you should minimize changes to the original sentences, 

provide accurate, concise, and clear correction results, and avoid unnecessary changes or 

additions to sentence structure or lexical expression. Output only the corrected sentences 

without adding any other explanations or descriptions. If there are no grammatical errors 

in the sentence, output the same sentence as the input. 

Chunk-Based CoT PromptingStandard Prompting

Identify

Grammatical 

Error Types

Correct 

Grammatical 

Errors

Grammatical Error Correction Strategy        

Response: {肯定是什么？ }{ What must it be? }

Response: {夕阳真是太美了。}{The sunset is really beautiful. }

Chunk

Match Error 

Types

System content: You are an excellent Chinese grammatical error correction model 

that corrects grammatical errors in sentences entered by users. 
User content 1: 

[Grammatical Error Type Identifications]: Please identify the type of grammatical 

errors contained in the following input sentences.

Requirements: Error types can only be the following 7 types: Incorrect Word Order

, Incorrect Word Collocation, Component Missing, Component Redundancy, Structure 

Confusion, Illogical, Ambiguity.

Input Sentence: {我的爸爸在一家厦门的公司上班，名字叫李华，所以经常不在
家。}{My father works at a company in Xiamen, the name is called Li Hua, so often not 

at home.} 

User content 2: 

[Sentence Chunking and Error Matching]: Please perform a chunking operation on 

the input sentence to obtain the chunked sentences. Conduct a two-stage analysis: first, 

validate the grammatical integrity within each chunk, and then check the consistency 

between adjacent chunks. Match these chunks to the identified grammatical error types 

and precisely locate the errors in the input sentence.

Response1: Component Missing.

Response2: The word “so” is redundant in the phrase “so often not at home”, and 

it is suggested that the subject should be clarified as “he”.

Response3: {我的爸爸在一家厦门的公司上班，名字叫李华，他经常不在
家。}{My father works at a company in Xiamen, the name is called Li Hua, he is 

often not at home.}

Prompt Template 3: You are an excellent grammatical error correction 

model. You need to identify and correct grammatical errors that may be 

contained in user-input sentences and output correct sentences. 

Requirements: When correcting, you should minimize the changes to the 

original sentences, provide accurate and clear correction results, and avoid 

unnecessary changes to sentence structure or lexical expression. Output only 

sentences without grammatical errors, without adding any other explanations 

or descriptions. If there are no grammatical errors in the sentence, output the 

same sentence as the input. 

Input: {学生做飞机去北京。}{The student makes a plane to Beijing.}

Response: {学生坐飞机去北京。}{The student takes a plane to Beijing.}

Prompt Template 1: You are a grammatical error correction tool that can 

identify and correct grammatical errors in a text. Please identify and correct 

any grammatical errors in the following sentence while keeping the original 

sentence structure unchanged as much as possible. 

Input：{肯定是什么。}{What must it be.}

Prompt Template 2: You’re a grammatical error correction system that  

modifies grammatical error in input sentences. I will provide you with a 

sentence that may contain grammatical errors. Please correct the possible 

grammatical errors and output the modified sentence in the format of 

“<output> XXX</output>”. It requires as few modifications as possible to 

preserve the original structure and semantics of the sentence. The wrong 

sentence is:{夕阳真是太没了。}{The sunset is really gone.}

Figure 2: An illustration of standard prompting and our chunk-based CoT prompting.

In Stage 1, the focus is on optimizing the classification task. We employ the binary cross-entropy loss
function and save the model parameters upon completion of training.

ŷi = σ(zi) =
1

1 + e−zi
(1)

where zi is the original output of the ith error type, ŷi is the predicted probability, and σ is the Sigmoid
function.

Lclassify = −
C∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)] (2)

where C is the number of error types, and yi is the label of the class i error. Specifically, we use the
LoRA technique in LLaMA-Factory (Zheng et al., 2024) to accomplish supervised fine-tuning.

3.2 Sentence Chunking and Error Matching

Building upon the error type identification, we implement a chunking mechanism. To ensure the coher-
ence of the step-by-step reasoning in LLMs, we employ a segmentation driven by LLMs themselves to
decompose the input sentences into syntactically coherent units. Each chunk is analyzed through two
stages: internal validation to ensure grammatical correctness within local contexts, and external con-
sistency checking to evaluate the logical coherence between adjacent segments. These help reduce the
complexity of syntactic dependencies and enables the model to more effectively address localized error
patterns.

After chunking, each segment is matched with its corresponding error type. This pairing allows the
model to address specific errors by limiting the scope of modifications, thereby minimizing the risk of
over-correction.

3.3 Chunk-Level Correction

In Stage 2, the emphasis shifts to optimizing the grammatical error correction task. Here, we utilize the
cross-entropy loss function for the generation task. To maintain the integrity of the classification task,
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Type Example

IWO
全场职工讨论并听取了意见。

The entire staff discussed and listened to the comments.
Tips: listen to the comments first and discuss it later.

IWC
我达到了很大的进步。

I reached a lot of progress.
Tips: ”progress” should be combined with ”make”.

CM
常说劳逸结合。

Often say work and rest combine.
Tips: Lack of subject ”The people”.

CR
时间大约过去了20分钟左右。
Time has passed about 20 minutes or so.
Tips: ”about” and ”or so” are redundant.

SC

交通事故发生的原因是开车看手机造成的。

Traffic accidents are caused by (because) looking
at cell phones while driving.
Tips: the structure of ”because” and ”caused by” cannot
appear together in one sentence.

ILL
我们应该防止事故不发生。

We should prevent accidents from not occurring.
Tips: double negation causes illogical errors.

AM
我们要把水留给晚上来的人。

We need to keep the water for those who come up later/at night.
Tips: there is an ambiguity about when the person came.

Table 1: Examples and illustrations of different grammatical errors types.

we freeze its parameters and only train the parameters related to the generation task.

Lgenerate = −
T∑
t=1

logP (yt|y < t) (3)

where T is the length of the target text, yt is the target word element, and P (yt|y < t) represents the
probability of model generating the current word yt given the preceding context y < t.

We optimize only one task at each stage to avoid conflicts between task objectives. The classification
and generation tasks have distinct optimization goals, and training them separately eliminates the need
for complex hyperparameter tuning that would be required in joint training.

4 Experiments

4.1 Dataset and Evaluation
For dataset, we follow the previous work. We employ a combination of the FCGEC train set (Xu et al.,
2022), the Chinese Lang8 dataset (Zhao et al., 2018) and the HSK dataset (Zhang et al., 2022a) as our
training set. We utilize MuCGEC dev (Zhang et al., 2022a), FCGEC dev and NaCGEC dev (Ma et al.,
2022) as our development sets. The models are evaluated on NLPCC18 test (Zhao et al., 2018), FCGEC
test and NaCGEC test. It is worth noting that we randomly selected 1000 data samples from the FCGEC
dev to serve as the test set for subsequent experimental validation. The detailed dataset description is
shown in Table 2.

We evaluate models’ performance with Precision, Recall, and F0.5 score (F0.5) from word-level and
character-level respectively. The F0.5 metric assigns greater weight to precision, thus prioritizing the
precision of corrections. We adopt the official implementation of MaxMatch (M2) (Dahlmeier and
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Dataset Source #Sentences Usage
FCGEC train Native 36341 Fine-tuning (Stage 1)

HSK Learner 156870 Fine-tuning (Stage 2)
Lang8 Learner 1220960 Fine-tuning (Stage 2)

MuCGEC dev Learner 2467 Validation
FCGEC dev Native 1000 Validation

NaCGEC dev Native 500 Validation
NaCGEC test Native 5869 Testing
NLPCC18 test Learner 2000 Testing
FCGEC test Native 3000 Testing
FCGEC dev Native 1000 Testing

Table 2: Statistics of the CGEC datasets used in this paper.

Ng, 2012) scorer to calculate word-level F0.5 score on NLPCC18 test and choose PKUNLP as our
word segment tool. We apply ChERRANT tool (Zhang et al., 2022a) to report character-level metric
calculation for FCGEC test and NaCGEC test.

4.2 Model settings

Previous models BART is a Seq2Seq model based on Transformers architecture (Vaswani et al., 2017).
GECToR is an efficient Seq2Edit system based on Transformer encoder (Omelianchuk et al., 2020).
SynGEC (Zhang et al., 2022b) incorporates syntax information into Seq2Seq models. TemplateGEC (Li
et al., 2023a) uses the output of the GECToR model as supplementary information for Seq2Seq models.
Chunk-CoT represents our chunk-based CoT prompting method.
Resource-restricted LLMs LLaMA3-8B-Chinese (LLaMA3-8B), the latest instruction fine-tuning gen-
eration models, is chosen as the baseline model. Baichuan2-7B has surpassed most open-source models
in benchmarks for language generation and coding. We choose Baichuan2-7B (Yang et al., 2023) as the
baseline model.
General-Purpose LLMs We selected the GPT-4o mini model, which features a parameter size of ap-
proximately 8 billion, and the DeepSeek-V2.5 model, which has a substantial parameter count of ap-
proximately 236 billion. For evaluation, we utilized the respective API interfaces, setting the maximum
token limit to 1024 and employing the generation temperature of 0.7.

4.3 Main Results

The main results are presented in Table 3. We observe that, by comparing against the baseline fine-tuning
models, the Chunk-CoT method achieves an improvement in F0.5 scores across all datasets. Notably, the
application of the Chunk-CoT method significantly enhances the grammatical error correction perfor-
mance of models, irrespective of whether they are resource-constrained large models or general-purpose
large models. This demonstrates the effectiveness and robustness of our approach. Besides, the substan-
tial improvement in precision across diffierent datasets indicates the efficacy of our method in mitigating
the over-correction issue prevalent in LLMs. Our method results in a slight decrease in Recall, a common
trade-off in CGEC task (Ng et al., 2014), as incorrect corrections are generally more detrimental than
omissions. Further analysis regarding the effect of Chunk-CoT on reducing over-correction is presented
in Section 5.1.

Additionally, several intriguing observations have been made. While Chunk-CoT prompting improves
performance, decoder-only LLMs such as Baichuan2-7B and LLaMA3-8B still fall short of BART, pri-
marily due to BART’s specialized pre-training on denoising tasks—including token masking, deletion,
and text infilling that inherently aligns with grammatical error correction. Although Chunk-based CoT
underperforms traditional models on certain test sets, it effectively mitigates over-correction and en-
hances accuracy without requiring complex fine-tuning, thereby demonstrating practical adaptability and
value for real-world CGEC applications. Secondly, the degree of improvement varies across different
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Model Methods
NLPCC18 test FCGEC test NaCGEC test

Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

Previous Models
GECToR - - - - 46.11 34.35 43.16 - - -

BART - 48.80 33.50 44.70 38.38 37.62 38.23 50.95 31.29 45.26
SynGEC - 49.96 33.04 45.32 - - - 51.45 39.69 48.57

TemplateGEC - 54.50 27.40 45.50 - - - - - -
Resource-restricted LLMs

LLaMA3-8B
Fine-tuning 46.41 27.86 40.96 42.87 30.12 39.52 60.86 30.14 50.55
+Chunk-CoT 48.19 28.28 42.24 45.76 27.73 40.49 63.54 29.72 51.76

Baichuan2-7B
Fine-tuning 51.43 28.09 44.10 43.86 39.88 43.00 61.72 44.00 57.12
+Chunk-CoT 52.17 27.79 44.38 46.21 36.94 44.00 63.46 44.78 58.57

General-Purpose LLMs

GPT-4o mini
Zero-shot 25.76 26.95 25.99 18.39 14.81 17.54 11.75 11.42 11.68
Chunk-CoT 26.95 27.42 27.04 22.62 12.64 19.54 14.43 11.63 13.77

DeepSeek-V2.5
Zero-shot 30.23 31.56 30.49 21.29 20.81 21.19 16.43 16.33 16.41
Chunk-CoT 36.76 29.99 35.17 23.67 19.46 22.69 19.16 15.29 18.24

Table 3: Main results on NLPCC18 test, NaCGEC test, and FCGEC test. The results of previous model
experiments are cited from the original text. The best performance in each set of experiments is high-
lighted in bold.

models when employing Chunk-CoT. Baichuan2-7B consistently outperforms LLaMA3-8B, likely due
to the distinct capabilities they acquire through pre-training. Lastly, there are variations in performance
for the same model across different datasets, which may correlate with the scale, difficulty, and character-
istics of the datasets. For instance, DeepSeek-V2.5 exhibits superior performance on the NLPCC18-Test
dataset compared to other datasets. This may be attributed to the fact that the dataset originates from
learners, a characteristic that closely aligns with the model’s capabilities.

5 Analysis

5.1 Over-correction Mitigation

Figure 3: Comparison of F0.5 for seven grammatical error types on the FCGEC dev using DeepSeek-
V2.5.

To further verify the effectiveness of Chunk-CoT in mitigating over-correction, we use DeepSeek-
V2.5 as the backbone and present fine-grained F0.5 results across the seven categories of CGEC errors
in Figure 3. We present in Table 4 the number of over-corrections and under-corrections that Chunk-CoT
reduces on diffierent error types.

The results depicted in Figure 3 show that Chunk-CoT method outperforms the Zero-shot in terms of
F0.5 scores across most error types. Notably, the most significant improvements are observed in IWO
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Type
#Over-corrections / #Under-corrections

Zero-shot Chunk-CoT
IWO 76 / 107 45(-40.7%)/ 101
IWC 156 / 154 153(-1.9%)/ 165
CM 238 / 169 193(-18.9%)/ 166
CR 95 / 83 68(-28.4%)/ 74
SC 190 / 161 148(-22.1%)/ 150
ILL 128 / 142 120(-6.3%) / 148
AM 38 / 38 38(0%)/ 42
ALL 921 / 855 765(-16.9%)/ 847

Table 4: Using DeepSeek-V2.5, Chunk-CoT reduced the number of over-corrections and under-
corrections for different error types on FCGEC dev compared to Zero-shot.

and CR. However, for IWC errors, the F0.5 of Chunk-CoT is lower than that of Zero-shot. This may
be attributed to the fact that IWC errors require a deeper understanding of context, which Chunk-CoT
fails to fully leverage, resulting in reduced performance. The results in Table 4 further demonstrate that
Chunk-CoT effectively reduces the number of over-correction without deteriorating under-correction.
These findings support the effectiveness of Chunk-CoT in mitigating over-correction induced by LLMs
and enhance its robustness across different error types.

5.2 Ablation Study

Method
NLPCC18 test NaCGEC test

Precision Recall F0.5 Precision Recall F0.5

Baichuan2-7B
Fine-tuning 51.43 28.09 44.10 61.72 44.00 57.12

w/o Chunking Mechanism 51.88 27.62 44.13 63.40 43.65 58.14
w/o CoT Prompting 51.47 27.93 44.05 62.43 44.53 57.78
Chunk-CoT(ours) 52.17 27.79 44.38 63.46 44.78 58.57

DeepSeek-V2.5
Zero-shot 30.23 31.56 30.49 16.43 16.33 16.41

w/o Chunking Mechanism 33.24 32.64 33.12 17.83 15.78 17.38
w/o CoT Prompting 30.89 30.48 30.81 16.77 15.77 16.56
Chunk-CoT(ours) 36.76 29.99 35.17 19.16 15.29 18.24

Table 5: Ablation Experiment results.

To assess the contributions of key components within our proposed method, we conduct ablation stud-
ies using DeepSeek-V2.5 and Baichuan2-7B models on the NLPCC18 test and NaCGEC test datasets.
We defined ”w/o chunk” as the application of the identification-correction CoT approach without in-
corporating the chunking operation on the input sentences. Conversely, ”w/o CoT” refers to the direct
correction of input sentences after chunking, without employing the CoT method. The experimental
results are presented in Table 5.

Our results indicate that eliminating either chunking mechanism or CoT prompting leads to a decline in
correction performance. Notably, the absence of CoT has a more substantial negative impact, indicating
its pivotal role in enhancing the correction capabilities of our approach. Optimal model performance is
achieved when both components are integrated.

5.3 Impact of Chunking Granularity

To assess the influence of chunking granularity on CGEC performance, we conduct experiments em-
ploying different chunking strategies. We evaluated four configurations: no chunking, phrase-based
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Chunk Granularity
NLPCC18 test NaCGEC test

Precision Recall F0.5 Precision Recall F0.5

No Chunking 33.24 32.64 33.12 17.83 15.78 17.38
Phrase-based Chunking 31.62 29.94 31.27 15.58 14.97 15.45

Punctuation-based Chunking 34.72 31.25 33.97 18.12 16.49 17.77
LLMs-driven Chunking 36.76 29.99 35.17 19.16 15.29 18.24

Table 6: Effect of different chunking granularities on correction performance

chunking, punctuation-based chunking, and LLMs-driven chunking, where LLMs autonomously seg-
ment sentences. For phrase-based chunking, we implemented segmentation using the jieba tool 1 based
on phrase rules.

The results presented in Table 6 indicate that the LLMs-driven chunking approach achieves the best
performance across both test sets, demonstrating its ability to dynamically segment sentences based
on contextual and semantic cues. This context-aware strategy effectively mitigates over-correction, a
limitation observed in the no-chunking baseline, which processes entire sentences as single units and
consequently exhibits average performance. In contrast, phrase-based chunking underperforms, likely
due to mismatches between its rigid segmentation strategy and the diverse structures in the test data.
While punctuation-based chunking shows moderate improvements, its reliance on surface-level cues
limits adaptability. The LLMs-driven method accurately identifies syntactic and semantic boundaries,
producing coherent chunks that enhance grammatical error correction. These findings underscore the
critical role of adaptive chunking mechanisms in optimizing LLM-based CGEC systems, as they balance
segmentation flexibility with grammatical integrity.

6 Conclusion

To address the over-correction issue of LLMs in CGEC, we propose a chunk-based CoT prompting
method. By integrating chunking mechanism and CoT into LLMs, our method enables models to cor-
rect step-by-step, thereby achieving accurate error localization and localized correction. Experimental
results across diverse datasets and LLMs demonstrate that enhanced LLMs effectively mitigate over-
correction issues while achieving higher precision, thereby validating the effectiveness and robustness
of our method. Detailed analyses further illustrate the effectiveness of our method across different error
types and highlight the role of chunking in performance improvement. Our proposed method provides a
novel insight to leveraging LLMs for fine-grained correction, which can be directly applied to general-
purpose LLMs in a training-free manner.

However, our approach also has certain limitations. First, our method is language-independent and can
be generalized to other languages. Second, identifying error types and performing chunking introduces
additional training costs and inference time. Third, our study only explores a limited number of currently
available LLMs. Although our method improves the correction performance of LLMs, it still lags behind
the SOTA Seq2Seq models with fewer parameters. In future work, we will continue to explore ways to
enhance the performance of LLMs in CGEC.
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