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Abstract

Evidence-based fact-checking aims to verify or debunk claims using evidence and has greatly
benefited from advancements in Large Language Models (LLMs). This task relies on clarify-
ing and discriminating relations between entities. However, autoregressive LLMs struggle with
understanding relations presented in different orders or narratives, as their unidirectional na-
ture hampers effective performance. To address this challenge, we propose a novel method that
leverages bidirectional attention as an external adapter to facilitate two-way information aggre-
gation. Additionally, we employ hierarchical sparse graphs to merge local and global informa-
tion and introduce an efficient feature-compression technique to minimize the number of adapter
parameters. Experimental results on both English and Chinese datasets demonstrate the signif-
icant improvements achieved by our approach, showcasing state-of-the-art performance in the
evidence-based fact-checking task.

1 Introduction

In the face of the growing spread of misleading information in the real world, fact-checking becomes
necessary to turn the tide of misinformation (Vosoughi et al., 2018; Khan et al., 2021). Evidence-
based Fact-checking (EBFC) seeks to verify or debunk claims with given evidence, benefiting from
advancements in Large Language Models (LLMs) such as GPT and Llama (Cao et al., 2023; Quelle and
Bovet, 2023; Cheung and Lam, 2023). The key to this task is clarifying and discriminating relations
between entities, thereby judging the facticity of claims.

However, LLMs struggle to judge claims accurately when the order of evidence is reversed, a prob-
lem known as the Reversal Curse (Grosse et al., 2023; Berglund et al., 2023), due to the unidirectional
nature of autoregressive LLMs. As illustrated in Table 1, when the order of ”boiling water” and ”dishes”
in the evidence is swapped compared to the claim, GPT-4 makes an incorrect prediction. Our prelimi-
nary analysis of the evidence-based fact-checking dataset CHEF (Hu et al., 2022) shows that 49.55% of
inaccuracies in GPT-4’s outcomes can be attributed to the Reversal Curse.

Unfortunately, various attempts to modify training setups (e.g., scaling model and data size) for LLMs
to alleviate the Reversal Curse have not shown significant improvements (Grosse et al., 2023; Berglund
et al., 2023). We argue that, as LLMs store facts differently depending on their direction (Meng et al.,
2023), the Reversal Curse is an inherent defect of unidirectional models. In response, inspired by human
fact-checkers, who gather related evidence back and forth to understand the meaning of sentences, we
explore designing a bidirectional adapter to overcome this drawback. To our knowledge, we are the first
to conduct bidirectional adaptation in autoregressive models.

Adapters have been proposed to adapt LLMs for multiple downstream applications, such as reasoning
(Houlsby et al., 2019), by freezing the original model and adding a few additional parameters for fine-
tuning. Previous research (Hu et al., 2021) indicates that adapters achieve the best results when adapting
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Verify or debunk the claim with the evidence given.
The Claim: Dishes cannot be sterilized with boiling water.
Evidence: ... Evidence 4: Thus, boiling water cannot sterilize the dishes.
...

Dataset: CHEF; ID: 686; Label: Supported.

GPT-4 Prediction: Refuted.
GPT-4 Response: ... Evidence 4 is a statement that contradicts the claim,
stating that boiling water cannot sterilize the dishes. ...

Table 1: A Reversal Curse example of the evidence-based fact-checking task, where the statement in the
claim is reversed to the selected statement in evidence.

the Query and Value matrices of self-attention. Nevertheless, for our method, introducing bidirectional
attention in Query may break the autoregressive Query-Key mask of LLMs. Following these two insights,
our framework adapts Value to build bidirectional attention as shown in Figure 1. At the same time, our
method adapts Query with LoRA (Hu et al., 2021) to refresh Query-Key pairs.

Intuitively, our adaptation models new bidirectional attention on graphs, treating tokens as nodes and
building attention with directed edges to better represent entities and their relations. Furthermore, our
framework applies sparse graphs, where each token only pays attention to a few tokens with the most
relevant information, which is crucial for understanding text (Zhao et al., 2019). We design three sparse
graphs with different receptive fields and employ a hierarchical structure, with graphs with smaller recep-
tive fields as inputs to larger ones, aiming to merge local and global information in each layer. Simulta-
neously, skip connections and gate units are designed to balance the ratio of bidirectional information in-
jection to capture both short and long dependencies (Cho et al., 2014). In addition, our approach reduces
the adapter parameters through a feature-compression mechanism on token representations for efficient
adaptation and further sparse feature selection. The feature dimension will be reduced gradually through
each layer in the hierarchical structure, and finally, our framework splices a feature-decompression ma-
trix for output.

In summary, in this work, we develop the novel Bidirectional Sparse Graph Attention Adapter for
evidence-based fact-checking (BiSaGA). Our approach achieves state-of-the-art (SOTA) performance
on both English and Chinese datasets. The main contributions include:

• We propose a bidirectional attention adapter to model two-way relations, representing the pioneering
attempt to combine bidirectional information modeling with autoregressive LLMs.

• We develop a hierarchical sparse graph structure and feature-compression mechanism to make the
adaptation robust and efficient.

• Experimental results showcase that our method achieves SOTA performance, outperforming GPT-4
(OpenAI, 2023) on the evidence-based fact-checking task.

2 Methodology

2.1 Task Description and Overview

Evidence-based fact-checking (Augenstein et al., 2019) aims to verify or debunk claims using multiple
pieces of evidence retrieved by automatic rankers or human annotators. The output will be three possible
labels: SUP (Supported), REF (Refuted), or NEI (Not Enough Information).

For clarity, let X , Q, K, and V represent the Input, Query, Key, and Value, respectively, and let WQ,
WK , and W V denote the corresponding projection matrices in the LLM self-attention modules. As
depicted in Figure 1, we develop bidirectional sparse graph attention adaptation on V to model bidi-
rectional information aggregation and employ LoRA-based Q adaptation to refresh Query-Key pairs for
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Figure 1: The framework of our proposed bidirectional sparse graph attention adapter.

fine-tuning. The adapted attention mechanism (Vaswani et al., 2023) is represented as:

Attn(X,WQ,WK ,W V ) (2.1)

= softmax

(
(Q+∆Q)KT

√
dk

)
(V +∆V ).

dk is the dimension of the Key in the LLM.
Our model incorporates (1) Bidirectional Attention to model two-way relations and Sparse Graph

methods to refine attention focus as discussed in Section 2.2 and (2) Hierarchical Structure to merge both
local and global information in each layer along with a Feature-Compression Mechanism to minimize
adapter parameters in Section 2.3.

2.2 Bidirectional Sparse Graph Attention
In this section, we propose to build new bidirectional attention, and we want the attention to be sparse
for less noise impact. We leverage sparse graphs to better model sparse attention, taking tokens as nodes
and building attention with directed edges (Velickovic et al., 2017). In this way, the attention of the i-th
token is calculated only with its first-order neighbor (Sedgewick and Wayne, 2011) tokens j ∈ Ni.

To distinguish attention symbols in the adapter from those in the LLM, we use Source (S) as Query,
Destination (D) as Key, and Feature (F) as Value in the adapter. Following (Vaswani et al., 2023),
our adaptation utilizes a multi-head attention mechanism, and n is the number of attention heads. To
elaborate on our approach, we demonstrate the m-th layer of the three-layer hierarchical structure for a
general description, and each layer takes the output of its former layer as input.

Denote the input Hm−1 of the m-th layer as:

Hm−1 ∈ Rl×dm−1 ,m = 1, 2, 3, H0 = X, d0 = d.

l is the token number of the input text and dm−1 is the feature dimension of the input. X is the input of
the LLM self-attention module and d is the feature dimension of X .

We start with building the Query S, Key D, and Value F attention matrices. Our approach first builds
the Value F , utilizing the projection matrix WF

m ∈ Rdm−1×dm .

Fm = [Fm1, · · · , Fml] = XWF
m . (2.2)

dm is the output feature dimension of each attention head. dm can be freely altered for compression or
decompression, and we will discuss this in Section 2.3. With Value F as input, we calculate Query S
and Key D with projection matrix WS

m and WD
m .

Sm = tanh(Fm)WS
m,WS

m ∈ Rdm×1, (2.3)

Dm = tanh(Fm)WD
m ,WD

m ∈ Rdm×1, (2.4)
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We leverage the nonlinear activation function tanh to prevent S, D, and F from forming linear relation-
ships with each other, therefore better leveraging and capturing the graph structure information (Qiu et
al., 2018).

Our approach initializes the sparse graph with a receptive field rm constraint.

j ∈ Ni ⇐⇒ |i− j| ≤ rm. (2.5)

Now we calculate the attention Em ∈ Rl×l of the directed edges i → j on the graph.

emij = LeakyReLU
α=0.2

(Smi +Dmj), (2.6)

Emij = softmax
j∈Ni

(emij). (2.7)

Our framework calculates the attention score emij by adding Query Smi of the i-th token and Key Dmj

of the j-th token and then normalizes emij with softmax. Our approach adds Query and Key other than
point-wise multiplication, such that the magnitude of S and D does not affect the gradient descent of
each other. According to our experimental results, the summation enhances the concentration of attention
through implicit selection during training, and the gradient descent speed can still be maintained under
sparse situations.

Finally, we use the ELU output activation function to obtain the output Ĥm with the following expres-
sions:

Ĥm = Concat(ELU(
∑
j

EmijFmj)). (2.8)

In summary, our bidirectional sparse attention fuses the information of token j ∈ Ni into token i.

2.3 Hierarchical Structure and Feature-Compression Mechanism

In this section, we design three sparse graphs with different receptive fields, stacking them in a hierar-
chical structure with a pass-through and a feature-compression mechanism.

We construct a hierarchical sparse graph stack to combine local and global information in each layer,
where the representations of the lower layer serve as the input to the higher layer. This stack applies three
granularities of receptive fields for three layers in Inequation (2.5), where lower layers concentrate on a
narrow range around each token to get relatively local information and higher layers focus on a broader
range.

|i− j| ≤ rm, r1 < r2 < r3.

This way, bidirectional relations between tokens caring for different ranges are modeled.
In addition, our framework employs a pass-through mechanism with linear layers Lm ∈ Rdm−1×dm ,

utilizing a gate control mechanism with linear gates Gm ∈ Rdm×1 to balance the ratio of our sparse
bidirectional information injection.

Ĥm = AV
m(Hm−1), (2.9)

Hm = (1− sigmoid(ĤmGm)) ∗Hm−1Lm

+ sigmoid(ĤmGm) ∗Hm. (2.10)

m = 1, 2, 3, H0 = X.

We use AV
m to denote all calculations from Equation (2.2) to Equation (2.8) in each layer. The “∗” is the

broadcast multiplication in Equation (2.10).
Furthermore, our method reduces adaptation parameters through a feature-compression mechanism to

make adaptation efficient. As stated in Section 2.2, Equation (2.2), we alter dm for feature dimension
compression on the hierarchical graphs. Each layer of our hierarchical adapter smoothly projects the
input to a smaller subspace with Value projection WF

m ∈ Rdm−1×dm ,m = 1, 2, 3 in Equation (2.8), as
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shown in Figure 1, where d∗ = d3 < d2 < d1 << min(d0 = d, dv). To align the dimensions of output
H3 and V , we splice a decompression matrix multiplier BV ∈ Rnd∗×dv .

∆V = H3B
V . (2.11)

Meanwhile, this feature-compression mechanism clips out useless parts of attention, thus making the
attention more sparse and spontaneously learning the sparse information.

In summary, our proposed hierarchical structure merges local and global information and meticu-
lously maintains the balance of bidirectional information injection. The feature-compression mechanism
reduces the adapter parameters and makes the attention more sparse through feature selection.

2.4 Training and Answer Prediction

In this section, we define the loss of our model here and summarize our training and answer prediction
approach. Our approach utilizes the feature z of the last token in the LLMs and uses a linear layer to
project it into a 3-dimensional score vector ŷ.

ŷ = Score(z) = zS, (2.12)

where S ∈ Rd×3. We then utilize the 3-dimensional score vector ŷ to make our 3-way prediction for
evidence-based fact-checking.

y∗ = softmax(ŷ), (2.13)

where y∗ denotes the predicted probability of categories.
Our framework freezes all the parameters of the LLMs and only updates the parameters of WF , WS ,

WD, Gm, Lm, and BV of feature-compression sparse graph attention layers and AQ, BQ of LoRA Q
adaptation. Our method leverages backpropagation with cross-entropy label loss LCE for training.

LCE = CrossEntropy(y∗, y), (2.14)

where y is the true label.
For answer prediction, we consider the category with the largest probability in y∗ as the predicted label

of our model.
ypred = argmax(y∗), (2.15)

where ypred ∈ {0, 1, 2} is the predicted answer of inference.

3 Experiments

3.1 Dataset

To evaluate the effectiveness of our proposed method, we conducted experiments on the evidence-based
fact-checking datasets FEVER (English) (Thorne et al., 2018) and CHEF (Chinese) (Hu et al., 2022).
The FEVER dataset comprises 185,445 synthetic claims generated by modifying sentences extracted
from the introductory sections of Wikipedia pages and combining several sentences to form the nec-
essary evidence. The CHEF dataset comprises 10,000 real-world claims collected from six Chinese
fact-checking websites, utilizing several corresponding source documents retrieved through the Google
Search API as evidence. Both datasets are labeled with three classes: supported (0 or SUP), refuted (1
or REF), and not enough information (2 or NEI).

The training sets for FEVER and CHEF consist of 145,449 and 8,002 examples, respectively. For a
fair comparison of the FEVER and CHEF datasets, we randomly selected 8,002 examples with the top
five pieces of evidence from FEVER to build a balanced dataset for our experiments.

Our framework leveraged the given golden evidence and randomly sampled sentences as evidence of
NEI claims for FEVER. As shown in Table 2, while CHEF includes instances with no golden evidence
to challenge the intrinsic knowledge of models, we employed automated retrieval evidence obtained by
the Hybrid Ranker (Shaar et al., 2020; Hu et al., 2022) for CHEF. Our statistics also indicate that CHEF
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Label CHEF Dataset
train dev test

SUP 319(11.09%) 37(11.11%) 38(11.41%)
REF 783(18.00%) 57(17.12%) 57(17.12%)

Table 2: Statistics of instances with no golden evidence in CHEF.

contains 45 (13.51%) SUP instances and 60 (18.02%) REF instances affected by the Reversal Curse, and
we assembled these instances into a new dataset named CHEF-RC (CHEF-Reversal Curse).

Following previous studies (Thorne et al., 2018; Augenstein et al., 2019; Liu et al., 2020; Hu et al.,
2022), we adopted label accuracy (LA) as the evaluation metric for FEVER, and label accuracy (LA)
along with macro F1 score (F1) for CHEF to assess the performance of our model. Additionally, we
applied label precision (P) and recall (R) for each classification category in the subsequent analyses.

3.2 Experimental Settings
We adopt Llama-2-7B (Touvron et al., 2023) for our method. For simplicity, we conduct adaptations
only on the 32nd layer. The feature dimension of Llama-2-7B is 4096, and the output dimension of each
layer of our hierarchical bidirectional attention adapter is sequentially 256, 16, and 4, respectively. We
train our model for a maximum of 5 epochs using the AdamW optimizer, with an initial learning rate
of 2e-4, a weight decay of 0.01, and a warm-up rate of 0.05. The batch size is set to 8, and we use the
dropout technique with a dropout rate of 0.1 for regularization.

Considering LoRA as an efficient adaptation framework, we establish a comparative LoRA baseline
using the same settings, except that the intermediate dimension is set to 10 to match the total parameters
of BiSaGA.

To explore the evidence-based fact-checking ability of GPT, we conduct a preliminary attempt to uti-
lize the zero-shot GPT-4 model to deal with the task. For experiments on GPT-4, we set every parameter
by default to do preliminary research on its performance in evidence-based fact-checking.

3.3 Baselines
To demonstrate the effectiveness of our model, we compare our results against various baselines. Many
previous works use small models as classifiers, which are not competitive with LLMs. Thus, we only
include a selection of them as baselines.

X-Fact (Gupta and Srikumar, 2021) used an attention-based evidence aggregator (Attn-EA) to emu-
late the evidence aggregation behavior of human fact-checkers. GEAR (Zhou et al., 2019) proposed a
graph-based evidence aggregation to transfer information on evidence graphs and utilized different ag-
gregators to collect multi-evidence information. KGAT (Liu et al., 2020) proposed the Kernel Graph
Attention Network (KGAT), which conducts more fine-grained fact verification with kernel-based at-
tention. TwoWingOS (Yin and Roth, 2018) jointly considered evidence retrieving and verification to
identify appropriate evidence and verify the claim simultaneously. CHEF (Hu et al., 2022) built the
latent retriever and combined the KGAT (Liu et al., 2020) for fact verification based on the hard Ku-
maraswamy distribution (Bastings et al., 2020). ProoFVer (Krishna et al., 2022) generated sequences of
operators as proofs and verified the claim based on these proofs. BEVERS (DeHaven and Scott, 2023)
tuned each component for fact extraction and verification to ensure maximum performance. ReRead
(Hu et al., 2023b) trained the claim verifier to revisit the evidence retrieved by the optimized evidence
retriever to make the retrieved evidence faithful and convincing to humans. Recent studies utilized graph
modeling (Luo et al., 2024; Lan et al., 2024; Zheng et al., 2025) and LLM rewriting (Yang et al., 2024)
to gain decent improvements.

(Cao et al., 2023) evaluated the fact verification performance of gpt-3.5-turbo and Llama2-7b in the
Chinese dataset CHEF. GPT-4 (zero-shot) conducted preliminary experiments on FEVER and CHEF.
LoRA (fine-tuned, ours) leveraged the LoRA modules for Q, V self-attention adaptation of the Llama-
2-7B model. BiSaGA (w/o feature-compression) used our proposed BiSaGA framework but without a
feature-compression mechanism.
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3.4 Main Results

Method Model Trainable FEVER CHEF
Parameters LA (%) LA (%) F1 (%)

X-Fact (Gupta and Srikumar, 2021) mBERT-base (Devlin et al., 2019) 125M - 63.48† 62.47†

GEAR (Zhou et al., 2019) BERT-base (Devlin et al., 2019) 110M 71.60 - -
KGAT (Liu et al., 2020) BERT-base 110M 85.15∗ 64.37† 62.58†

TwoWingOS (Yin and Roth, 2018) TwoWingOS NA 75.99 67.46‡ 64.31‡

CHEF (Hu et al., 2022) BERT-base 110M - 69.12 65.26
BEVERS (DeHaven and Scott, 2023) RoBERTa-large (Liu et al., 2019) 355M 79.39 - -
ProoFVer (Krishna et al., 2022) BART-large (Lewis et al., 2020) 400M 79.47 - -
ReRead (Hu et al., 2023b) BERT-base 110M - 70.87 68.78
CO-GAT (Lan et al., 2024) ELECTRA 110M 81.65 - -
SR-MFV (Zheng et al., 2025) GraphFormers NA 82.44 - -
RAZOR (w/GPT) (Yang et al., 2024) RoBERTa-base 125M 90.45 - -

(Cao et al., 2023) (zero-shot) GPT-3.5 - - 35.14 33.51
(Cao et al., 2023) (zero-shot) Llama-2 (7B) - - 31.93 28.58
GPT-4 (zero-shot) GPT-4 - 93.91∗ 68.69 64.17

LoRA (fine-tuned, ours) Llama-2 (7B) 5M 94.29∗ 70.17 66.59
BiSaGA (w/o feature-compression) Llama-2 (7B) 150M 94.50∗ 71.37 68.61
BiSaGA Llama-2 (7B) 5M 95.08∗ 73.57 71.89

Table 3: Evidence-based Fact-checking results on FEVER (English) and CHEF (Chinese). ∗ indicates
the results produced with golden evidence on FEVER. † indicates the results reproduced on CHEF by
(Hu et al., 2022). ‡ indicates the results reproduced on CHEF using graph-based model KGAT (Liu et
al., 2020) by (Hu et al., 2022).

The experimental results, as displayed in Table 3, show that our BiSaGA outperforms all other baseline
models, including GPT-4, on both the FEVER (English) and CHEF (Chinese) datasets. Specifically,
BiSaGA achieves a label accuracy (LA) of 95.08% on FEVER and 73.57% on CHEF, along with an F1
score of 71.89%. In contrast, the results produced by (Cao et al., 2023) on the CHEF dataset reached
only 35.14% for ChatGPT-3.5 and 31.93% for Llama-2, which indicates that these two are not incapable
of this task.

Compared to the LoRA fine-tuned Llama-2 model, BiSaGA demonstrates a notable improvement,
with relative gains of +0.79% and +3.40% in label accuracy (LA) on the FEVER and CHEF datasets, re-
spectively. This underscores that our framework enables better adaptation of Llama-2 to evidence-based
fact-checking tasks compared to LoRA, thus proving the effectiveness of our adaptation mechanism.

Compared to the framework without the feature-compression mechanism, BiSaGA shows relative im-
provements of +0.58% and +2.20% in label accuracy (LA) on FEVER and CHEF, respectively. One
possible explanation is that the original adapter without feature-compression struggles in data-scarce
scenarios (Zoph et al., 2016; Hedderich et al., 2021), potentially making full-parameter fine-tuning sus-
ceptible to undertraining and overfitting (Mahabadi et al., 2021). BiSaGA circumvents these issues
through its lightweight design, introducing only 5M parameters compared to the 7B of the base model.

4 Analysis

4.1 Reversal Curse

We analyze those instances in CHEF-RC that possibly lead to the Reversal Curse as shown in Table 4.
Preliminary estimates show that in the SUP and REF classes, errors in GPT-4 caused by the Reversal
Curse accounted for 39.64% and 59.46% of total errors, respectively, summing up to 49.55%. In com-
parison, our framework reduced these errors to 27.03% in the SUP class and 17.65% in the REF class,
with a combined total of 24.07%. This result verifies that BiSaGA works great against the Reversal
Curse, marking the usefulness of its bidirectional modeling.
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CHEF-RC
SUP REF

SUP 35 3
REF 10 57

BiSaGA NEI 0 0
R (%) 92.11 85.07
P (%) 77.78 95.00

SUP 29 7
REF 6 48

GPT-4 NEI 10 5
R (%) 80.56 88.89
P (%) 64.44 80.00

Table 4: Reversal curse analysis. CHEF-RC (CHEF-Reversal Curse) packaged CHEF instances with
Reversal Curse for evidence retrieved.

Method FEVER CHEF
LA (%) LA (%) F1 (%)

BiSaGA 95.08 73.57 71.89
w/o BiSaGA 1 94.17 69.57 65.54
w/o BiSaGA 2 94.36 71.27 67.75
w/o BiSaGA 3 94.49 69.87 65.59

LoRA 94.29 70.17 66.59

Table 5: Ablation analysis results. The corner mark represents the layer number.

4.2 Ablation Analysis

In this section, we perform ablation experiments on the proposed hierarchical adaptation structure. The
results are presented in Table 5. Our findings indicate that each layer in BiSaGA enhances performance,
affirming its effectiveness. The layers are numbered from 1 to 3, from the front to the back of the model.
Among all the layers, Layer 1 is the most essential. Removing this layer results in Llama performing even
worse than the original LoRA version, highlighting the superiority of our method’s attention mechanism
with a small sliding window. In FEVER, Layer 2 has a more significant impact on the results than Layer
3, while it is the other way around in CHEF.

4.3 Attention Pattern

To gain deeper insights into how the bidirectional sparse graph attention influences the final Value repre-
sentations, we study its attention pattern, as shown in Figure 2. Autoregressive LLMs mask the attention
to the upper right triangle in the figure, preventing the Value representation of the claim from being influ-
enced by subsequent evidence. On the contrary, our BiSaGA leverages this area for reverse information
aggregation. As indicated by the red-circled area above the separation line, the claim “A doesn’t equal
B” pays significant attention to “evidence 1”, which contains the statement “B doesn’t equal A”. This
attention allows the claim to recognize the supporting evidence and integrate this information into its
representation. The high attention score between the source “doesn’t equal” and the destination “evi-
dence 1” illustrates that BiSaGA effectively transmits the aggregated information from “evidence 1” to
the claim, favoring the claim to be supported. Consequently, the claim’s representation becomes more
likely to be classified into the supporting (SUP) class.

4.4 Case Study

In this section, we conduct case analyses on random samples of the CHEF-RC dataset to evaluate the
practical effectiveness of our framework compared to LoRA. For the English study, we translated these
samples to align with Chinese and asked the English fine-tuned models to answer these questions. The
results are presented in Table 6 and Table 7. Apart from predicted probabilities, we perform norm
calculations to compare the amplification effect of BiSaGA and LoRA, which illustrates how much the
features change compared to those in the original model.
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Figure 2: Attention illustration on an instance of our proposed BiSaGA framework.

ID Label GPT-4 LoRA BiSaGA
Prediction ∥∆V ∥1 ∥∆V ∥2 Prediction Probability (%) ∥∆V ∥1 ∥∆V ∥2 Prediction Probability (%)

9778 0,SUP 0,SUP 25184. 25.23 0,SUP 99.91 4512. 4.18 0,SUP 93.00
99 0,SUP 0,SUP 22096. 21.48 0,SUP 99.94 3988. 3.67 0,SUP 99.63

686 0,SUP 2,NEI 8992. 11.77 2,NEI 36.40 2010. 2.45 0,SUP 86.01
6090 0,SUP 0,SUP 26880. 25.84 0,SUP 99.99 4204. 3.84 0,SUP 100.00
7981 0,SUP 2,NEI 12328. 14.45 0,SUP 99.82 3424. 3.72 0,SUP 99.98

10834 0,SUP 0,SUP 19248. 18.47 0,SUP 98.62 4892. 4.36 0,SUP 100.00
13543 0,SUP 0,SUP 26080. 25.14 0,SUP 99.99 3780. 3.50 0,SUP 99.99
9247 0,SUP 0,SUP 28352. 27.67 0,SUP 100.00 3128. 2.96 0,SUP 100.00
1461 0,SUP 1,REF 17296. 19.48 0,SUP 98.79 2366. 2.62 0,SUP 90.56

10999 0,SUP 0,SUP 23920. 22.33 0,SUP 99.88 4436. 4.00 0,SUP 99.48

Table 6: Chinese case study of CHEF-RC.

The results indicate that the amplification effect of our embedded module is only between 1/5 and 1/4
of that in the LoRA module. However, in some cases, like case 686, our BiSaGA achieved the correct
prediction, whereas LoRA made an incorrect prediction. Our bidirectional sparse graph attention adapter
(BiSaGA) achieves correct predictions with higher probabilities than LoRA in most cases, despite having
lower amplification effects. These findings suggest that our adaptation is more compact and effective than
LoRA, highlighting the superiority of our framework.

Another interesting finding is that cases predicted as NEI tend to exhibit lower l1 and l2 variations
compared to other cases. Additionally, for each class in each model, predicted cases with low probabili-
ties usually have smaller l1 and l2 variations compared to those with high prediction probabilities.

5 Related Work

5.1 Previous Works on Evidence-based Fact-checking

Previous methods on this task can be divided into three categories, i.e., entity-based methods (Vla-
chos and Riedel, 2015; Reddy et al., 2018; Wuehrl et al., 2023), pairwise semantic methods (Nie et
al., 2018; Calvo Figueras et al., 2022; Zeng and Zubiaga, 2022; Hövelmeyer et al., 2022; Hu et al.,
2022), and reading-based or aggregation-based methods (Gupta and Srikumar, 2021; Hu et al., 2023b).
Some approaches tried to solve this task with representations of graph structure. (Zhou et al., 2019)
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ID Label GPT-4 LoRA BiSaGA
Prediction ∥∆V ∥1 ∥∆V ∥2 Prediction Probability (%) ∥∆V ∥1 ∥∆V ∥2 Prediction Probability (%)

9778 0,SUP 0,SUP 2068. 2.76 0,SUP 99.83 794. 1.11 0,SUP 99.91
99 0,SUP 0,SUP 1559. 2.18 1,REF 85.88 659. 0.99 1,REF 88.75

686 0,SUP 2,NEI 1167. 2.07 1,REF 99.71 511. 1.22 1,REF 99.77
6090 0,SUP 0,SUP 1812. 2.54 0,SUP 99.90 614. 0.82 0,SUP 99.96
7981 0,SUP 2,NEI 1519. 2.31 0,SUP 99.41 650. 0.99 0,SUP 99.97

10834 0,SUP 0,SUP 2086. 2.66 0,SUP 99.55 556. 0.72 0,SUP 99.99
13543 0,SUP 0,SUP 2618. 3.39 0,SUP 97.95 842. 1.03 0,SUP 99.92
9247 0,SUP 0,SUP 2172. 2.86 0,SUP 95.09 967. 1.26 0,SUP 99.73
1461 0,SUP 1,REF 1539. 2.40 0,SUP 99.30 903. 1.41 0,SUP 99.86

10999 0,SUP 0,SUP 3052. 3.79 0,SUP 95.15 981. 1.22 0,SUP 99.93

Table 7: English case study of CHEF-RC.

proposed a graph-based evidence aggregation and reasoning framework that transfers information on ev-
idence graphs and utilizes different aggregators to collect multi-evidence information. (Liu et al., 2020)
proposed the Kernel Graph Attention Network (KGAT), which conducts more fine-grained fact veri-
fication with kernel-based attention, where node and edge kernels are used to implement fine-grained
evidence propagation to find subtle clues. Though these works have made progress in Evidence-based
Fact-checking, they are not keeping up with the popularity of LLMs and thus have outdated performance.

5.2 LLM Attempts on Evidence-based Fact-checking

With the advancements of LLMs, numerous attempts have been made at evidence-based fact-checking.
(Cao et al., 2023) evaluated the fact verification performance of gpt-3.5-turbo and Llama2-7b. FactLlama
(Cheung and Lam, 2023) combined Llama with external evidence retrieval to bridge the gap between
model knowledge and up-to-date context. HiSS (Zhang and Gao, 2023) employed a Hierarchical Step-
by-Step method with text-davinci-003 to break down claims into sub-claims and verify each via multiple
question-answering steps. (Hu et al., 2023a) used Llama-7B and gpt-3.5-turbo to test on the Pinocchio
benchmark with 20K factual questions. (Quelle and Bovet, 2023) utilized GPT-3.5 and GPT-4 for fact-
checking by querying, retrieving context, and making decisions with cited reasoning. (Choi and Ferrara,
2023) designed a framework for automating the claim-matching phase using various GPT and Llama
models on a GPT-4 generated dataset of simulated social media posts.

5.3 Integrating Graphs with LLMs

Many studies have attempted to combine LLMs with graph neural networks. (Chen et al., 2023) ex-
plored the potential of LLMs in graph neural networks through two pipelines: enhancing node features
with LLMs and using LLMs as standalone predictors. (Guo et al., 2023) conducted an empirical study
to assess LLMs’ comprehension of graph data, using various tasks to evaluate their graph understand-
ing. They introduced a framework combining LLMs and graph-structured data, utilizing graph descrip-
tion language with prompt engineering. Graph of Thoughts (GoT) (Besta et al., 2023) advanced LLM
prompting by modeling LLM-generated information as graphs, where thoughts are vertices and depen-
dencies are edges. (He et al., 2023) leveraged LLMs to capture textual information as graph features to
enhance GNN performance.

5.4 Reversal Curse

To our knowledge, (Meng et al., 2023; Grosse et al., 2023; Berglund et al., 2023) discovered the Reversal
Curse. (Meng et al., 2023) suggests that LLMs may store factual associations differently depending on
their direction. (Grosse et al., 2023) found that LLMs have not successfully transferred knowledge of
the relation itself and influence decay to near-zero when the order of the key phrases is flipped. They
discovered that if the pre-trained models were not trained on facts in both directions, they would not
generalize to bidirectional situations. (Berglund et al., 2023) collected a list of celebrities from IMDB
and asked GPT-4 to provide child-parent pairs and queried GPT-4 to identify the child for each child-
parent pair, and found that its success rate is only 33%. They attempted to solve it by trying multiple
models, importing auxiliary examples, and changing the contents. However, they found that scaling plots
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are flat across model sizes and model families, and models do not increase the likelihood of the correct
response except when utilizing in-context learning.

6 Conclusions and Future Works

We proposed the BiSaGA framework, a bidirectional sparse graph attention adapter for LLMs. This
framework introduces bidirectional attention to hierarchical sparse graphs for enhanced information ag-
gregation and efficient fine-tuning. Our method successfully overcomes the Reversal Curse with bidi-
rectional attention adaptation, achieving superior performance with aggregated information. As a result,
we improved model capabilities, surpassed GPT-4, and set new state-of-the-art (SOTA) results in the
evidence-based fact-checking task. Our framework can address the Reversal Curse in various reasoning
tasks, representing a significant advancement. We are committed to exploring this promising approach
in other fields.
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Alica Hövelmeyer, Katarina Boland, and Stefan Dietze. 2022. Simba at checkthat!-2022: Lexical and semantic
similarity based detection of verified claims in an unsupervised and supervised way. In Conference and Labs of
the Evaluation Forum.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large language models.

Xuming Hu, Zhijiang Guo, GuanYu Wu, Aiwei Liu, Lijie Wen, and Philip Yu. 2022. CHEF: A pilot Chinese
dataset for evidence-based fact-checking. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir
Meza Ruiz, editors, Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 3362–3376, Seattle, United States, July.
Association for Computational Linguistics.

Xuming Hu, Junzhe Chen, Xiaochuan Li, Yufei Guo, Lijie Wen, Philip S. Yu, and Zhijiang Guo. 2023a. Do large
language models know about facts?

Xuming Hu, Zhaochen Hong, Zhijiang Guo, Lijie Wen, and Philip Yu. 2023b. Read it twice: Towards faithfully
interpretable fact verification by revisiting evidence. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’23, page 2319–2323, New York,
NY, USA. Association for Computing Machinery.

Tanveer Khan, Antonis Michalas, and Adnan Akhunzada. 2021. Fake news outbreak 2021: Can we stop the viral
spread? Journal of Network and Computer Applications, 190:103112.

Amrith Krishna, Sebastian Riedel, and Andreas Vlachos. 2022. ProoFVer: Natural logic theorem proving for fact
verification. Transactions of the Association for Computational Linguistics, 10:1013–1030.

Yuqing Lan, Zhenghao Liu, Yu Gu, Xiaoyuan Yi, Xiaohua Li, Liner Yang, and Ge Yu. 2024. Multi-evidence
based fact verification via a confidential graph neural network.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin
Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 7871–7880, Online, July. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach.

CC
L 
20
25

Proceedings of the 24th China National Conference on Computational Linguistics, pages 946-959, Jinan, China, August 11-14, 2025.

(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China 957



China National Conference on Computational Linguistics

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu. 2020. Fine-grained fact verification with kernel
graph attention network. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7342–7351, Online, July.
Association for Computational Linguistics.

Weiyao Luo, Junfeng Ran, Zailong Tian, Sujian Li, and Zhifang Sui. 2024. FaGANet: An evidence-based fact-
checking model with integrated encoder leveraging contextual information. In Nicoletta Calzolari, Min-Yen
Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue, editors, Proceedings of the 2024
Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), Torino, Italia, May. ELRA and ICCL.

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and James Henderson. 2021. Variational information bottleneck for
effective low-resource fine-tuning.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. 2023. Locating and editing factual associations
in gpt.

Yixin Nie, Haonan Chen, and Mohit Bansal. 2018. Combining fact extraction and verification with neural semantic
matching networks.

OpenAI. 2023. Gpt-4 technical report.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. 2018. Deepinf: Social influence
prediction with deep learning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD ’18, page 2110–2119, New York, NY, USA. Association for Computing
Machinery.

Dorian Quelle and Alexandre Bovet. 2023. The perils & promises of fact-checking with large language models.

Aniketh Janardhan Reddy, Gil Rocha, and Diego Esteves. 2018. DeFactoNLP: Fact verification using entity
recognition, TFIDF vector comparison and decomposable attention. In James Thorne, Andreas Vlachos, Oana
Cocarascu, Christos Christodoulopoulos, and Arpit Mittal, editors, Proceedings of the First Workshop on Fact
Extraction and VERification (FEVER), pages 132–137, Brussels, Belgium, November. Association for Compu-
tational Linguistics.

Robert Sedgewick and Kevin D. Wayne. 2011. Algorithms, 4th edition. In Algorithms.

Shaden Shaar, Nikolay Babulkov, Giovanni Da San Martino, and Preslav Nakov. 2020. That is a known lie:
Detecting previously fact-checked claims. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault,
editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3607–
3618, Online, July. Association for Computational Linguistics.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2018. FEVER: a large-scale
dataset for fact extraction and VERification. In Marilyn Walker, Heng Ji, and Amanda Stent, editors, Proceed-
ings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 809–819, New Orleans, Louisiana, June. Asso-
ciation for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer,
Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne
Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mi-
haylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom.
2023. Llama 2: Open foundation and fine-tuned chat models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2023. Attention is all you need.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio’, and Yoshua Bengio. 2017.
Graph attention networks. ArXiv, abs/1710.10903.

CC
L 
20
25

Proceedings of the 24th China National Conference on Computational Linguistics, pages 946-959, Jinan, China, August 11-14, 2025.

(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China 958



China National Conference on Computational Linguistics

Andreas Vlachos and Sebastian Riedel. 2015. Identification and verification of simple claims about statistical
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