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Abstract

Recent advances in large-scale pre-training have substantially enhanced the robustness and gen-
eralization capabilities of foundation models (e.g., Qwen3 and Llama-4). However, when fine-
tuning them on downstream tasks, these models often latch onto dataset-specific biases, learning
spurious correlations tied to easy-to-learn but non-robust features. This undermines their perfor-
mance under distribution shifts, despite strong in-distribution (ID) accuracy. Existing fine-tuning
methods, including full-parameter and parameter-efficient techniques, primarily optimize for ID
performance and largely overlook out-of-distribution (OOD) robustness. Meanwhile, debiasing
has been explored in full fine-tuning, while debiasing strategies on Parameter-Efficient Fine-
Tuning (PEFT) remain underexplored. To this end, in this paper, we propose Enhanced Debi-
ased Gradient Extraction (EDGE), a lightweight gradient projection-based method that explicitly
suppresses bias-amplifying updates during fine-tuning process. EDGE is a model-agnostic, and
plug-and-play debiasing method that operates without relying on predefined bias types or labels.
It seamlessly integrates with both full and parameter-efficient fine-tuning, and generalizes across
NLP and vision tasks. Experiments on synthetic and real-world benchmarks demonstrate that
EDGE effectively reduces bias and consistently improves OOD generalization, offering a unified
and practical framework for robust adaptation under dataset bias.

Keywords: Natural language inference , Spurious correlations , Robust Fine-tuning , Debiased
reasoning

1 Introduction

The emergence of large-scale foundation models—such as Qwen3 (Team, 2025), Llama-4 (AI@Meta,
2025), and Gemma 3 (Team et al., 2025)—has significantly advanced the frontier of general artificial
intelligence. These models exhibit remarkable generalization and adaptability across a wide range of
tasks, particularly in natural language processing and complex reasoning. Their success stems from two
complementary strengths: (1) strong generalization capabilities acquired through pre-training; and (2)
high adaptability to specific tasks via downstream fine-tuning.

As the mainstream of adapting pre-trained models to downstream tasks, fine-tuning strategies still
suffer from critical problems. Most existing fine-tuning strategies focus heavily on optimizing in-
distribution (ID) performance, often neglecting their impact on out-of-distribution (OOD) generaliza-
tion (Liu et al., 2024; Zhang et al., 2025b). In practice, fine-tuning attempts to use as little downstream
data as possible to achieve efficient capability transformation. Thus, domain-specific artifacts and spu-
rious correlations contained in the fine-tuning data may be abused by models since they are easy to
learn (Wang et al., 2024). For full fine-tuning, despite its high computational costs, massive parame-
ter updating will cause pre-trained models to overfit easy-to-learn spurious features, resulting in poor
generalization under distribution shifts (Kumar et al., 2022). In contrast, parameter-efficient fine-tuning
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P: The cat is on the mat.

H: There is a cat on the mat.

P: um pardon me !!

H: I don’t apologize.

P: I love dogs !!

H: I don’t love cats.

Background

Negation word

Fine-tuning

Set
Test Set

Out-of-Distribution Evaluation

Standard FT 
/ LoRA

80.0%

58.5%

Bias-
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73.4%-6.6%
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EDGE

88.1%+8.1%

60.0%+1.5%

Figure 1: Performance comparison across vision and language domains under spurious attribute condi-
tions. In the CV setting, models are evaluated on the Waterbirds dataset, where background correlates
spuriously with class labels; In the NLI setting, models are fine-tuned on SNLI and evaluated on HANS.

(PEFT) provides a more scalable alternative by updating only a small subset of parameters. However,
due to its constrained update space and limited representational flexibility, PEFT also struggles to effec-
tively reorient model behavior away from spurious correlations learned during pre-training or introduced
by biased fine-tuning data (Das et al., 2024). As a result, they may implicitly preserve or even reinforce
existing biases, despite their efficiency advantages. As shown in Figure 1, models can achieve high ID
accuracy by exploiting easy-to-learn cues—such as background textures in vision tasks or negation to-
kens in natural language inference (NLI)—instead of acquiring robust features. Such biased learning
will collapse the model capability when dealing with distribution shifts. Recent efforts (Wortsman et al.,
2022b; Zhu et al., 2023a; Wang et al., 2024; Tian et al., 2024) explore ways to mitigate bias introduced
during fine-tuning or to preserve pre-trained knowledge for better generalization. However, these ap-
proaches predominantly rely on full-parameter fine-tuning, limiting their practicality in PEFT strategies
and dealing with computationally and memory-intensive large language models. This raises an impor-
tant question: “How to realize unbiased fine-tuning of pre-trained models in full-parameter and
parameter-efficient scenarios?”

To this end, in this paper, we introduce Enhanced Debiased Gradient Extraction (EDGE), a sim-
ple yet effective fine-tuning strategy that explicitly removes bias gradients to improve the robustness
under different fine-tuning scenarios. Specifically, at each tuning step, EDGE computes two gradient
signals: (1) the fine-tuning gradient, which reflects both core and spurious task signals and (2) a bias-
amplified gradient (Nam et al., 2020), obtained by fine-tuning on data designed to emphasize spurious
correlations. We extract the basic gradient as the shared component between the bias-amplified and
fine-tuning gradients, reflecting the model’s generalizable knowledge. The remaining part of the bias-
amplified gradient—orthogonal to the basic gradient—is defined as the bias gradient, which captures
the direction of spurious features such as background cues. We then project the original fine-tuning
gradient to remove its bias component, yielding the EDGE gradient. This adjusted direction focuses
updates toward robust, task-relevant features —while suppressing updates aligned with spurious cues.
This mechanism enables EDGE to mitigate shortcut learning while retaining essential task knowledge.
Notably, EDGE is simple, model-agnostic, and seamlessly integrates with both standard fine-tuning and
parameter-efficient pipelines, without requiring any predefined bias types or annotations. We validate
EDGE through comprehensive experiments: (1) a controlled bias-injection protocol that allows system-
atic assessment of debiasing effectiveness, (2) real-world robustness benchmarks on NLP and CV under
natural distribution shifts. In all cases, EDGE consistently improves robustness while maintaining core
task performance. We publicly release our code to facilitate further research and practical adoption at:
https://github.com/qingli-ql/EDGE.
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2 Related Work

2.1 Parameter-Efficient Fine-Tuning

PEFT allows pre-trained models to rapidly adapt to new tasks with minimal additional parameters.
Prominent methods include BitFit (Zaken et al., 2021), Adapters (Houlsby et al., 2019), Prompt Tun-
ing (Wang et al., 2023; Xiong et al., 2024), Prefix Tuning (Li and Liang, 2021), and Low-Rank Adap-
tation (LoRA) (Hu et al., 2021; Valipour et al., 2022; Zhang et al., 2023; Liu et al., 2024; Zhang et
al., 2025a; Zhang et al., 2025b). Among these, LoRA stands out due to its computational efficiency, as
it employs trainable low-rank matrices to approximate weight adjustments with reduced computational
overhead.

While PEFT approaches have made significant progress, they often fail to account for an essential
challenge: the potential biases introduced during fine-tuning. When models are adapted to imbalanced
or spurious datasets, these biases can lead to a notable decline in performance.

2.2 Fine-tuning Pre-trained Models for Robustness

Fine-tuning pre-trained models often risks degrading their generalization capabilities(Zhang et al.,
2025c). Kumar et al. (2022) introduced the Feature Distortion Theory, which explains the differences
in feature space behavior between ID and OOD examples during standard full fine-tuning. They pro-
posed the ”first linear probing, then fine-tune” strategy, which mitigates feature distortion and preserves
generalization.

Subsequent methods for robust fine-tuning include: Selective Layer Fine-Tuning: Fine-tuning specific
layers of the pre-trained model to limit unnecessary adjustments (Shen et al., 2021; Lee et al., 2022).
Controlling Model Distance: Techniques that constrain the distance between the pre-trained and fine-
tuned models to maintain learned representations (Xuhong et al., 2018; Gouk et al., 2020; Tian et al.,
2023; Tian et al., 2024). Ensemble-based Approaches: Combining pre-trained and fine-tuned models
to leverage their respective strengths (Wortsman et al., 2022a; Wortsman et al., 2022b; Wang et al.,
2024). Guided Fine-Tuning: Using the pre-trained model as a guide during fine-tuning to align with the
pre-trained generalization direction (Zhu et al., 2023a; Zhu et al., 2023b).

While these strategies address robustness in full fine-tuning scenarios, the domain of PEFT remains
largely unexplored. Developing robust PEFT methods to maintain generalization while adapting to
downstream tasks represents a critical area for future research.

2.3 Debiased Learning with Known Bias

Debiasing methods often rely on prior knowledge of biases to reduce model dependence on spurious cor-
relations. Key strategies include: Data-level methods mitigate bias by modifying or augmenting training
data (Schuster et al., 2021; Wu et al., 2022). Regularization-based methods introduce auxiliary objec-
tives or components to penalize biased representations, often requiring multi-stage training or additional
models (Utama et al., 2020; Du et al., 2021; Lyu et al., 2023). Reweighting and resampling approaches
adjust sample importance to counteract bias (Sagawa et al., 2020; Jang and Wang, 2023), while adversar-
ial training promotes invariance to biased features by discouraging reliance on spurious signals (Moyer
et al., 2018; Kim et al., 2019; Lim et al., 2023). Causal inference techniques aim to disentangle bias
from causal features using counterfactual reasoning (Niu et al., 2021; Zhang et al., 2024a; Zhang et al.,
2024b). Furthermore, invariant learning (Arjovsky et al., 2019; Sagawa et al., 2019; Krueger et al., 2021;
Yang et al., 2025; Liao et al., 2025) strives to trains models to maintain consistent performance across
varying bias attributes.
Our Distinction. Existing methods mainly focus on improving in-distribution accuracy, often overlook-
ing biases introduced during fine-tuning. In contrast, we propose EDGE, a lightweight debiasing strategy
that corrects spurious correlations during adaptation with minimal additional parameters. EDGE nat-
urally integrates with both full-parameter and parameter-efficient fine-tuning (e.g., LoRA), making it
practical for real-world scenarios where training data are often biased. By suppressing shortcut learning,
EDGE preserves the pre-trained model’s robustness under distribution shifts.
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Figure 2: Overall framework of EDGE in a 2D vector-space perspective, exemplified under LoRA-
based fine-tuning. 1 Common Subspace Identification; 2 Hyperplane Projection and Bias Gradient
Identification; 3 Debiased Gradient Computation. ”BA Gradient” denotes the Bias-Amplified Gradient.

3 Preliminary

3.1 LoRA-based PEFT
LoRA (Hu et al., 2021; Liu et al., 2024) stands out as one of the most representative methods within
the PEFT framework, distinguished by its computational efficiency and its ability to approximate the
performance of full-parameter fine-tuning. This technique leverages the product of two trainable low-
rank matrices to approximate weight updates while minimizing computational costs.

For a pre-trained weight matrix W0 ∈ Rd×k, LoRA approximates the weight update ∆W ∈ Rd×k

using a low-rank factorization, represented as BA. Here, B ∈ Rd×r and A ∈ Rr×k are the two low-rank
matrices, with r ≪ min(d, k). The resulting fine-tuned weight W ′ is then defined as:

W ′ = W0 +∆W = W0 +BA. (1)

Here, W0 remains fixed during fine-tuning, while the parameters of A and B are updated. The matrix A
is initialized using a uniform Kaiming distribution (He et al., 2015), and B is initialized to zero, ensuring
that ∆W = BA starts zero at the beginning of training.

3.2 Problem Definition: Debiased Fine-tuning
In standard supervised learning, models are trained to minimize the Cross Entropy (CE) loss under the
Empirical Risk Minimization (ERM) framework:

LERM(y, ŷ) = −
C∑
i=1

yi log(ŷi), (2)

where y is the ground-truth label and ŷ is the predicted probability distribution over C classes. The
corresponding gradient with respect to model parameters θ is given by

GERM =
∂LERM

∂θ
= − 1

ŷc

∂ŷc
∂θ

, (3)

where c denotes the correct class index.
However, when fine-tuning on biased datasets (Nam et al., 2020; Shah et al., 2020; Tiwari and Shenoy,

2023), ERM gradients often exploit spurious, easy-to-learn features that fail under distribution shifts.
This motivates us to redefine fine-tuning from a gradient perspective: debiasing aims to remove bias-
related components from the update direction.
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Figure 3: Accuracy Curves of RoBERTa-base on the Biased SNLI Dataset under Varying Gradient Up-
date. (Left) Average accuracy for class ck instances that contain the spurious token ts. (Right) Average
accuracy for instances not belonging to class ck but still containing the spurious token ts.

Specifically, we seek a debiased gradient Gtarget by subtracting the projection of GERM onto the bias-
dominant subspace:

Gtarget = GERM −Πbias(GERM), (4)

where Πbias(·) denotes the projection operator. Such refinement encourages learning robust, task-relevant
features rather than superficial correlations.

4 Technical Details of EDGE

In this paper, we propose a debiasing framework, Enhanced Debiased Gradient Extraction (EDGE),
as shown in Figure 2. Inspired by the success of bias amplification and mitigation techniques (Nam
et al., 2020; Ahn et al., 2022), we begin with a comprehensive analysis of gradient update dynamics
across various fine-tuning strategies. This analysis highlights how fine-tuning can inadvertently amplify
spurious correlations, providing insights for our method’s design. Our goal is to identify and remove
bias-related components at the gradient level. To achieve this, we use gradient projection to ensure the
model focuses on task-relevant features, minimizing reliance on spurious correlations. The following
sections will introduce each of these steps in detail.

4.1 Identifying and Decomposing the Bias-Driven Gradient

To identify bias-related gradient components within GERM, we follow prior works (Nam et al., 2020;
Ahn et al., 2022), which suggest amplifying bias during training to expose its influence on optimization.
Specifically, we use the Generalized Cross Entropy (GCE) loss (Zhang and Sabuncu, 2018) to enhance
bias effects:

LGCE(y, ŷ) =
1− (py)

q

q
, (5)

GGCE =
∂LGCE(y, ŷ)

∂ŷ
= −(py)

q 1

ŷc

∂ŷc
∂θ

= (py)
qGERM. (6)

where py is the predicted probability for the correct class, and q controls the extent of bias amplification.
Unlike the standard CE loss, GCE scales the gradient by (py)

q, emphasizing easier examples and am-
plifying spurious correlations. This makes GGCE a reliable indicator of the bias direction. Then, a naive
approach to debiasing involves removing the direction of GGCE from GERM via orthogonal projection:

Gnaive = GERM −GERM
GGCE

|GGCE|
. (7)
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Dataset Focus Category Size

QNLI (Wang et al., 2018) Out-of-distribution 5,266
MNLI-hard-m (Mahabadi et al., 2019) Out-of-distribution 4,573
MNLI-hard-mm (Mahabadi et al., 2019) Out-of-distribution 4,530

ST (Naik et al., 2018) Stress Test (distraction & noise) 93,447
HANS (McCoy et al., 2019) Syntactic Heuristic 30,000
IS-CS (Nie et al., 2019) Inter-sentences Heuristics 654

Table 1: Evaluation Datasets for SNLI-Generalization Experiments

However, as shown in Figure 3, this method disrupts convergence and degrades performance, indicating
that GGCE is not purely bias-driven but also contains task-relevant components. To address this, we
decompose GGCE into two orthogonal components:

GGCE = αGbasic︸ ︷︷ ︸
Core Feature Component

+ β Gbias︸ ︷︷ ︸
Bias Component

, (8)

where Gbasic captures essential robust features and Gbias encodes spurious correlations. The orthogonality
assumption (Shah et al., 2020; Joshi et al., 2022) ⟨Gbasic, Gbias⟩ = 0 ensures debiasing removes bias
without impeding task-relevant learning, allowing the model to focus on robust patterns. Building on
this, we present our proposed debiased fine-tuning framework: EDGE.

4.2 The Debiasing Operation of EDGE
1 Common Subspace Identification: Given that a unique hyperplane exists between any two linearly
independent vectors, we designate this hyperplane as the basic feature space. In this space, the projection
of the bias-amplified gradient GGCE captures the core linguistic features. To extract the basic feature
direction, we compute the angular bisector of GERM and GGCE, which serves as a consensus direction:

Gbasic =
GERM

|GERM|
+

GGCE

|GGCE|
. (9)

2 Hyperplane Projection and Bias Gradient Identification: We next isolate the bias component in GGCE
by projecting it onto the common feature space Gbasic. This decomposition splits GGCE into two orthog-
onal components: one along Gbasic and the other capturing the residual bias. The component of GGCE
along Gbasic is given by:

Gbasic
GCE =

⟨GGCE, Gbasic⟩
⟨Gbasic, Gbasic⟩

Gbasic. (10)

The bias gradient is then obtained by subtracting this projection:

Gbias
GCE = GGCE −Gbasic

GCE . (11)

This decomposition isolates the bias-related component from the core linguistic features, enabling tar-
geted debiasing.
3 Debiased Gradient Computation: The debiased gradient is computed by removing the bias component
from GERM, with α controlling the extent of debiasing:

GEDGE = GERM − αGbias
GCE. (12)

5 Experiments

In this section, we detail our experimental setup and evaluation protocol. We begin by introducing the
datasets used across tasks, followed by descriptions of baseline methods and key hyperparameter settings.
Finally, we present the main results along with in-depth analysis. All models are evaluated using accuracy
% on various test sets, with bold and underline indicating the best and second-best results, respectively
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Backbone Methods
pprev, pstr = 0.25, 0.90 pprev, pstr = 0.33, 0.50

OA WGA OA WGA

RoBERTa-base

ERM 0.812 0.735 0.832 0.786
REW 0.814 0.748 0.835 0.791
LM 0.801 0.740 0.812 0.785

CORSAIR 0.810 0.732 0.827 0.780
GA 0.824 0.773 0.830 0.793

EDGE 0.835 0.774 0.843 0.792

GPT2

ERM 0.718 0.642 0.740 0.693
REW 0.720 0.646 0.743 0.689
LM 0.711 0.643 0.738 0.689

CORSAIR 0.723 0.649 0.744 0.695
GA 0.727 0.653 0.743 0.710

EDGE 0.731 0.650 0.750 0.706

Table 2: LoRA-Based Fine-Tuning model Performance on Biased-SNLI. OA denotes Overall Accuracy,
while WGA refers to Worst-Group Accuracy, with groups implicitly defined by the presence or absence
of the injected spurious token and the class label. pprev denotes bias prevalence, and pstr refers to bias
strength, as described in Section 5.1.

5.1 Datasets Settings

We evaluate our method in two complementary settings to comprehensively assess its debiasing effec-
tiveness and robustness:
Controlled Synthetic Bias Evaluation. To analyze model behavior under controlled spurious correla-
tions, we adopt a synthetic bias-injection protocol inspired by prior work (Dranker et al., 2021; Joshi
et al., 2022). We modify the SNLI dataset (Wang et al., 2018) by appending a spurious token ts (“!!”)
to the hypothesis, inducing an artificial correlation with the target class ck (”entailment”). The injec-
tion is governed by two parameters: Bias prevalence (pprev): the probability that a sample is biased;
and Bias strength (pstr): the conditional probability that the token appears in class ck when a sam-
ple is biased. Mathematically, let D = {(xi, yi)}Mi=1 denote the original dataset, where xi ∈ X and
yi ∈ Y = {c1, . . . , cK}. The biased dataset Db = {(x̃i, yi)}Mi=1 is generated as:

x̃i =

{
xi, with probability 1− pprev,

xi ⊕ ts, with probability pprev · qi,
where qi =

{
pstr, if yi = ck,

1− pstr, if yi ̸= ck,
(13)

Here, ⊕ denotes token concatenation. To induce spurious correlations, we configure the training and
development sets with two bias settings: (pprev, pstr) ∈ {(25%, 90%), (33%, 50%)}, as shown in Table 2.
For the test set, we set pprev = 66% and pstr = 50%, creating a mismatch under distributional shift.
Real-World Robustness Evaluation. Beyond synthetic setups, we evaluate our method in real-world
scenarios where spurious correlations naturally arise. In NLI tasks, for instance, linguistic artifacts such
as negation frequently co-occur with specific labels (e.g., Contradiction) (Joshi et al., 2022; Zhang
et al., 2024b), as illustrated in Figure 1. We conduct evaluations on two fronts. First, in the NLP
domain, we fine-tune models on the original SNLI dataset (Wang et al., 2018) using LoRA adapters
and assess robustness under both adversarial (Liu et al., 2020) and stress test conditions (Naik et al.,
2018). To further examine cross-distribution generalization, we include MNLI-hard (matched and mis-
matched) (Mahabadi et al., 2019) and QNLI (Wang et al., 2018). A summary of the evaluation datasets is
provided in Table 1. Second, to validate cross-modal generality, we evaluate in the vision domain using
the Waterbirds dataset (Sagawa et al., 2019), a standard benchmark for studying spurious correlations in
image classification.
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Backbone Method
OOD Generalization Robustness Evaluation

MNLI1 MNLI2 QNLI Stress Test HANS IC-CS

RoBERTa-base

ERM 0.764 0.772 0.720 0.680 0.645 0.637
REW 0.766 0.775 0.721 0.688 0.650 0.641
LM 0.757 0.766 0.712 0.673 0.638 0.630

CORSAIR 0.765 0.776 0.724 0.684 0.647 0.640
GA 0.770 0.779 0.725 0.687 0.653 0.640

EDGE 0.769 0.780 0.722 0.686 0.652 0.640

GPT2

ERM 0.706 0.713 0.659 0.610 0.585 0.578
REW 0.708 0.717 0.660 0.618 0.590 0.581
LM 0.699 0.708 0.652 0.604 0.580 0.572

CORSAIR 0.705 0.716 0.658 0.615 0.595 0.579
GA 0.705 0.710 0.656 0.617 0.602 0.582

EDGE 0.708 0.719 0.658 0.616 0.600 0.579

Table 3: Generalization Performance Comparison on Real-World Generalization Benchmarks with
LoRA-Based Fine-Tuning on SNLI. We evaluate both out-of-distribution generalization (left) and ro-
bustness to adversarial/stress conditions (right). MNLI1 means refers to MNLI-hard-match, and MNLI2

refers to MNLI-hard-mismatch.

Method ERM LfF DFA CNC GA EDGE

Overall Accuracy 0.8009 0.8149 0.8240 0.8710 0.8814 0.8812
Worst-group Accuracy 0.6223 0.6562 0.6910 0.8540 0.8746 0.8548

Table 4: Performance comparison on the Waterbirds dataset using ResNet-18 with full fine-tuning.
Groups are defined by combinations of class labels (waterbird, landbird) and bias attributes (water back-
ground, land background).

5.2 Experiment Setup

Baselines. We compare EDGE with standard ERM and state-of-the-art debiasing methods. For NLP
experiments, we include Reweighting (REW) (Clark et al., 2019), Learned-Mixin (LM) (Clark et al.,
2019), CORSAIR (Qian et al., 2021), and Gradient Alignment (GA) (Zhao et al., 2024). For CV experi-
ments, we additionally consider DFA (Lee et al., 2021) and CNC (Zhang et al., 2022).

Model Implementation. Hyperparameters are fine-tuned on the validation set, with early stopping
applied for optimal selection. For NLP experiments, we adopt RoBERTa-base and GPT2 as backbone
models, and apply LoRA fine-tuning strategy. The hyperparameters are set as follows: batch size of 32,
learning rate of 3 × 10−5 with weight decay 0.05. Additionally, we apply a learning rate warm-up for
1000 steps. For CV experiments, we use ResNet-18 with full fine-tuning strategy. The hyperparameters
are set as follows: batch size of 256, learning rate of 1× 10−3 .

5.3 Main Results

Controlled Synthetic Bias Setting. Table 2 presents the debiasing performance of various methods
across all backbone models. The results demonstrate that EDGE consistently achieves superior effec-
tiveness and robustness, outperforming existing debiasing baselines under a range of bias configurations
(pprev, pstr). By identifying the common gradient direction shared by different training objectives and
isolating the bias gradient component, EDGE enables explicit debiasing through gradient manipulation.
This design allows it to generalize well even under distributional shifts with varying degrees of spurious
correlations. Among the debiasing baselines, most methods (e.g., REW, LM, CORSAIR) adopt strategies
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Figure 4: Ablation experiments conducted on Biased-SNLI (left) and Waterbirds (right). ”BA” refers to
Bias Amplification, and ”CSI” refers to Common Subspace Identification.

Figure 5: Parameter Sensitivity Test with Synthetically Biased SNLI Dataset on RoBERTa-base. (Left)
Overall accuracy. (Right) Worst-Group Accuracy.

that emphasize atypical samples during training to mitigate bias. As a result, several of them exhibit com-
petitive OOD performance, particularly GA, which leverages gradient alignment to enhance the influence
of atypical examples. However, REW exhibits inconsistent performance and sometimes underperforms
the backbone. We attribute this to its reliance on prediction confidence for weighting (wi = 1 − py),
which fails to account for the sparsity and distribution of atypical instances—particularly non-target sam-
ples (y ̸= ck) that contain spurious features (ts). This can lead to suboptimal bias disentanglement and
reduced robustness. In contrast, EDGE is both model-agnostic and fine-tuning-strategy-agnostic. Unlike
LM or CORSAIR, it can be seamlessly applied under both full-parameter fine-tuning and PEFT regimes,
making it highly versatile and scalable across different deployment scenarios.

Real-World Robustness Setting. To assess the generalization ability of EDGE under realistic distribu-
tion shifts, we evaluate its performance across diverse NLP and vision benchmarks, as summarized in
Table 3 and Table 4. In the NLP domain, EDGE consistently improves robustness across multiple test
conditions, demonstrating strong out-of-distribution generalization. In the vision domain, we evaluate
on the Waterbirds dataset (Sagawa et al., 2019), where spurious correlations (e.g., background cues)
are prevalent. EDGE consistently outperforms most existing debiasing baselines, demonstrating strong
generalization without requiring explicit bias labels. Although both EDGE and GA can achieve compa-
rable performance in some scenarios, GA relies on explicit bias labels and performs gradient alignment
through group-specific reweighting during training, making it mainly suitable for cases with a limited
number of predefined bias groups. In contrast, EDGE does not require access to bias labels and is in-
herently scalable to arbitrary group structures, thus offering a more principled and generalizable solution
for balancing debiasing and generalization across diverse domains.
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Dataset Sample Label ERM EDGE

MNLI2
P: It ’s not a family story .

N C ✗ N ✓
H: It ’s a story about drugs and murder .

P: How old are you talking about ?
C E ✗ C ✓

H: Where are you talking about ?

HANS

P: The doctors were mentioned by the bankers.
E NE ✗ E ✓

H: The bankers mentioned the doctors.

P: The scientist believed the artists ran .
NE E ✗ NE ✓

H: The scientist believed the artists .

Table 5: Case study on the MNLI2 and HANS development sets using RoBERTa-base as the backbone.
{’C’, ’E’, ’N’} denote Contradiction, Entailment, and Neutral; for HANS, ’NE’ denotes Not Entailment.

5.4 Detailed Comparison and Analysis

Ablation Study. To better understand the contribution of each component in EDGE, we conduct a series
of ablation experiments. Specifically, we evaluate the impact of (1) bias amplification, (2) common sub-
space identification, and (3) gradient projection, by progressively disabling or modifying each module.
Under the synthetic biased SNLI setup using RoBERTa-base as the backbone. we report both Overall
Accuracy (OA) and Worst-Group Accuracy (WGA) to assess generalization and debiasing effectiveness.
As shown in Figure 4, removing any core component of EDGE causes significant performance degrada-
tion. Without bias amplification or subspace identification, the model fails to expose spurious features.
Skipping orthogonal projection and naively subtracting the amplified gradient severely hampers task
learning, resulting in the worst performance. These results highlight the critical role of each component
in EDGE, showing that bias amplification, subspace identification, and careful projection are essential
for effective debiasing while preserving task knowledge.

Parameter Sensitive Test. The hyper-parameter α in Eq. 12 controls the extent of debiasing. Thus,
we conduct experiments to verify its effect and report results under controlled synthetic bias settings in
Figure 5. As α increases, the debiasing strength becomes more aggressive. We observe that moderate
values of α (e.g., around 0.5) strike the best balance—effectively suppressing bias-induced features while
preserving essential task-relevant information. Overly large α can harm performance by excessively
removing useful gradients, while small α fails to sufficiently mitigate bias. These findings validate the
role of α as a tunable mechanism to navigate the trade-off between debiasing and model utility.

Case Study. We present a qualitative case study on MNLI2 and HANS using RoBERTa-base to illustrate
the behavioral differences between ERM and EDGE under distribution shifts (Table 5). For MNLI2, we
highlight two typical failure cases of ERM. In the first example, the presence of a negation token ”not”
misleads the ERM model into predicting Contradiction, revealing its reliance on lexical cues. In
contrast, EDGE correctly identifies the relationship as Neutral, demonstrating robustness against spu-
rious negation. In the second example, the high lexical overlap between premise and hypothesis causes
ERM to predict Entailment, while EDGE accurately recognizes a subtle semantic inconsistency and
predicts Contradiction. For HANS, we analyze two syntactic traps. In the first, a passive-to-active
subject-object swap confuses the ERM model into predicting Not Entailment, whereas EDGE cor-
rectly preserves the entailment relation. The second case is more challenging: the hypothesis is a clause
of the premise, leading ERM to over-rely on surface overlap and predict Entailment. However,
EDGE successfully detects the lack of entailment due to ellipsis and structural mismatch, outputting
Not Entailment. These examples highlight how ERM models tend to exploit easy-to-learn but non-
robust features (e.g., negation tokens, word overlap), whereas EDGE mitigates such biases by refining
the gradient signal, enabling more semantically grounded decisions under OOD settings.
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6 Conclusion

In this work, we introduce EDGE, a simple yet effective debiasing framework that explicitly disen-
tangles model gradients into bias-relevant and task-relevant components. By identifying a shared fea-
ture subspace across different training configurations, EDGE removes bias gradients in a principled and
model-agnostic manner. Unlike prior methods that depend on confidence heuristics or specific fine-
tuning schemes, EDGE is compatible with both full and PEFT, making it broadly applicable. Extensive
experiments on synthetic and real-world benchmarks demonstrate that EDGE consistently enhances ro-
bustness and out-of-distribution generalization, establishing gradient-level disentanglement as a powerful
paradigm for addressing dataset bias.
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