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Abstract

Addressing the limitations of the Skip-gram with Negative Sampling (SGNS) model related
to negative sampling, subsampling, and its fixed context window mechanism, this paper first
presents an in-depth statistical analysis of the optimal solution for SGNS matrix factorization,
deriving the theoretically optimal distribution for negative sampling. Building upon this anal-
ysis, we propose the concept of Global Semantic Weight (GSW), derived from Pointwise Mu-
tual Information (PMI). We integrate GSW with word frequency information to improve the
effectiveness of both negative sampling and subsampling. Furthermore, we design dynamic ad-
justment mechanisms for the context window size and the number of negative samples based
on GSW, enabling the model to adaptively capture contextual information commensurate with
the semantic importance of the center word. Notably, our optimized model maintains the same
time complexity as the original SGNS implementation. Experimental results demonstrate that
our proposed model achieves competitive performance aganist state-of-the-art word embedding
models including SGNS, CBOW, and GloVe, across multiple benchmark tasks.Compared with
the current mainstream dynamic word vector models, this work emphasizes achieving a balance
between efficiency and performance within a static embedding framework, and provides potential
supplementation and support for complex models such as LL.Ms.

Keywords: Negative Sampling , Word2vec , Word Embedding , Subsampling , Pointwise
Mutual Information

1 Introduction

Word embedding techniques have become a cornerstone of modern Natural Language Processing (NLP),
mapping words into low-dimensional, dense vector spaces to effectively capture semantic and syntactic
features. The Word2vec framework (Mikolov et al., 2013) marked a significant advance; its efficient
shallow neural network architecture achieved breakthroughs in computational efficiency and semantic
representation, laying a crucial foundation for subsequent word embedding research. Word2vec com-
prises two primary training models—Continuous Bag-of-Words (CBOW) and Skip-gram—along with
optimization techniques such as subsampling, Hierarchical Softmax, and Negative Sampling. Among
these, the Skip-gram model with Negative Sampling (SGNS) has emerged as one of the most widely
adopted static word embedding models due to its excellent training efficiency and representation capa-
bilities (Levy and Goldberg, 2014; Wang et al., 2020; Qin et al., 2016).

The SGNS model draws inspiration from Noise Contrastive Estimation (NCE), recasting the challeng-
ing probability normalization problem into a binary classification task: distinguishing true context words
(positive samples) from randomly sampled noise words (negative samples). Its objective is to maximize
the vector similarity between center words and their contextual words (positive samples) while minimiz-
ing vector similarity with negative samples. Despite its widespread adoption and significant advantages,
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the SGNS model exhibits several key limitations particularly regarding its negative sampling mechanism
and associated strategies:

* Insufficient Utilization of Corpus Information: Current negative sampling and subsampling strate-
gies rely solely on global word frequency distributions. However, frequency alone is insufficient
for capturing the full informational content of the corpus, potentially leading to the oversampling of
frequent but semantically less informative negative samples.

* Static Parameterization: The SGNS model employs fixed sizes for the context window and the
number of negative samples. This static configuration cannot adapt to variations in the information
content associated with different words or contexts, lacking dynamic adjustment capabilities.

To address these limitations, this paper proposes several key improvements integrated into the SGNS
framework:

* Derivation and Application of Global Semantic Weight (GSW): Building upon the theoretically
derived optimal negative sampling distribution (detailed in Section 3.2), we introduce Pointwise
Mutual Information (PMI) to formulate a Global Semantic Weight (GSW) metric. GSW aims to
quantify the global semantic significance of a word within the corpus more effectively than fre-
quency alone.

* GSW-Guided Sampling Strategies: We develop novel negative sampling and subsampling methods
that are directly informed by the calculated GSW, prioritizing more informative samples.

» Adaptive Training Parameters: We implement dynamic adjustment mechanisms for both the context
window size and the number of negative samples, guided by GSW values. For words with higher
GSW values (indicating greater semantic density), the context window is expanded, and the number
of negative samples is increased, facilitating a more nuanced training process.

It is true that in recent years, dynamic word embedding models based on the Transformer architec-
ture, notably BERT and the subsequent GPT series, have achieved significant breakthroughs in numerous
complex natural language processing tasks. They can flexibly generate contextualized semantic repre-
sentations. However, the training and deployment of such models are often associated with prohibitive
computational requirements, substantial resource consumption, and high inference latency. This has con-
strained their widespread adoption in resource-constrained scenarios, such as embedded systems, mobile
devices, and low-power terminals. Meanwhile, classic static word embedding models, represented by
SGNS (Skip-Gram with Negative Sampling), continue to play an indispensable role due to their inherent
advantages, including structural simplicity, computational efficiency, and lightweight deployment. They
remain crucial for applications prioritizing computational efficiency, for serving low-resource domains,
and for providing high-quality initialization parameters for more complex downstream models, including
Large Language Models (LLMs). Therefore, continuously optimizing these foundational models is not
only vital for deepening theoretical understanding but also holds significant practical importance.

In light of this, the focus of this paper is not to directly compete with state-of-the-art dynamic models in
terms of end-performance, but rather to concentrate on the optimization of static word embeddings. Our
objective is to provide a word embedding generation method that combines both theoretical superiority
and practical efficiency, tailored for high-performance, low-resource applications or as an initialization
scheme for more sophisticated models. Drawing upon a deep theoretical analysis of the optimal solution
for the SGNS model, we innovatively propose the Global Semantic Weight (GSW). The core idea of
GSW is to leverage prior knowledge, distilled from global corpus statistics (in this study, Pointwise Mu-
tual Information or PMI), to guide the model’s sampling behavior within local training windows. This
specifically encompasses negative sampling, subsampling, and the dynamic adjustment of the context
window size. Experimental results demonstrate that our method significantly enhances the quality of the
resulting word embeddings enabling them to outperform classic models, including the original SGNS
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and GloVe, on multiple benchmark tasks?without introducing significant additional computational com-
plexity. More importantly, we contend that this design paradigm of “’leveraging global statistics to guide
local dynamic training” offers a valuable perspective for optimizing a broader range of machine learning
models, including LLMs, a point we will elaborate on in the discussion section.

2 Related works

(Mikolov et al., 2013b) observed that word vectors capture syntactic and semantic regularities, such as
linear offset relationships, leading them to propose the Word2Vec model. This model is grounded on the
hypothesis: semantically similar words tend to occur in similar contexts (Harris, 1954). Word2Vec em-
ploys the Continuous Bag-of-Words (CBOW) and Skip-gram architectures to learn these vector represen-
tations. (Pennington et al., 2014) developed the GloVe model, which combines the statistical strengths
of global matrix factorization with the computational efficiency of local context window approaches.
GloVe generates word vectors through a weighted factorization of the global word-word co-occurrence
matrix, also achieving excellent results.

In recent years, considerable research has focused on optimizing Word2Vec models, including both
CBOW and SGNS variants. These improvements include incorporating Part-of-Speech (POS) informa-
tion (Pan et al., 2018), leveraging syntactic dependencies (Deng et al., 2020), enhancing training for
low-frequency words (Li et al., 2017), designing adaptive sampling strategies (Chen et al., 2018), and
fine-tuning model hyperparameters (Yildiz et al., 2021). Notably, the SGNS model, utilizing the nega-
tive sampling technique, has become a foundational model in the field due to its high training efficiency
and strong performance, prompting significant efforts to explore its theoretical underpinnings.

A seminal contribution by (Levy and Goldberg, 2014) demonstrated that SGNS implicitly factorizes a
matrix related to Pointwise Mutual Information (PMI). Specifically, they showed that the dot product of
a center word vector w and a context vector ¢ approximates the shifted PMIL: w - ¢ & PM I (w, ¢) — logy,
. This finding revealed a fundamental connection between neural embedding methods and traditional
statistical techniques. Building upon this, (Wang et al., 2020) provided an in-depth statistical analysis
of SGNS within a unified Word-Context Classification (WCC) framework. They argued that the implicit
PMI matrix factorization represents a special case occurring when the negative sampling distribution
@ is independent of the center word, and they further investigated improving negative sampling using
Generative Adversarial Networks (GANs). These theoretical investigations clarified the relationship
between SGNS and matrix factorization, influencing the design of subsequent models such as GloVe and
symmetric SVD. Despite these developments, SGNS continues to remain a valuable research focus due
to its simplicity, efficiency, and sustained competitiveness on various NLP benchmark tasks.

Inspired by prior research connecting SGNS and PMI, this study leverages global PMI statistics to
refine and optimize the SGNS model. Our approach specifically targets inherent limitations in negative
sample selection, the subsampling strategy, context window sizing.

3 Model

This chapter details the construction and optimization of our proposed word vector representation model.
We begin by reviewing the standard Skip-Gram with Negative Sampling (SGNS) model and its opera-
tional principles (Section 3.1). Subsequently, we delve into its theoretical underpinnings (Section 3.2),
deriving the optimal objective function and analyzing its dependence on the negative sampling distribu-
tion, thereby revealing the theoretical motivation for optimizing negative sampling and related training
strategies. Following this, we discuss the design principles for an ideal negative sampling distribution and
the associated challenges (Section 3.3). We then present the core improvement strategies proposed in this
paper in detail: (1) dynamically balanced negative sampling based on Global Semantic Weight (GSW)
(Section 3.4); (2) an enhanced subsampling strategy incorporating GSW (Section 3.5); and (3) adaptive
context window sizing and negative sample allocation based on GSW (Section 3.6); An overview of our
approach is illustrated in Figure 1.
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3.1 SGNS Model

The Skip-Gram (SG) model aims to learn word vector representations by predicting the context words
surrounding a central word. Atits core is a shallow neural network comprising an input layer, a projection
layer (hidden layer), and an output layer, and is associated with two key embedding matrices: the central
word (input) embedding matrix V € RY°¢*? and the context word (output) embedding matrix U €
RYocxd where Voc is the vocabulary size and d is the word embedding dimension.

For a given center word w (whose vector is v,, € V') and context word ¢ (whose vector is u. € U), the
original SG model uses the Softmax function to define the probability of ¢ appearing in the context of w:

exp(ug’vw)

P(clw) =
( | ) Zde Vocab e$p(ung)

(D

The training objective is to maximize the log-likelihood of all observed (w,c) pairs in the corpus:
Y (w,e)ep log P(clw). However, the normalization term of Softmax requires traversing the entire vocab-
ulary, which is extremely computationally expensive.

To solve this problem, Mikolov et al. proposed a Negative Sampling optimization strategy, which
transforms the problem into a series of binary classification tasks. For each observed positive sample
pair (w, ¢T), the model simultaneously samples K noise words (negative samples) {cn,,- -, cn, }-

These negative samples are typically sampled according to a distribution of word frequencies raised
to the power of 3/4: P,(c) o< freq(c)3/* .The objective of SGNS is to maximize the similarity (score)
of positive sample pairs while minimizing the similarity between the center word and negative samples.
Its loss function (minimization target) is typically expressed as:

Loss = — Z (loga(u;vw) + ﬁ EcNiNPn(c) [loga (—UZNi vw)}> )

(w,et)eD =1
3.2 Discussion of Optimal Solutions Based on Statistical Distribution

(Levy and Goldberg, 2014) analyzed SGNS from a statistical perspective, defining the scoring function
s(z,y) = ugvx, where x is the center word and y is the context word. When the SGNS model converges,
the scoring function s(x,y) it learns approximates the shifted Pointwise Mutual Information (Shifted
PMI): s(x,y) ~ PMI(x,y) — logK.

We can further derive the optimal scoring function from the perspective of optimization objectives. Let
D™ be the set of positive sample pairs and D~ be the (implicitly defined) set of negative sample pairs,
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and the corresponding empirical distributions are: P(z,y) = #%(f’y), Qx,y) = M where

N and N are the total effective number of observations of positive and negative samples respectlvely
(N~ ~ KNT), where #p+ (z, y) represents the number of times the word-context pair (x,y) appears in
the positive sample set DT, and # - (z, y) represents the number of times the word-context pair (x, y)
appears in the negative sample set D~ . The objective function of SGNS can be written as:

== [N"P(a,y)logo(s(z,y)) + N~ Q(a,y) log (1 - o(s(z,y)))] 3)
m7y
Taking the partial derivative of s(x,y) and setting it to 0:

o ~ o'(s) _~ —o'(s)
m——N+P($aQ)'U(S) - N Q(l‘ay)'l_io(s)—o “4)

It can be solved that when Supp(P) € Supp(Q), the optimal score s*(z, y) satisfies:

o(s*) _ N'P(x,y)

s*(xy) _
e = = — (5
1—o(s*)  N-Q(x,y)
N*tP P N+
s*(z,y) = log Ple.v) = log Pla,y) +log —— (6)

N=Q(z,y) Q(z,y)

This result clearly shows that the optimal scoring function directly depends on the ratio of the positive
sample distribution P and the negative sample distribution @ Therefore, designing a better negative
sampling distribution CNQ is crucial for learning a scoring function closer to the ideal and thus obtaining
higher quality word vectors.

3.3 Ideal Negative Sampling Distribution Based on Pointwise Mutual Information

From the analysis in Section 3.2, it is known that the construction of the optimal scoring function s*(x, y)
depends on the positive sample distribution P(:v y) and the negative sample distribution Q(a: y). In
Word2Vec, the word pairs in the negative samples appear independently, and the selection of the context y
of the negative samples does not depend on the specific central word z, i.e., @(x, y) = ]5(37) @(y) where
P(z) = >y P(y)is the marginal distribution of the central word z in the positive samples, and Q(y) is
also the marginal distribution of the context word y in the negative samples. At this time, Q(y) can be
designed as a distribution similar to P(x) (such as freq(z)3/* approximation). This sampling is simple
and efficient, but due to the lack of utilization of the central word information, it is easy to introduce
a large number of “pure negative samples” that are not related to the semantic space of the positive
samples, which leads to the introduction of too much noise in s(x, y), affecting the overall convergence
of the model In order to make the distinction between positive samples and negative samples more
obvious and the training more efficient, we need to avoid collecting “pure negative samples” that do not
overlap with the positive sample distribution as much as possible, that is, we expect the negative sample
distribution Q(y|z) ~ P(y|z). From an intuitive point of view, we want to choose some “difficult”
negative samples, that is, those context words that are semantically related to the central word but do
not belong to the positive samples, in order to maximize the effect of distinguishing between positive
and negative samples, instead of simply shifting the vector towards the direction of "over-distinguishing
negative samples”. Therefore, in order to more effectively distinguish between P and Q given the
sampling budget, we consider designing a weighted negative sampling model based on Pointwise Mutual
Information (PMI). According to the PMI definition:

PMI(x,y) = log5 -5 (>"¥)) (7)
where P(z,y) = #(]f,’y), P(x) = #]Sf), Ply) = t¥ ), #(z,y) represents the number of co-

occurrences of th central word = and the context word ¥y in the window in the corpus, #(z) is the
total number of occurrences of the central word z, #(y) is the total number of occurrences of the context
word y, and NV represents the total number of words in the corpus.
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3.4 PMI Mean-Weighted Dynamic Balanced Negative Sampling Strategy

In order to integrate richer semantic information while ensuring global sampling efficiency, we propose a
negative sampling strategy based on Global Semantic Weight (GSW). First, calculate the average Point-
wise Mutual Information (Average PMI) of each word y to measure its average association strength with
the entire central word set y :

1

PMIy(y) > max(0, PMI (x,y)) (8)

=

If a word y often has a high PMI value with multiple central words, then its corresponding PMI¢(y)
is alsc large, which indicates that the word has a strong semantic signal in multiple contexts and is more
likely to become an information-rich negative sample. It should be noted that max(0, PMI(x,y)) is
used here to filter out negative PMI values, because negative PMI value between two words is usually
not representative. Then we normalize PMI,,,(y) to obtain the global semantic weight : GSW(y)
€ [0,1] :

PMIavg (y) — min, PMI,ye(2)

W =
GS (Y) nlaxgl)hdlavg(z) —-Ininzl)hdlavg(z)

©))

GSW(y) reflects the relative importance or amount of information of word y in the global semantic
space We incorporate GSW into the calculation of the negative sampling probability, and propose a new
GSW - weighted negative sampling distribution Qasw(y) :

Qasw(y) o freq(y)*GSW(y)” (10)

where: freq(y) is the frequency of word y in the corpus, «, 5 € [0, 1] are smoothing factors, used to
adjust the balance between word frequency and global semantic weight, and can be dynamically adjusted
according to specific corpus scenarios or downstream task requirements.

We will now analyze the overall time complexity of computing GSW. For the convenience of discus-
sion, let N denote the total number of words in the corpus Corpus Size, V' denotes the vocabulary size,
C represents the context window size, & is the number of negative samples per positive sample, D stands
for the dimension of the word vectors, and F indicates the number of training epochs.

The computation of GSW is a one-time preprocessing step executed before the training begins. Its
complexity analysis is as follows:

* PMI Computation Preparation: This step involves calculating the co-occurrence counts for all word
pairs by making a single pass over the corpus, resulting in a complexity of O(N x ().

* PM1I,,4y Computation: This step constitutes the primary computational overhead for GSW. For
each word y in the vocabulary V, it is necessary to iterate through the entire vocabulary to compute
its average PM I with all possible center words x. Consequently, the complexity of this step is
O(V?), where V is the vocabulary size.

* Normalization to obtain GSW: This involves normalizing all PM,,, values, which has a com-
plexity of O(V).

Therefore, the total complexity of the preprocessing stage is O(N x C' + V?) ~ O(V?), as V? is
typically the dominant term in this phase.

The training complexity of the original SGNS model is analyzed as follows:

The model iterates through every word in the corpus /N. For each center word, it processes approxi-
mately 2 x C context words as positive samples. For each positive sample (i.e., a center-context word
pair), the model performs an update for the positive pair and for k negative samples. The update for
the positive sample (involving forward propagation, loss computation, and backpropagation) has a com-
putational cost proportional to the vector dimension D, i.e., O(D). The updates for the k negative
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samples have a combined cost of O(k x D). Therefore, the complexity of processing a single center-
context word pair is O((1 + k) x D). Consequently, the complexity for a single training epoch is
O(N x2C x (14k) x D). Over E epochs, the total training complexity becomes O(FE x N x C' x kx D).

In the vast majority of NLP tasks, the corpus size [V is significantly larger than the vocabulary size V.
For instance, a medium-sized corpus might contain one billion words (N = 10?), while the vocabulary
size typically ranges from 10° to 5 x 10°. Under these circumstances, the order of magnitude of V? is
approximately (10%)2 = 1010, In contrast, with N at 10°, the training complexity (e.g., E = 5,C =
5,k = 15, D = 300) can easily reach an order of magnitude of 5 x (10%) x 5 x 15 x 300 ~ 10*4. This
value, 10, is several orders of magnitude greater than 10'°.

The training complexity is thus several orders of magnitude higher than the GSW pre-computation
complexity. Therefore, the overall time complexity of our proposed model remains on the same or-
der of magnitude as the original SGNS implementation, and it is still dominated by the training phase,
O(ENCED). This demonstrates that our proposed method enhances model performance while main-
taining the original training efficiency.

3.5 Improved Subsampling Strategy

The subsampling algorithm reduces the retention probability of high-frequency words in the training data
through a biased sampling strategy based on word frequency, while accelerating the training process. In
the canonical word2vec implementation, the probability of retaining a word instance during training is
calculated according to the following formulation:

{ 1 if flw)<t
freq(w)

P(w) = otherwise

Y
where freq(w) represents the frequency of word w in the corpus, and ¢ denotes a predefined frequency
threshold, typically set to approximately 10~° in the original word2vec implementation (Mikolov et al.,
2013c).
However, this sampling strategy based only on global word frequency has at least two main defects:

* Semantic Information Loss: Certain high-frequency words (e.g., domain-specific terms in special-
ized corpora or polysemous words with multiple distinct meanings) may encode crucial semantic
information. Aggressively downsampling these terms based solely on their frequency can inad-
vertently eliminate important semantic signals, thereby degrading the model’s ability to capture
nuanced semantic relationships (Bullinaria and Levy, 2012)

» Context-Insensitivity: By relying exclusively on global frequency statistics, the standard approach
disregards the contextual importance of words across different semantic environments, potentially
leading to suboptimal representations for words that exhibit significant semantic variation across
contexts

To address these limitations and better balance semantic significance against frequency distribution,
we propose incorporating the Global Semantic Weight (GSW) metric (as defined in Section 3.4) into the
subsampling probability calculation. This leads to our enhanced sampling formulation:

12)

P(w) = min (1, tGSW(wW)

freq(w)

Where the hyperparameter is used to adjust the influence intensity of GSW on the sampling probability.
Generally speaking, the larger the amount of text, the smaller the GSW(w) will be when the window size
remains unchanged, the smaller  needs to be, and ¢’ needs to be appropriately increased, such as setting
it to 1 + - times the original value.

This semantically-informed subsampling approach enables more nuanced word representation learn-
ing by preserving semantically significant terms while still effectively managing the computational chal-
lenges posed by highly skewed word frequency distributions.
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3.6 Adaptive Window Size and Number of Negative Samples

Traditional Skip-Gram models usually adopt a fixed-size context window and a fixed number of negative
samples. This static setting fails to fully adapt to the heterogeneous needs of different words for the
scope of the context, and fails to effectively utilize the dynamic information in the training process. In
order to solve this limitation, we propose an adaptive context window mechanism, whose window radius
c(w,epoch) can be dynamically adjusted according to the semantic importance of the central word w and
the current stage of training

currentepoch

C(wa GPOCh) = Cmin + (Cbase - Cmin) : GSW(U)) + (Cma:v(GPOCh) - Cbase) : (13)

tOtalepochs

where ¢y is the minimum window radius, cpase i @ basic window radius (cpase > Cmin) » and
GSW (w) makes words with higher semantic weights tend to have a larger basic window. cyax(epoch) is
the maximum window radius that may dynamically increase with the number of training rounds epoch.
The overall window size c(w, epoch) is between cyin and cpax(epoch) and is modulated by GSW. This
design allows the model to focus on the core local context (smaller window) in the early stage of training.
As the training deepens and the word vectors gradually stabilize, the window range is gradually expanded
to capture longer-distance dependencies, while allowing words with richer semantic information (high
GSW) to use the expanded context information faster or more fully. Similarly, we also design the number
of negative samples required for each central word w as an adaptive form:

currentepoch

n(w7 QPOCh) = Nmin + (nbase - nmm) : GSW(’U}) + (nmax(€p00h> 1T nbase) : (14)

totalepochs

Where npnin, Mbase> Mmaz represent the minimum, base, and maximum number of negative samples
that change with the number of rounds, respectively. This mechanism allows the model to allocate
more computational resources for negative sampling towards words deemed to have higher semantic
importance (high GSW) or those requiring more refined distinction, particularly in the later stages of
training, thereby aiming to improve overall training efficiency and effectiveness.

In the initial stages of training, when word vector representations are typically poorly initialized or
unconverged, the model benefits from employing a narrower context window. This allows it to prioritize
the most core, immediate contextual information to learn the fundamental semantic properties of words.
As training progresses, the context window size dynamically expands, driven by the term (cyax (epoch) —
Chase) * %. The rationale is that as vector representations stabilize and converge with further
training, moderately expanding the window facilitates the capture of longer-range word dependencies,
thereby enabling further refinement of the vector representation quality.

During the gradient update process, the update to the center word vector vy, is influenced jointly by
the positive and negative samples. The gradient of the loss with respect to v,, is given by:

K
Vo, Loss = (0 (ue+ - vy) — Duer + ZO‘(UCNZ_ *Uw ) Uey, (15)
i=1

This gradient dictates the update direction for v,, (typically v,, < v, — nV,,, Loss). Consequently, the
positive sample term, with its coefficient (o (u.+-v,,) —1) < 0, tends to pull v,, towards u.+. Conversely,
each negative sample term, with its coefficient o (u, N Uy ) > 0, tends to push v, away from . N

In the initial phase of training: Word vectors are typically initialized randomly, resulting in dispersed
vector orientations. For a positive pair, the dot product u.+ - v, =~ 0, leading to a relatively large
magnitude factor for its update contribution, |o(u.+ - vy) — 1| & 0.5. Similarly, for negative samples,
Uey, ~ Vuy R 0, and their contribution magnitude factor a(uCNi -Uy) ~ 0.5. Thus, even a small number of
negative samples (K') can provide sufficient repulsive force, which, combined with the attractive force
from the positive sample, guides the vector towards a generally correct orientation.
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As training progresses, the word vectors tend to converge. According to (Mu et al., 2018), word
vectors tend to share a significant common vector component during the convergence process. The
model becomes more accurate in predicting positive samples, causing the positive dot product w.+ - Uy
to increase, such that o(u.+ - v,) &~ 1. This diminishes the magnitude factor of the positive sample’s
contribution to the update, (1 — o(u.+ - v)) ~ 0. Consequently, the “learning signal” from positive
samples weakens.

Concurrently, the model may become adept at distinguishing “easy” negative samples, for which the
dot product u., - v, is nearly negative. For these samples, o (uc, - vy) = 0, and their gradient con-
tribution magnitzude also becomes negligible. To continue optimizzing the model, perform fine-tuning,
and effectively discriminate against “hard” negative samples — those still exhibiting similarity to v,, (i.e.,
Uy, * Uy 18 close to zero or even positive, resulting in o (ue N; vy, ) being non-negligible) — it becomes
beneficial to increase the number of negative samples, K. Increasing K enhances the probability of sam-
pling these “hard” negatives, thereby increasing the expected magnitude of the total negative gradient
contribution. This ensures that sufficient optimization force remains, even when the positive signal has
attenuated, allowing the model to refine vector positions and achieve finer-grained distinctions.

4 Experiments

4.1 Experimental Setup

To validate model performance under different data scales, the experiment used the text8! common
benchmark dataset, which is part of the text from Wikipedia and contains about 100 million tokens (the
processed size is about 95.3MB). Words with a frequency of less than 20 are excluded. For fair perfor-
mance comparison, we developed SGNS model code using PyTorch based on the original C language
toolkit.> We also evaluated different combined configurations of the improvement strategies proposed in
this paper, including:

* SGNS + GSW: SGNS + GSW negative subsampling
* SGNS + GSW + AW : SGNS + GSW negative subsampling + adaptive window

* SGNS + GSW + AWN : SGNS + GSW negative subsampling + adaptive window + adaptive nega-
tive samples

4.2 Hyperparameter Settings

Our GSW-SGNS model has some parameters the same as the SGNS model, including: initial learning
rate ;e = 0.025, word embedding dimension d = 200, training epochs Epochs = 20, and random
initialization within the range [—075, %}. The difference lies in that for the SGNS model, the fixed
window size is set to 5, wheDreas in our model it is configured as: cmin = 1, Chase = 7, Cmax = 9.
Furthermore, the baseline model employs a fixed number of negative samples K = 10, while our model
implements: nmin = 5, Npase = 10, nmax = 20. Both approaches share the subsampling threshold
t = 1079, but our model introduces an additional parameter v = 0.75. In the adjustment of our negative

sampling strategy, the parameters « = 0.75 and 5 = 0.5.

4.3 Word Vector Evaluation Criteria

Word embeddings can be evaluated on intrinsic and extrinsic tasks. Extrinsic evaluation primarily as-
sesses the improvement in word vectors’ performance in real-world tasks, such as sentiment analysis and
text classification, using metrics like accuracy, precision, and recall to judge the training quality of the
word vectors. Intrinsic evaluation, on the other hand, starts from the semantics of the words themselves,
verifying whether the semantic relationships captured by the word vectors align with human cognition.
Typical tasks for intrinsic evaluation include word similarity tasks, word analogy reasoning tasks, and
semantic clustering (Levy and Goldberg, 2014b). Our experiment employs intrinsic evaluation tasks.

"https://dataset.bj.bcebos.com/word2vec/text8.txt
Zhttps://code.google.com/archive/p/word2vec/
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4.3.1 Word Similarity Task

The goal of this task is to measure the consistency between the geometric distance in the word vector
space (typically cosine similarity) and subjective human judgments of semantic similarity between cor-
responding words. The core assumption is that words with similar meanings should also be located close
to each other in the vector space. The experiment utilizes several well-established benchmark datasets:

* WordSim-353 (Finkelstein et al., 2001): A widely used dataset containing 353 word pairs and
human-annotated similarity scores.

* MEN Test Set (Bruni et al., 2014): Contains 3000 word pairs, labeled with their relatedness.

e SimLex-999 (Hill et al., 2015): Focuses more on evaluating pure ”similarity” rather than “’related-
ness” or “association,” containing 999 word pairs.

* SimVerb-3500 (Gerz et al., 2016): Contains 3500 verb word pairs and their similarity scores.

To quantify the correlation between the similarity predicted by the model (cosine similarity of word
vectors) and the human-annotated similarity scores, we employ the Spearman Rank Correlation Coef-
ficient. The Spearman Rank Correlation Coefficient builds upon the Pearson Correlation Coefficient
and assesses whether the relationship between two variables can be described by a monotonic function.
The calculation method involves first converting the original data (z;, y;) into ranks (R,,, R,,) and then
calculating the Pearson correlation coefficient of these ranks.

- cov(Rx, Ry) (16)

ORxORy
Compared to the Pearson coefficient, the Spearman coefficient is less sensitive to the distribution
and outliers in the original data and is better at capturing non-linear monotonic relationships, making
it particularly suitable for evaluating word similarity tasks. The higher the absolute values of the two

Spearman Rank Correlation Coefficient, the better the model performance.

Table 1: Word Similarity Task Results

Mo dataset Wordsim353  simverb3500 SimLex-999 MEN-3k-1 MEN-3k-2
Glove 0.524 0.104 0.115 0521 0.429
CBOW 0.624 0.113 0218 0.652 0.649
SGNS 0.712 0.155 0279 0.672 0.699
SGNS+GSW 0.716 0.182 0307 0.697 0.720
SGNS+GSW+AW | 0.748 0.181 0.287 0.701 0.725
SGNS+GSW+AWN | 0.743 0.171 0.308 0.695 0.727

4.3.2 Word Analogy Task

This task aims to evaluate the model’s ability to capture the similarity of relationships between words,
which typically reflects underlying linguistic patterns (e.g., semantic relations like “country-capital” or
grammatical relations like “singular-plural”). The task objective is to simulate the ability of humans to
perform analogical reasoning through vector operations. We employ the widely used Google Analogy
dataset, which is a classic evaluation tool for testing the performance of word embedding models in
analogy reasoning tasks. This dataset contains 19,544 analogy questions, divided into 14 relationship
categories, including 9 syntactic morphological categories (denoted as graml gram9) and 5 semantic
categories (denoted as sem1 sem5).

For a given triple (A, B, C) , the task is to find word D such that the vector relationship vg — vy ~
vp — v holds. In practice, we typically seek the word D whose vector vp has the highest cosine
similarity to the target vector vg — v4 + vo (excluding A, B, and C themselves). Evaluation Metric:
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Performance is measured by Top-1 accuracy, which is the percentage of analogy questions for which the
model’s top-ranked prediction is the correct answer.

Table 2: Word Analogy Task Results (syntactic)

dataset 151 Go G3 G4 GS  G6  GI  GS  G9
Model
Glove 0212 13.08 3524 1268 27.62 8004 1564 4658 27.70
CBOW 1012 1037 3321 1634 2832 7869 2838 5134 30095
SGNS 1057 08.11 3476 13.66 31.86 7206 1985 5198 21.85
SGNS+GSW 1230 17.97 4567 2826 2530 81.68 2961 5444 28.00
SGNS+GSW+AW | 1151 1536 49.05 2609 2732 82.13 3483 5222 2615
SGNS+GSW+AWN | 1640 1503 4746 2373 3095 8658 3228 5817 28.92

Table 3: Word Analogy Task Results (semantic)

Moo dataset g1 gp  s3  s4 S5 Average(all)
Glove 5060 21.06 03.10 3094 6437 32.88
CBOW 81.13 7024 0948 4934 51.13 3834
SGNS 7560 6149 13.03 40.60 5052 40.01
SGNS+GSW 88.74 7156 1940 4395 6242 47.20
SGNS+GSW+AW | 86.76 67.69 1791 4335 6536 47.29
SGNS+GSW+AWN | 8538 69.03 22.40 4494 6209 48.48

Table 2 and Table 3 present the Top-1 accuracy of different models on the word analogy task. G1~G9
represent 9 syntactic morphological categories, and S1~S5 represent 5 semantic categories. The Average
column is the average accuracy across all categories. The table shows the performance of different
models in each category, as well as the overall average accuracy. Again, SGNS is the base model, and
GSW, AW, and AWN are different improvement strategies.

5 Conclusions and Future works

In this paper, we proposed a series of optimization approaches based on Global Semantic Weight (GSW),
with particular emphasis on improving subsampling and negative sampling techniques. The experi-
mental results from word similarity and word analogy tasks demonstrate that models incorporating the
GSW optimization significantly outperform the original SGNS baseline model. In word similarity tasks,
the SGNS+GSW+AWN model achieved an optimal score of 0.748 on the Wordsim353 dataset, rep-
resenting a 5.1% improvement over the original SGNS score of 0.712. For word analogy tasks, the
SGNS+GSW+AWN model attained an average accuracy of 48.48%, surpassing all other models and
showing notable improvement compared to the baseline SGNS model’s 40.01%.

Due to resource constraints, our evaluation was limited to the text8 dataset. Future work could in-
volve training the model on larger corpora such as Common Crawl or the complete Wikipedia corpus
to further validate the universality and scalability of our proposed strategies. We anticipate that as data
scale increases, the advantages of our model will become even more pronounced. Additionally, the
GSW and AWN strategies introduced in this paper bring new hyperparameters, such as the parameters
in subsampling and the window size adjustment functions in AWN. Systematically exploring optimal
combinations of these parameters through methods like grid search or Bayesian optimization may fur-
ther enhance model performance. The design philosophy embodied by GSW can also offer valuable
insights for the optimization of Large Language Models (LLMs). The pre-training of LLMs relies on
vast amounts of text data, yet not all data is of equal value. In real-world corpora with highly skewed data
distributions, the ability to efficiently select samples and contexts with higher information density and
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stronger representative power directly impacts a model’s downstream performance and generalization
capabilities. Current data curation strategies, however, often focus on syntactic or superficial statistical
features.

First, in terms of pre-training data processing, GSW can provide an efficient and theoretically
grounded metric for tasks such as data selection, hard-negative mining, and sample re-weighting for
LLMs. By introducing global semantic statistical weights, it allows for the identification of high-value
data. For instance, sentences containing multiple words with high GSW values typically carry richer se-
mantic associations. During the data loading phase of pre-training, these information-dense samples can
be prioritized for sampling or assigned higher weights, thereby achieving more efficient model training
within the same computational budget.

Second, at the level of training strategy, the global importance represented by GSW can be used to
guide the negative sampling process in LLMs. By selecting more informative and challenging negative
samples, it can effectively enhance the model’s discriminative power and reduce inefficient gradient
computations. This approach holds potential value for contrastive learning, the construction of self-
supervised losses, and the development of efficient negative sampling strategies during large-scale pre-
training.

In summary, the method proposed in this paper focuses on enhancing the efficiency and semantic
precision of static word embedding models. At the same time, its core philosophy maintains excel-
lent compatibility with and offers broad extension possibilities for advanced model paradigms. Future
work could explore the deep integration of the GSW philosophy with the dynamic training techniques of
LLMs, aiming to further unlock the potential of different model paradigms in their respective advanta-
geous scenarios and to achieve an organic unification of efficiency, low-resource consumption, and high
performance.
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