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Abstract

Large Language Models (LLMs) have demonstrated significant potential in interpretable trans-
lation quality estimation by providing both holistic ratings and fine-grained feedback. However,
state-of-the-art methods, such as GEMBA-MQM, still suffer from an excessive number of false
positives in error prediction, leading to misalignment with human annotations and reducing in-
terpretability. To address this issue, we propose MQM-MSC, a novel training-free framework
that employs a mask-driven self-correction (MSC) mechanism. The core of MSC is to use masks
to highlight error spans in the initial prediction, enabling the model to re-evaluate these masked
portions and verify their correctness. This approach mirrors human cognitive processes: when
individuals express inconsistent judgments about the same issue at different times, it often indi-
cates that their initial assessment was flawed. Similarly, MSC exploits contradictions between
two evaluations to identify and filter false positives, thereby improving the accuracy and relia-
bility of error annotations. Experimental results show that MQM-MSC effectively reduces false
positives across four LLMs and three language pairs, consistently improving the reliability and
quality of error annotations in the GEMBA-MQM approach.

1 Introduction

Machine Translation Quality Estimation (QE) assesses translations in real time without requiring refer-
ence translations, distinguishing it from traditional metrics such as BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), TER (Snover et al., 2006), and CHRF, which depend on references.
This capability makes QE essential for practical applications where reference translations are unavail-
able. By providing independent evaluations of translation quality, QE enables users to assess translation
accuracy more effectively, helps developers measure system performance reliably. QE plays a critical
role in the development, commercialization, and deployment of machine translation.

In recent years, QE mothods based on pre-trained models have achieved significant advancements.
However, these models are limited to providing only overall quality scores for sentences and are unable
to identify specific translation errors as human evaluators can. Given the high cost of human evalua-
tion, the demand for interpretable QE methods has become increasingly urgent (Leiter et al., 2023; Xu
et al., 2023). With the successful application of LLMs in reasoning and generation tasks, leveraging
their powerful capabilities to enable interpretable QE has become a promising direction. Researchers
have actively explored this area, including pioneering approaches such as EAPrompt (Lu et al., 2023)
and GEMBA-MQM (Kocmi and Federmann, 2023a). By incorporating chain-of-thought prompts, these
methods construct an evaluation system similar to the Multidimensional Quality Metrics (MQM) (Freitag
et al., 2021a), an error-based human evaluation framework. Despite achieving state-of-the-art results at
the system level, these methods frequently generate excessive false positives. This discrepancy between
LLMs and human annotations undermines the reliability and faithfulness of error annotations as expla-
nations. Additionally, training-dependent methods (Xu et al., 2023; Guerreiro et al., 2024) face high
computational costs, limiting their applicability across different models and languages.
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Figure 1: A comparative overview between GEMBA-MQM and our MQM-MSC approach . MQM-
MSC approach introduces four-stage workflow: (1)generate error annotations; (2) masking errors;(3)
re-evaluating masked segments;and (4) verifying contradictions to filter false positives.

To address the aforementioned challenges, we innovatively proposes a mask-driven self-correction
method and constructs a universal training-free framework: MQM-MSC. The framework activates the
intrinsic self-correction capabilities of LLM through a masking mechanism, filters out false positives,
and improves the quality of error annotation with minimal additional overhead. Specifically, as shown
in Fig. 1, the workflow of the framework is as follows: (1) Error Analysis Evaluation—performing
an initial evaluation of the translation and generating error annotations; (2) Error Masking—masking
identified errors in translation to focus the LLM’s attention; (3) Masked Re-evaluation—providing the
source and masked translation for the LLM to re-evaluate the correctness of masked spans; (4) Con-
tradiction Verification—comparing initial and re-evaluation results to retain consistent high-confidence
errors while filtering inconsistent low-confidence errors.

We conducted extensive experiments on the WMT22 test set using four different LLMs. This test set
comprises 106,758 segments from 54 machine translation systems. Our research contributions are as
follows:

• MQM-MSC generally outperforms GEMBA-MQM at both the system and segment levels, providing
interpretable error annotations that closely align with human annotations.

• MQM-MSC achieves higher consistency with human annotations in both the number and categories of
error annotations while introducing acceptable additional costs.

• MQM-MSC validates the feasibility of the mask-driven intrinsic self-correction mechanism for QE
tasks, offering novel insights into the intrinsic self-correction of LLMs.

2 Related Work

2.1 Quality Estimation Based on Large Language Models
Quality Estimation (QE) is an essential research area within machine translation, aiming to assess the
quality of translation outputs in real-time without relying on reference translations. The rapid advance-
ment of Large Language Models (LLMs) has demonstrated significant potential for QE applications.
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GEMBA (Kocmi and Federmann, 2023b), the first QE metric based on LLMs, directly predicts trans-
lation quality scores using single-step prompting, achieving outstanding results in system-level evalua-
tions. Nonetheless, GEMBA does not overcome the interpretability limitations inherent in pre-trained
models; it primarily focuses on overall quality assessment and lacks the capability to provide detailed
error analysis.

To address this deficiency, the Error Analysis Prompt method (Lu et al., 2023) was introduced, com-
bining Chain-of-Thought and Error Analysis to guide LLMs in conducting more fine-grained error anal-
ysis through detailed prompts. Similarly, the GEMBA-MQM method (Kocmi and Federmann, 2023a)
employs this error analysis approach and specifically optimizes it for the QE domain, using a fixed three-
shot prompting technique to generate error annotations that align with MQM standards. Additionally,
by using fixed language prompts, this method eliminates the need for manual prompt design for new
languages, thus enhancing the scalability of the approach. The GEMBA-MQM method also serves as a
baseline and a crucial component of the MQM-MSC.

2.2 Self-Correction

Self-correction, a widely studied approach, leverages LLMs to refine their outputs during infer-
ence (Madaan et al., 2023). It has been applied across diverse tasks, including arithmetic reasoning,
code generation, and question-answering (Shinn et al., 2023). The simplest form involves prompting
LLMs to evaluate and improve their own responses, operating on the premise that error identification is
easier than error avoidance. However, recent research (Huang et al., 2023; Gou et al., 2023) challenges
the inherent self-correction capabilities of LLMs, demonstrating their limitations in certain tasks.

To address this challenge, Wu et al. (Wu et al., 2024) developed Progressive Correction (PROCO), a
self-correction framework for LLMs that employs substitute verification - a process where critical prob-
lem conditions are masked and verification questions are generated from the model’s initial responses
to systematically validate answer correctness. Inspired by this approach, we propose a mask-driven
self-correction method. Our method uniquely leverages the divergence between initial annotations and
masked re-evaluations as reliability signals, implementing dual-validation consistency checks to achieve
precise self-correction.

3 Preliminary: Multidimensional Quality Metrics

The MQM (Multidimensional Quality Metrics) framework is a high-quality human evaluation method-
ology designed to identify and classify translation errors through detailed error analysis (Lommel et al.,
2013; Freitag et al., 2021b). Unlike traditional Direct Assessment (DA), which assigns holistic scores
on a 0–100 scale, MQM emphasizes the detection of specific translation errors, categorizing them by
severity and type. Human annotators evaluate translations segment by segment, taking into account the
broader document context. Each error is assigned a severity level—critical, major, or minor—and labeled
according to its error category.

Compared to DA, MQM provides a more fine-grained and structured evaluation. The MQM frame-
work automatically derives quality scores by applying a weighted scheme based on the severity of identi-
fied errors. Sentence-level scores range from 0 (perfect translation) to -25 (potentially the worst transla-
tion), with the overall score computed as the average across all annotators. For certain use cases, such as
metric correlation studies, scores may be reversed to align with other evaluation frameworks. MQM has
been shown to align more closely with human judgment than DA, providing a reliable and interpretable
framework for assessing machine translation quality (Freitag et al., 2022a; Zhao et al., 2024).

4 Methodology

As shown in Fig 1, our proposed MQM-MSC method follows a four-stage workflow: 1.Error Analysis
Evaluation: evaluate the given source x and translation y, identify errors in y, and provide error anno-
tations E that include error spans and severities. 2. Error Masking: We mask the error spans identified
in the translation y. 3. Masked Re-evaluation: We input source x and masked translation y(mask),and
prompt the model to re-evaluate the correctness of that masked spans,thereby obtaining the right spans
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R. 4. Contradiction Verification: We filter out false positives based on the contradiction between E
and R. retaining a refined set of errors E∗ ⊆ E . Finally, we score the translation based on the refined
error set E∗.

4.1 Error Analysis Evaluation

We employ the GEMBA-MQM method (Kocmi and Federmann, 2023a) to prompt the LLM to perform
MQM-like evaluation, identifying errors in translation y of source x. This step can be described as:

E = Evaluation(x, y) (1)

where E = {e1, e2, · · · , eN}, represents the set of errors identified by the evaluation of LLMs, and N
denotes the number of errors.

Each error annotation includes three pieces of information: the span of the error, indicating its position
in y ; the error category, categorized according to MQM standards (e.g., mistranslation, omission, gram-
mar); and the severity level, labeled as ”Critical”, ”Major”, or ”Minor” to represent descending levels of
impact. Translations without identified errors are excluded from subsequent steps.

4.2 Mask-Driven Self-Correction

The mask-driven self-correction method identifies reliable error annotations via a dual-verification pro-
cess: it performs contradiction verification between the initial evaluation and the masked re-evaluation.
Consistent outputs indicate high-confidence error annotations, whereas discrepancies suggest potential
false positives. The method primarily consists of the following three components:

4.2.1 Error Masking
We mask the identified error ei in translation y using regular expressions ,focusing the LLM’s attention on
the masked span while minimizing potential interference from other sentence elements. For instance,as
shown in Fig 1, the span ”Jerry” can be used to mask the translation of ”Jerry went to the bookstore” to
”[MASK] went to the bookstore”. This process can be represented as:

y
(mask)
i = MASK(y, ei), i = 1, 2, · · · , N (2)

where a set of masked translations Ymask = {y(mask)
1 , y

(mask)
2 , · · · , y(mask)

N } is produced.

4.2.2 Masked Re-evaluation
We provide the LLM with both the source x and the masked translation y

(mask)
i , explicitly indicating

the original span ei. The LLM is then prompted to re-evaluate the correctness of these spans. If the
original spans are deemed correct, they are output directly; otherwise, the LLM generates corrected
spans. Formally, this process can be represented as:

R = Re-evaluation(x, y(mask)
i , ei), (3)

where a new set of right spans R = {r1, r2, · · · , rN} is determined by the masked re-evaluation of
LLMs,and N denotes the number of spans.

4.2.3 Contradiction Verification
Based on the principle of confidence,we perform contradiction verification between the initial errors
set E and the re-evaluated right spans set R. Inconsistent results (ei ∈ E = ri ∈ R )—where the
initial evaluation is deemed incorrect but the re-evaluation confirms correctness—are regarded as low-
confidence false positives and thus filtered out. Conversely, consistent results (ei ∈ E ≠ ri ∈ R )
identified as high-confidence results and retained. This step is expressed as:

E∗ = {ei | Verification[(x, y, ei) ̸= (x, y, ri)]} (4)
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where:
ei ∈ E , ri ∈ R (5)

where a new subset of errors E∗ ⊆ E that has passed the contradiction verification,with false positives
effectively filtered out.

4.3 Post-process: Error-Based Scoring
We follow the MQM weighting framework (Freitag et al., 2021a) to assign human evaluation scores to
errors produced by LLMs, in line with prior studies (Kocmi and Federmann, 2023a; Lu et al., 2023). The
final score is calculated as the weighted sum of different error types:

Score = −25Ncritical − 5Nmajor −Nminor (6)

where Ncritical, Nmajor, and Nminor denote the number of critical, major, and minor errors, respec-
tively. To prevent the LLMs from predicting an excessive number of errors that would result in an
unreasonably low score, we follow previous work (Lu et al., 2024) by setting a minimum score threshold
of -25.

5 Experiments

5.1 Experimental Setup
5.1.1 Dataset
We utilize the test set from the WMT22 shared tasks (Freitag et al., 2022b) in English-German (En-De),
English-Russian (En-Ru), and Chinese-English (Zh-En) across 4 different domains - conversational, e-
commerce, news, and social, with expert human annotations. This study evaluates 106,758 segments
from 54 MT systems. For further information, refer to Table 1.

Dataset Language Pair Segments Systems Domains

WMT22
En-De 2037 17

conversational,
e-commerce, news, social

En-Ru 2037 17
Zh-En 1875 20

Table 1: Statistics of testset. Source and translations are from the WMT22 metrics shared task.

5.1.2 Meta Evaluation
We follow the standard meta-evaluation approach to measure the performance of evaluation metrics (Fre-
itag et al., 2023). At the system level, we use pairwise accuracy across all three language pairs, which
calculates the proportion of all possible pairs of MT systems that are ranked the same by the metric and
human scores (Kocmi et al., 2021). At the segment level, we apply group-by-item pairwise accuracy
with tie calibration (Deutsch et al., 2023). using the acc∗eq variant to compare metric and human score
vectors per segment before averaging outcomes. For reproductivity,all meta-evaluations are calculated
with MTME, the WMT-recommended evaluation toolkit (Freitag et al., 2022b).

5.2 Baselines and Large Language Models
5.2.1 Baseline Metrics
we compare our method with three model-based QE metrics: COMET-QE (Rei et al., 2020), UniTE-
src (Wan et al., 2022), and MaTESe-QE (Perrella et al., 2022). These metrics employ supervised neural
networks and multilingual encoders to evaluate machine translation quality without relying on reference
translations. Our primary baseline remains GEMBA-MQM (Kocmi and Federmann, 2023a). To evaluate
the effectiveness of our method in filtering false positives, we introduce a random error filtering baseline
for comparison. Specifically, since performance improvements may stem from simply reducing the
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number of errors, we compare our method with a baseline that filters errors at random. The number of
errors filtered by the baseline is matched to the average number filtered by our method across all systems
for the given language pair.

5.2.2 Large Language Models

We employed the following models: Llama3.1-8B-Instruct, GPT-4o-Mini, and Qwen2.5. The Llama3.1-
8B-Instruct model is a model optimized for instruction-following tasks, enabling it to better execute user
commands. GPT-4o-Mini is a small-sized model within the GPT-4o series. It is fast, cost-effective, and
highly capable. We experiment with it using the OpenAI API. Qwen2.5 is a series of large language
models recently released by Alibaba Cloud. This series of models provides multilingual support. We test
Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct models.

5.3 Main Results

Models Strategy System-Level Acc. Segment-Level Acc*

All (3 LPs) En-De En-Ru Zh-En Avg

Baselines
COMET-QE 78.1 55.5 53.4 48.3 52.4
UniTE-src 75.9 58.2 55.4 50.8 54.8
MaTESc-QE 74.8 57.2 49.9 49.4 52.2

Qwen2.5-
7B-Inst

GEMBA-MQM 80.3 53.9 49.0 44.2 49.0
Random 75.5 53.7 46.1 44.7 48.2
MQM-MSC 82.8(+2.5) 54.0 48.8 46.7 49.8(+0.8)

Llama3.1-
8b-inst

GEMBA-MQM 76.3 54.3 47.7 45.9 49.3
Random 73.7 53.7 46.4 45.7 48.6
MQM-MSC 79.2 (+2.9) 54.3 48.3 46.6 49.7(+0.4)

GPT-4o-
mini

GEMBA-MQM 83.6 55.9 53.2 49.3 52.8
Random 79.9 53.8 49.3 46.8 50.0
MQM-MSC 87.6 (+4) 55.7 53.7 49.3 52.9(+0.1)

Qwen2.5-
14B-Inst

GEMBA-MQM 88.7 56.1 52.5 47.5 52.0
Random 86.9 54.2 48.7 47.2 50.0
MQM-MSC 88.3(-0.4) 56.1 52.6 48.7 52.5(+0.5)

Table 2: The performance of metrics using pairwise accuracy (%) at the system level and pairwise
accuracy with tie calibration (%) at the segment level. All results are compared with human-annotated
MQM scores.

The results presented in Table 2 for WMT22, the experimental results demonstrate that in segment-
level evaluation, the MQM-MSC outperforms the state-of-the-art GEMBA-MQM method across all
models. In system-level evaluation, we method also shows superior performance on three out of the four
models. These results validate the broad applicability and stable performance advantages of MQM-MSC
across multiple language pairs (En-De, En-Ru, Zh-En). The only exception is the Qwen2.5-14B-Inst
model, which shows a decline in system-level performance. Analysis indicates that this is primarily due
to the model’s subpar performance in evaluating the En-Ru language pair, possibly related to its limited
judgment ability for errors in this language pair. In contrast, the random filtering method consistently
degrades the performance of GEMBA-MQM. This indicates that MQM-MSC is capable of effectively
filtering out false positives while retaining errors that are consistent with human annotations.

Furthermore, compared with model-based baseline metrics, methods based on LLMs consistently out-
perform the baselines at the system level, which is consistent with previous studies. At the segment level,
despite the existing gap between LLMs-based methods and baseline metrics, the error annotations gener-
ated by LLMs demonstrate their potential. Our approach aims to enhance the reliability and faithfulness
of these error annotations.
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6 Analysis

6.1 MQM-MSC enhances alignment between error annotations and human annotations

Models Category Total Errors Average Errors

En-De En-Ru Zh-En En-De En-Ru Zh-En

Human annotations 16087 23946 31597 946.3 1408.6 1579.9

Qwen2.5-
7B-Inst

Original 169029 160063 194297 9942.9 9415.5 9714.9
Filtered 139858 129359 151759 8226.9 7609.4 7590.0
Retained 29171 30704 42538 1715.9 1806.1 2126.9

Llama3.1-
8b-inst

Original 56612 59562 84405 3330.1 3503.7 4420.3
Filtered 35817 30746 39830 2106.9 1808.6 1991.5
Retained 20795 28816 44575 1223.2 1695.1 2228.8

GPT-4o-
mini

Original 36267 43633 68511 2133.4 2566.7 3425.6
Filtered 25077 31561 34767 1475.1 1856.5 1738.4
Retained 11190 12072 33744 658.2 710.1 1687.2

Qwen2.5-
14B-Inst

Original 67118 74792 134610 3948.1 4399.5 6730.5
Filtered 50277 52661 84089 2957.5 3097.7 4204.5
Retained 16841 22131 50521 990.65 1301.8 2526.1

Table 3: Comparison of error annotation quantities of various models on three language pairs under the
MQM-MSC framework: Statistics on the total and average of original, filtered, and retained errors

We counted the number of error annotations generated by each LLM for each language pair under
the GEMBA-MQM method, as well as the number of false positives filtered and the remaining error
annotations after applying the MQM-MSC framework. Specifically, we calculated the total and average
number of error annotations generated by LLMs and human annotations across all language pairs, with
the results detailed in Table 3.

GEMBA-MQM MQM-MSC

Filtered Errors Human Annotations

44%

48% 54%
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Figure 2: Distribution of error categories generated from GEMBA-MQM , MQM-MSC,filtered errors,
and human-annotated MQM, respectively.

The results indicate that the number of error annotations generated by LLMs significantly exceeded
human annotations, including many false positives. After filtering with the MQM-MSC framework, false
positives were reduced by over 50% of the total, bringing the actual number of error annotations closer to
the level of human annotations. Moreover, as shown in Fig 2, our method preserved the error categories
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distribution consistent with human annotations. In the GEMBA-MQM method, the proportion of ”flu-
ency” errors is significantly higher than that human annotations. Our method reduces this proportion to a
level that is closer to human annotations. Due to the richness of human annotations, a considerable por-
tion of error types that LLMs fail to predict are categorized as ”other.” Consequently, as the proportion
of fluency errors decreases, the proportion of mistranslation errors correspondingly increases.

6.2 MQM-MSC vs. Direct self-correction

Models Strategy System-Level Acc. Segment-Level Acc*

All (3 LPs) En-De En-Ru Zh-En Avg

Llama3.1-
8b-inst

GEMBA-MQM 76.3 54.3 47.7 45.9 49.3
Direct 75.9(-0.4) 54.3 47.6 46.1 49.3(0.0)
MQM-MSC 79.2(+2.9) 54.3 48.3 46.6 49.7(+0.4)

GPT-4o-
mini

GEMBA-MQM 83.6 55.9 53.2 49.3 52.8
Direct 82.1(-1.5) 55.8 52.9 48.9 52.5(-0.3)
MQM-MSC 87.6 (+4) 55.7 53.7 49.3 52.9(+0.1)

Table 4: Comparison of performance between direct self-correction and mask-driven self-correction on
WMT22 with human-labeled MQM, evaluated using pairwise accuracy (%) at the system level, pairwise
accuracy with tie calibration (%) at the segment level

Models Strategy Filtered Errors(%)

En-De En-Ru Zh-En

Llama3.1-8b-inst Masked 63.3% 51.6% 47.2%
Direct 19.8% 10.6% 11.7%

GPT-4o-mini Masked 69.1% 72.3% 50.7%
Direct 15.5% 12.6% 10.6%

Table 5: Comparison of the proportion (relative to original errors) of false positives filtered by direct
self-correction and mask-driven self-correction.

To validate the necessity of the mask-driven mechanism, we conducted an ablation study comparing
it with a direct self-correction approach that omits the masking operation. Due to computational con-
straints, experiments were performed on two large language models (Llama-3.1-8B-Instruct and GPT-4o-
mini). As shown in Table 4, the direct self-correction underperforms the mask-driven self-correction at
both the system and segment levels. Furthermore, Table 5 reveals that the direct self-correction method is
significantly less effective in filtering false positives,filtering significantly fewer false positives compared
to the mask-driven method. These results suggest that without positional constraints from masking, the
model’s attention becomes dispersed across sentence components, making it prone to interference from
other parts of the sentence. This leads to excessive misjudgments.

Our findings demonstrate that in translation quality estimation, the mask-driven mechanism is essential
for effective self-correction, whereas direct self-correction fails to achieve reliable performance.

6.3 MQM-MSC Introduces Minimal Inference Overhead Compared to GEMBA-MQM

The GEMBA-MQM method enhances performance by utilizing three-shot prompts and providing de-
tailed instructions for per example. This strategy significantly increases computational overhead. In
contrast, the MQM-MSC method proposed in this paper introduces additional computational overhead
only during the masked re-evaluation stage, which requires only brief prompt. Therefore, compared to
the high computational cost of GEMBA-MQM, the additional computational overhead of MQM-MSC is
acceptable.
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Strategy Extra Input Tokens Generated Tokens

GEMBA-MQM − 1168.7 51.2
MQM-MSC + 156.3 26.3

Table 6: Average number of input and generated tokens per sentence for each strategy. ”+” indicates the
additional strategy introduced in MQM-MSC.

7 Conclusion

In this paper, we propose MQM-MSC, a training-free framework that enhances the interpretability
of translation quality estimation through mask-driven self-correction. Innovatively, we introduce a
masking-driven self-correction approach that combines positional masking with dual-verification checks.
This method filters out over 50% of false positives across multiple LLMs and language pairs while pre-
serving error distributions aligned with human annotations. The framework significantly enhances the
reliability and faithfulness of error annotations.
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