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Abstract

Large language models (LLMs) have become integral components of various AI solutions, with
the reinforcement learning from human feedback (RLHF) stage playing a critical role in align-
ing model outputs with human preferences. However, generating the human preference data
required for RLHF is often costly and time-consuming due to its reliance on human evaluation.
This study addresses this challenge within the dialogue scenarios of the fintech industry. We
leverage rich, non-confidential, multi-turn dialogue data, such as call center dialogue records,
which include associated business metrics (e.g., problem-solving rates, turnover ratios) to con-
struct preference-aligned data. We introduce Self-Preference, an automated method for creating
preference-aligned data guided by these objective business metrics. The approach involves clus-
tering dialogue histories based on their semantic representations and calculating a well-designed
conditional probability ratio that correlates sequences with business metrics to generate prefer-
ence data. In contrast to traditional preference alignment data generation methods that depend on
subjective human evaluations, Self-Preference significantly reduces labeling costs and mitigates
model-induced biases. Experimental results indicate that models trained with Self-Preference
generated data demonstrate a strong positive correlation with target business metrics, highlight-
ing the method’s effectiveness in facilitating efficient, goal-oriented alignment of LLMs.

1 Introduction

Large language models (LLMs) have rapidly evolved, becoming essential components in both profes-
sional environments and daily life (Ray, 2023). Chat models represent one of the most successful ap-
plications of LLMs. They follow human instructions, engage in seamless multi-turn conversations, and
assist with a variety of practical tasks, such as customer service (Shi et al., 2024), business analysis
(Cheung, 2024), and code generation (Tong and Zhang, 2024). These capabilities stem from funda-
mental language abilities and the post-training period that involves extensive supervision and preference
alignment for the LLMs. LLMs training typically involves three stages: pre-training (PT), supervised
fine-tuning (SFT), and reinforcement learning with human feedback (RLHF) (Ouyang et al., 2022). Af-
ter the RLHF stage, the model’s outputs are better aligned with human preferences, such as being safer
and more honest, compared to the outputs from previous stages.

In the RLHF stage, the training data consists of preference-aligned data, which differs from the SFT
stage where only positive training data are required. The data format for RLHF requires two or more
different outputs for each given instruction and input: the chosen outputs and the rejected ones. The
chosen output aligns with human preferences; thus, the training objective in this stage is to ensure that
the model’s output aligns as closely as possible with the chosen output. Utilizing preference-aligned
data, the RLHF stage employs advanced alignment methods such as PPO (Schulman et al., 2017), DPO
(Rafailov et al., 2023), ORPO (Hong et al., 2024) and SimPO (Meng et al., 2024) for model training.
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Figure 1: A high-level overview of Self-Preference. Firstly, we cluster the dialogue history for both
customer and agent roles separately. Next, we calculate the Conditional Probability Ratio based on
cluster sequences and business metrics. Finally, turn-level preference alignment data are constructed
automatically.

The quantity, quality, and diversity of preference-aligned data are crucial to the model’s effectiveness.
However, acquiring such data typically requires a large-scale annotation effort by humans, involving pro-
cesses such as drafting annotation guidelines, conducting quality checks during the annotation process,
and consolidating data afterward. Overall, it is an expensive and resource-intensive project, which is
often classified as a systems engineering project.

In the fintech industry, there is a growing demand for AI assistants to reduce repetitive human tasks
while maintaining work quality and business output. As LLMs continue to advance, many personalized
communications and services can now be tailored to be performed by AI agents. A wealth of business
contexts, such as dialogue records between human agents and customers, has been gathered in the call
center. This dataset provides an essential resource for developing language models tailored to specific
domains. It includes typical scenarios such as marketing, debt collection, and customer service interac-
tions. These interactions feature multiple exchanges between the human agent and the customer. Initially,
the conversations are recorded as audio files and then transcript into text, where they are saved as a dia-
logue history corpus. Additionally, each conversation is associated with business metrics, including call
conclusions like ”customer not interested” or ”customer will repay”, and performance indicators like
”following login” or ”problem solved”.

In this work, we introduce Self-Preference, an automatic LLMs preference alignment data construc-
tion method guided by business metrics in multi-turn dialogue scenarios (see Figure 1). Firstly, we
separate the dialogue corpus into two participating roles, ”agent” and ”customer” and perform clustering
on them, respectively. Next, for each dialogue in the corpus, we map the clusters back to the original
dialogue content, resulting in a mutual-interactive cluster sequence that serves as an abstract represen-
tation of the dialogue. The conditional probability ratio (CPR) is defined and calculated based on the
cluster sequences and the business metrics. Finally, we use the CPR to automatically generate preference
alignment data. As far as we know, this is the first work to propose an automatic construction method for
preference alignment data guided by business metrics in multi-turn dialogue scenarios. Meanwhile, the
overall solution is simple and reliable, avoiding the subjectivity of human evaluation and the influence
of inherent biases in other large language models, thereby saving a significant amount of human labeling
costs. Furthermore, the selection of preference data is strictly based on objective indicator performance,
and the model output after the preference data alignment training demonstrates a strong positive correla-
tion with the final business metrics.
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In summary, our contributions are outlined as follows:

1. We propose Self-Preference, a pioneering automatic construction method for RLHF alignment
guided by business metrics in multi-turn dialogue scenarios. Without the need for additional as-
sistance, this method only takes three steps, i.e., role-separated clustering, CPR calculating, and
preference data construction. More importantly, these preference data are oriented by business met-
rics, ensuring their consistency with business goals.

2. We conducted comprehensive comparisons between the performance of SFT and RLHF in inter-
nal real dialogue datasets and public simulated dialogue dataset as well, which consists of cus-
tomer service and marketing business scenarios. Extensive analysis shows that RLHF consistently
outperforms SFT across different evaluation metrics in each scenario. This result indicates that
Self-Preference boosted the alignment between the RLHF outputs and the business metric, thereby
augmenting the model’s practical applicability in business-related scenarios.

3. We will release multi-turn dialogue data simulating a marketing scenario in the fintech industry (it
can be found at https://github.com/FinVolution/Self-Preference). For gener-
ating each dialogue, a topic is randomly selected firstly based on the predefined topic distribution,
which is consistent with a real business scenario. Then, Qwen2.5-72B-Instruct (Yang et al., 2024)
shifts mutually between the agent role and the customer role, participating in multiple rounds of
interactive conversations guided by the dialogue topic. Finally, the value of the business metric is
assignment according to a probability model, which also follows the real business scenario. Fol-
lowing the publication of the paper, we’ll make the data available on our official GitHub repository.

2 Related Work

Multiple approaches are proposed to automate the generation of training data for both the SFT and RLHF
phases.

During the SFT phase, several methods have enabled the automatic generation of vast amounts of in-
struction data. SELF-INSTRUCT (Wang et al., 2022) improves the instruction-following capabilities of
LLMs by bootstrapping the pipeline. Starting with a small seed set as a task pool, SELF-INSTRUCT asks
an off-the-shelf LLM to generate instructions and corresponding examples. After filtering out ineffective
or redundant samples, the remaining samples are added back to the task pool. Without human-written
instruction seeds, based on structured and unstructured unsupervised data, SELF-QA (Zhang and Yang,
2023) first employs the LLM-generated instructions and then generates the corresponding answers by
utilizing the LLM again. GenQA (Chen et al., 2024b) generates large-scale instruction datasets with
minimal supervision using a single prompt, allowing LLMs to autonomously create diverse instruction
examples ranging from simple tasks to complex, multi-turn dialogues. MAGPIE (Xu et al., 2024), as
a self-synthesis method, takes advantage of the auto-regressive nature of aligned LLMs. It generates
large-scale user queries in aligned datasets by providing only pre-query templates, then prompting the
LLM to generate the response.

During the RLHF phase, the SELFEE (Kim et al., 2024) enhances the alignment of the LLM by repeat-
edly generating responses and refining the model with the self-generated preference data through iterative
learning, based on a minimal amount of human-labeled seed preference data. SAFER-INSTRUCT (Shi
et al., 2023) leverages reversed instruction tuning, instruction induction, and expert model evaluation
to generate high-quality preference data without human annotators. Overall, current approaches to au-
tomatically constructing preference alignment data often depend on additional aids, such as initializing
with seed data or relying on the support of expert large models, and involve the training of models,
which incurs extra resource requirements. Particularly, it is worth noting that the preference alignment
data generated by these methods are samples without dialogue context, meaning that the instruction part
only contains the current description, without taking into account the dialogue history that has occurred
in previous turns of the conversation.
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3 Definitions and Method

The process details of Self-Preference consist of three steps: (1) role-separated clustering, (2) conditional
probability ratio calculation, and (3) automatic preference data construction. This pipeline is depicted in
Figure 1.

3.1 Role-separated clustering

A corpus of dialogues ⟨s⟩ ≜ {si}, i = 1, 2, · · · ,m, along with the corresponding business metrics, is
essential to carry out Self-Preference. Each multi-turn dialogue is a so-called session, denoted by si:

si = (r1i , u
1
i , r

2
i , u

2
i , . . . , r

j
i , u

j
i , . . .)

where rji and uji denote the response and utterance, respectively, with the turn order indicated by super-
script j. From all si in ⟨s⟩, we collect the responses and utterances to form a response set ⟨r⟩ = {rji }
and an utterance set ⟨u⟩ = {uji}, and clustering is carried out on both ⟨r⟩ and ⟨u⟩, respectively.

To enhance the multi-dimensional representation of the response or utterance, we integrate literal and
semantic representations to achieve vectorized representation.

a) Literal representation
Literal representation involves selecting fine-grained features from the text, such as using Term

Frequency-Inverse Document Frequency (TF-IDF) (Ramos, 2003) as a feature, and incorporating n-
gram information to account for word order. Finally, Principal Component Analysis (PCA) (Abdi and
Williams, 2010) is applied to reduce the dimensionality of the vectors.

b) Semantic representation
To compute the semantic features of the text, open-source vectorization models like BGE Embedding

(Chen et al., 2024a) are utilized for semantic vectorized representation.
The two representations above are concatenated to form the final representation of the responses or

utterances.
To accommodate various application scenarios, clustering algorithms like hierarchical clustering

(Murtagh and Contreras, 2012) or Single-pass clustering (Shahrivari and Jalili, 2016) are suitable, as they
do not necessitate pre-specifying the number of clusters. Following the clustering process, we have dis-
tinct results for the grouping of both the responses and the utterances. Once the clustering was completed,
we ended up with two separate clusters, ⟨R⟩ = {R0, R1, . . . , R|R|} and ⟨U⟩ = {U0, U1, . . . , U|U |},
respectively. For a specific session si, each utterance uji (or response rji ) is associated with its cluster
label U j

i (or Rj
i ), where U j

i ∈ ⟨U⟩ (or Rj
i ∈ ⟨R⟩). The session si is abstracted into a cluster label

sequence:

si = (r1i , u
1
i , r

2
i , u

2
i , . . . , r

j
i , u

j
i , . . .)

⇒
Si = (R1

i , U
1
i , R

2
i , U

2
i , . . . , R

j
i , U

j
i , . . .)

where Si is the nominal representation of si. With the above abstraction operation, ⟨S⟩ = {Si} is
automatically converted into a dataset with m samples, each of which is a sequence of discrete labels.

3.2 Conditional Probability Ratio calculating

As described in the previous section, for each si, r
j
i or uji is replaced with the clustering category they

belong to, we obtain the substituted Si. We associate Si ∈ ⟨S⟩ with a binary variable Yi as the business
metric of Si. Figure 2 illustrates the dialogue history corpus, using a tree structure where each node
represents a clustering category. The path from the root node to a leaf node signifies a complete dialogue.
At the leaf nodes, the binary values {0, 1} indicate the business metric.

For Si, let Ht
Rj

i

= (Rj−t
i , U j−t

i . . . Rj−1
i , U j−1

i ) be the previous t turns of dialogue context (i.e.,

conditional sequence) for the j-th turn agent response Rj
i . The set of all previous t turns of dialogue
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Figure 2: Dialogue history corpus represented by clusters and business metrics. Rj
r and U j

u are agent
response and customer utterance clusters respectively. 0/1 indicate the business metric. Hh is the condi-
tional sequence and Rr is the target response.

history for the response set ⟨R⟩ is denoted as Ht = {Ht
Rr

|Rr ∈ ⟨R⟩}.∀Hh ∈ Ht, the success rate of
Hh is defined as:

V (Hh) =
n{Hh|Hh⊆Si,Yi=1}mi=1

n{Hh|Hh⊆Si}mi=1

where n{Hh|Hh⊆Si,Yi=1}mi=1
is the total number of sessions that contain Hh and for which Yi = 1.

n{Hh|Hh⊆Si}mi=1
represents the total number of sessions that include Hh.

∀Rr ∈ ⟨R⟩, the success rate of V (Rr, Hh) is defined as:

V (Rr, Hh) =
n{Hh|Hh∈Ht

Rr
, Rr⊆Si,Yi=1}m

i=1

n{Hh|Hh∈Ht
Rr

, Rr⊆Si}m

i=1

where n{Hh|Hh∈Ht
Rr

, Rr⊆Si,Yi=1}m

i=1

denotes the total number of sessions that encompass Rr, with the

dialogue history of the previous t turns being Hh, and for which Yi = 1. n{Hh|Hh∈Ht
Rr

, Rr⊆Si}m

i=1

is the

total number of sessions that include Rr, with the dialogue history of the previous t turns being Hh.
Accordingly, the Conditional Probability Ratio CPR(Rr, Hh) can be defined as:

CPR(Rr, Hh) =
V (Rr, Hh)

V (Hh)

The definition outlined above indicates that CPR is determined by the ratio of two fractions. For each
Rr, a specific CPR(Rr, Hh) can be computed, with a higher value implying a greater contribution
made by Rr to the improvement of business metrics.

3.3 Automatic preference data construction
Following the definition of the CPR(Rr, Hh), we can automatically create the preference alignment
data for the j-th turn using t turns of dialogue context, as illustrated in Figure 3.

Suppose that the j-th turn agent response of si is rji , which belongs Rj
i ; the t turns dialogue context

is Cj,t
i = (rj−t

i , uj−t
i , . . . , rj−1

i , uj−1
i ), and the corresponding substituted clustering category is Ht

Rj
i

=

(Rj−t
i , U j−t

i . . . Rj−1
i , U j−1

i ).
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Figure 3: The j-th turn preference alignment data construction in si. Under the premise of t turns
dialogue Context, rji is defined as the Chosen. For Rejected, we first determine Rrejected category,
then randomly select a response from Rrejected as Rejected.

Given Cj,t
i within the multi-turn scenario, we first define rji as the Chosen. Then the Rejected is

constructed as follows.
For Ht

Rj
i

, we first build the target candidate set ⟨R⟩cand = {Rc|Rc ∈ ⟨R⟩, Ht
Rj

i

∈ Ht
Rc
}, then compute

CPR(Rc, H
t
Rj

i

) for all Rc in ⟨R⟩cand, finally we choose the target category with a lower conditional

probability ratio than CPR(Rj
i , H

t

Rj
i
) and the minimal difference in this ratio as Rrejected.

Rrejected = argmin
Rc

{
CPR(Rj

i , H
t
Rj

i

)− CPR(Rc, H
t
Rj

i

)
}

s.t. Rc ∈ ⟨R⟩cand,
CPR(Rc, H

t
Rj

i

) < CPR(Rj
i , H

t
Rj

i

)

By randomly selecting a response rrejected from Rrejected, we can automatically create a preference
alignment sample that includes t turns of dialogue context.


Context = Cj,t

i

Chosen = rji
Rejected = rrejected

After processing all si in ⟨s⟩ using the above pipeline, we can obtain the complete set of the preference
alignment dataset.

4 Experiments

This section systematically presents the experimental configurations employed in the study. We first
apply Self-Preference to both our internal real and public simulated dialogue datasets, which consist of
different business scenarios. Then, the effectiveness of Self-Preference in enhancing model alignment is
demonstrated based on human ratings and LLM-as-a-Judge (Zheng et al., 2023) evaluation metrics.

4.1 Datasets
The entire dataset comprises internal real and public simulated dialogue datasets. The internal real
dataset pertains to our actual business, which centers around marketing and customer service scenarios.
The public simulation dataset focuses on a marketing scenario. In a customer service scenario, the
business metric is self-service, indicating that the user did not request a transfer to manual service during
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the current session. In a marketing scenario, the business metric is ”following login” which reflects the
user logging into the app after the session concludes.

Qwen2.5-72B-Instruct is employed to generate a publicly accessible simulation dataset via role-
playing (Shanahan et al., 2023). The model alternates between the roles of an agent and a customer,
engaging in multiple rounds of interactive dialogue. To create a diverse dataset that better reflects actual
business situations, we first determine the dialogue topic by randomly sampling from predefined topics
for each simulated dialogue. Then, Qwen2.5-72B-Instruct iteratively assumes both the agent and cus-
tomer roles to engage in multi-turn interactions guided by the topic. The sampling distribution of both
the topic and the business metric for each simulated dialogue is consistent with real business scenarios.
The detailed simulation dataset collection process is outlined in Appendix A.1.

Table 1 presents the statistics for two dialogue datasets, which encompass the total number of sessions,
average turns, average utterance length (in tokens), average response length (in tokens), and the business
metric Yi = 1 rate across different scenarios.

Table 1: Statistics of internal real and public simulated datasets in marketing and customer service sce-
narios.

Category Scenario # of ses-
sions

Ave. turns Ave. utter-
ance length
(in tokens)

Ave. re-
sponse
lengths (in
tokens)

Business
metric
Yi = 1 rate

Internal real
Customer
service

15596 6.3 11.4 27.0 0.78

Marketing 7140 7.7 8.1 41.9 0.4
Public sim-
ulated

Marketing 2943 6.7 10.0 24.4 0.4

For both categories and different scenarios, the dataset was partitioned into training, validation, and test
sets with an approximate 8:1:1 ratio. Next, we apply the Self-Preference pipeline to construct preference
alignment data utilizing the training set. Number of dialogue context turns t is set to 3. Overall, the total
number of samples for each training stage after processing is shown in Table 2.

Table 2: The total number of training samples for each training stage.

Category Scenario Training stage # of samples

Internal real
Customer service

SFT 12476
RLHF 8044

Marketing
SFT 5712
RLHF 5426

Public simulated Marketing
SFT 2354
RLHF 2045

4.2 Experiment Setups

Baselines
We leverage the recently published Qwen2.5-14B-Instruct (Yang et al., 2024) model as the SFT back-

bone model. After supervised fine-tuning, we name the trained model SP-SFT. For the preference RLHF
training, DPO and ORPO methods are utilized. As DPO is stable (Rafailov et al., 2023) and ORPO
requires low computational resources (Hong et al., 2024). We designate the preference-aligned model
as SP-RLHF-DPO and SP-RLHF-ORPO, respectively. For SP-RLHF-DPO, SP-SFT serves as the ini-
tial model. We compare the performance of SP-RLHF-DPO/ORPO with that of SP-SFT under different
scenarios, using the corresponding evaluation metrics (see below).
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Evaluation metrics
Consider both subjective and objective perspectives; human evaluation and LLM-as-a-judge are per-

formed to assess alignment performance.

Overall, different scenarios have distinct evaluation criteria. The customer service scenario features
criteria focusing on problem-solving and minimizing ”transfer to human” requests, while the market-
ing scenario utilizes criteria such as conversion efficiency and objection handling. Additionally, both
customer service and marketing scenarios share criteria user satisfaction, along with others, including
context memory, information integration, response coherence, and efficiency.

For each session si in the test sets, we generate each turn’s response given the condition of dialogue
Context, similar to the preference alignment data construction process. Subsequently, senior business
expert evaluators and LLM-as-a-judge score each turn of the generated response. Moreover, LLM-as-a-
judge assessed every sample within the test set, while senior business expert reviewed a random selection
of 300 dialogues from the same test set. The average of these scores constitutes the overall rating for
each si. The detailed prompt template we used for LLM-as-a-judge can be found in Appendix A.2.

Implementation details
We fine-tuned SP-SFT and SP-RLHF-DPO/ORPO with LoRA (Low-Rank Adaptation) (Hu et al.,

2022), a parameter-efficient fine-tuning method on an A100 GPU. Both models are trained for three
epochs with the AdamW torch optimizer and a cosine learning rate scheduler with a warm-up phase
corresponding to 10% of the total training steps, with initial learning rates of 1e-4 and 5e-6 for SP-
SFT and SP-RLHF-DPO/ORPO, respectively. For the hyperparameter β/λ for DPO/ORPO, we use a
fixed value of 0.1. For LoRA hyperparameters, we first specify all linear modules as target modules
to apply LoRA. Regarding the LoRA rank hyperparameter, values of 8, 16, and 32 are evaluated on
the validation dataset, and the best-performing checkpoint is selected. All experiments were conducted
under LlamaFactory (Zheng et al., 2024) framework.

5 Results

This section illustrates the effectiveness of SP-RLHF-DPO/ORPO compared to the baseline SP-SFT
approach across different scenarios and several key evaluation dimensions.

For the marketing scenario, as demonstrated in Table 3 for the internal real dataset and the public
simulated dataset, SP-RLHF-DPO/ORPO consistently outperforms SP-SFT across all measured criteria.
SP-RLHF-DPO and SP-RLHF-ORPO have roughly the same performance. Specifically, in internal real
scenario, both SP-RLHF-DPO and SP-RLHF-ORPO achieves a Memory and consistency metric score
of 6.46, representing a 23.5% relative improvement over SP-SFT’s score of 5.23. This performance gap
becomes more pronounced in Conversion efficiency metric, where SP-RLHF-DPO/ORPO attains 5.96
compared to SP-SFT’s 4.71.

For the customer service scenario, as summarized in Table 4 for the internal real dataset, the perfor-
mance of SP-RLHF-ORPO is between SP-SFT and SP-RLHF-DPO. On Problem-solving metric, SP-
RLHF-DPO achieves a score of 7.15, outperforming SP-SFT (6.43) by 11.2%. Meanwhile, on Avoid
transfer to human requests metric, SP-RLHF-DPO/ORPO demonstrates an even stronger advantage with
a score of 8.72/8.62 compared to SP-SFT’s 8.33. This systematic gap highlights SP-RLHF’s enhanced
ability to leverage human preference data for refining model outputs.

The advantage of SP-RLHF-DPO is further evidenced by human evaluation results (Table 5). When as-
sessed by Problem-solving metric, responses generated by SP-RLHF-DPO received significantly higher
preference ratings (6.36 vs. 4.72 for SP-SFT) in solving problem capability. SP-RLHF-DPO achieves a
score of 6.02 on User satisfaction metric (vs. 4.82, absolute gain of 1.2).

This empirical evidence confirms that RLHF not only preserves the core competencies established dur-
ing supervised fine-tuning, but also enables substantial improvements in alignment-critical dimensions
through human preference optimization.
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Table 3: GPT-4 as a judge evaluation in internal real and public simulated dataset marketing scenario.
Memory and consistency is short for Context memory and information integration. Qwen is short for
Qwen2.5-14B-Instruct.

Category Stage Backbone
model

Conversion
efficiency

Objection
handling

User satis-
faction

Memory
and con-
sistency

Response
coherence
and effi-
ciency

Internal real
SFT Qwen 4.71 4.38 5.01 5.23 5.49
RLHF-
DPO

SP-SFT 5.96 5.45 5.98 6.46 6.47

RLHF-
ORPO

Qwen 5.96 5.45 5.98 6.46 6.48

Public
simulated

SFT Qwen 7.55 7.76 8.28 8.02 8.78
RLHF-
DPO

SP-SFT 7.66 7.82 8.29 8.08 8.80

RLHF-
ORPO

Qwen 7.54 7.77 8.28 8.03 8.79

Table 4: GPT-4 as a judge evaluation in the internal real dataset customer service scenario. Memory and
consistency is short for Context memory and information integration. Qwen is short for Qwen2.5-14B-
Instruct.

Stage Backbone
model

Problem-
solving

Avoid trans-
fer to human
requests

User satis-
faction

Memory and
consistency

Response
coherence
and effi-
ciency

SFT Qwen 6.43 8.33 6.32 7.10 7.06
RLHF-
DPO

SP-SFT 7.15 8.72 6.86 7.54 7.43

RLHF-
ORPO

Qwen 6.69 8.62 6.56 7.32 7.31

Table 5: Human evaluation between SFT and RLHF-DPO in internal real dataset customer service sce-
nario. Memory and consistency is short for Context memory and information integration. Qwen is short
for Qwen2.5-14B-Instruct.

Stage Backbone
model

Problem-
solving

Avoid trans-
fer to human
requests

User satis-
faction

Memory and
consistency

Response
coherence
and effi-
ciency

SFT Qwen 4.72 4.74 4.82 5.09 5.11
RLHF-
DPO

SP-SFT 6.36 5.94 6.02 6.42 6.38
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6 Discussion

In this work, we present Self-Preference, a novel automated framework for constructing a large language
model preference-aligned data systematically guided by business metrics in multi-turn conversational
settings. The Self-Preference implementation process is structured into three sequential stages: role-
specific clustering, conditional probability ratio derivation, and automatic preference data construction.
The framework was derived entirely from the existing corpus and its business metrics, without the re-
quirement of human annotations. By applying Self-Preference to marketing and customer service sce-
narios, we significantly increased the alignment between the RLHF outputs and the business metrics,
which enhances the model’s practical value in business applications.

It is worth noting that, given the dialogue history corpus and business metrics, generating business
metric-oriented responses can be analogized to a continuous general problem. In our work, we simplify
this by discretizing the problem based on role-specific clustering, reducing it to the calculation of CPR
based on clustering label sequences. This method also has wide applicability, particularly in scenarios
where one reaches the endpoint through repeated and complex paths starting from the initial point.

High clustering quality is a prerequisite for Self-Preference. In this study, we introduced a representa-
tion that combines literal and semantic aspects, which has shown good results in engineering practice. To
improve the generalization ability to other scenarios, we believe that different representation methods,
such as LLM-based representations (Wang et al., 2023), dialogue structuring (Shi et al., 2019), and dia-
logue representation learning (Zhou et al., 2022) , can further enhance expressive power. The clustering
methods applied do not require the determination of the cluster numbers in advance. The corpus from
different scenarios can be expected to have varying numbers of clusters; therefore, the specific number
of clusters is not overly important. However, every utterance or response must uniquely correspond to a
particular cluster.

In certain scenarios, we can extend the binary business metric to multiclass and continuous business
metrics. For the multiclass metric, thresholds can be established based on business logic or data distri-
bution and mapped to a binary scenario. For the continuous metric, one can first perform binning and
then conduct binary mapping or directly use the Sigmoid function for binarization. We can even redefine
V (Hh) and V (Rr, Hh) as a weighted average of continuous metric values; however, this idea needs to
be validated in real-world scenarios for future research.
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Appendix A

In this section, we elaborate on the specific prompts and instructions utilized for generating public sim-
ulation data and LLM-as-a-judge dialogue evaluation.

A.1 Prompts for public simulation data generation
A.2 Prompts for LLM-as-a-judge dialogue evaluation
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Figure 4: The prompt for public simulation data generation for the customer role.
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Figure 5: The prompt for public simulation data generation for the agent role.
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Figure 6: The prompt for evaluating response in customer service scenario.
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Figure 7: The prompt for evaluating response in marketing scenario.
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