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Abstract

The end-to-end speech translation task involves directly transforming speech into the text of
another language, bypassing the generation of an intermediate transcription. However, existing
methods may lose key information during cross-modal length alignment and fail to effectively
integrate different representations, resulting in low quality of the fused representation. To address
these issues, we propose an efficient method named CRAF for effective cross-modal alignment
and fusion for speech translation, which reduces information loss and enhances the integration
of cross-modal representations. First, CRAF minimizes information loss by improving the cross-
modal length alignment, ensuring the alignment process retains more critical information from
the speech modality. Second, CRAF strengthens the integration of cross-modal representations
by allowing the model to combine complementary features from diverse modalities, enhancing
its capacity to concentrate on the most pertinent and critical information. Finally, we evaluate
CRAF by conducting extensive experiments on eight language pairs from the MuST-C dataset.
Experiments show that the average BLEU score of CRAF achieves 29.0, outperforming other
comparison methods. Our code is available at https://github.com/wu-wen-zhou/first/tree/master.

Keywords: Speech Translation , Cross-modal Task , Length Alignment , Representation
Fusion.

1 Introduction

The end-to-end speech translation task (Bérard et al., 2016; Duong et al., 2016) directly translates speech
from the source language into text in the target language without generating intermediate text. This task
encompasses a broad spectrum of application scenarios, including international conferences, real-time
translation, and video subtitling. As a task involving multiple modalities, numerous studies (Ye et al.,
2021; Ye et al., 2022; Xu et al., 2023a; Han et al., 2021; Fang et al., 2022) focus on the alignment and
fusion of speech and text modalities with the aim of enhancing model performance.

However, existing methods may lose critical information during the alignment of speech and text rep-
resentations across different lengths. Furthermore, after fusing the speech and text representations, these
methods fail to guide the model to focus on the more important parts for semantic understanding, thus
limiting the model’s performance. 1) Critical information loss: Existing methods (Fang et al., 2022; Han
et al., 2021; Gangi et al., 2019; Zhang et al., 2024; Ye et al., 2022; Zhou et al., 2023; Ye et al., 2021)
typically compress the length of speech representations during alignment. As a result, key information,
such as emotional information in speech representations, is often lost during the compression process,
which may lead to an incorrect understanding of the speaker’s semantics and affect the quality of the
speech representation. For example, SpeechFormer (Papi et al., 2021) effectively mitigates such infor-
mation loss by introducing improvements in the memory management of the attention mechanism. By
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optimizing how attention computations are handled, SpeechFormer is able to retain more critical infor-
mation during the process of compressing and aligning speech representations. In addition, the work
by (Xu et al., 2023b) provides further insights into the root causes of information loss, attributing it to
the use of overly coarse-grained representations in the alignment process. To address this, they pro-
pose a progressive downsampling solution that gradually reduces the sequence length while preserving
essential details, thereby offering a more refined approach to maintaining information integrity during
speech-text alignment; 2) Lack of key information attention mechanism: During the fusion of speech
and text representations, existing methods (Fang et al., 2022; Zhou et al., 2023; Xu et al., 2023a) do
not guide the model to focus on more important information within the representations, resulting in the
model’s incomplete understanding of the fused representations and preventing the model from achiev-
ing its full performance. For example,VATT (Akbari et al., 2021) demonstrates that cross-modal self-
attention enables Transformers to automatically achieve semantic alignment across modalities and focus
on semantically relevant key information,even in the absence of explicit supervision. Thus, a practical
and interesting research question is: Can we propose a method that minimizes information loss during
speech representation compression while enabling the model to better focus on the important features in
the fused representations, thereby improving model performance?

In this paper, we propose a method named CRAF. CRAF incorporates a dynamic weighted length
adapter module that minimizes information loss during the alignment of speech and text representations.
It also incorporates a representation fusion module that enables the model to focus on more important
features in the fused representations. By integrating these two modules, our model not only reduces
information loss but also enhances the ability to focus on key features, thereby achieving improved
performance.

Nevertheless, implementing the CRAF method faces two main challenges. First, during the com-
pression of speech representations, it is highly challenging to preserve as much critical information as
possible during the reduction of feature length. Traditional methods, such as employing two CNN layers,
can compress speech representation to the desired length yet fail to differentiate the importance of infor-
mation, resulting in the loss of key details. Second, guiding the model to focus on more important infor-
mation after fusing the speech and text representations also presents a challenge. Since speech and text
belong to different modalities, their representations exist in different distributions and semantic spaces.
Although methods like concatenation or weighted fusion can improve performance, it is challenging for
the model to fully comprehend the semantic information, limiting performance improvements.

To address the above challenges, we first combine the output representations from different CNN lay-
ers using an attention mechanism for fusion. Then, we apply dynamic weighted summation between the
output of the first CNN layer and the fused representation to obtain the final compressed representation,
which helps reduce information loss. Additionally, after applying Mixup to the speech and text repre-
sentations, we use an attention mechanism to enable the model to focus on the more important parts of
the Mixup representation for semantic understanding.

Our contributions are as follows:
1) We employ a dynamic weighted length adapter, using an attention mechanism and weighted sum-

mation strategy to fuse speech representations from different convolutional layers, effectively reducing
information loss during the compression of speech representations.

2) We utilize a representation fusion module, where speech and text are randomly sampled and then
fused according to the optimal transport matrix. An attention mechanism is then applied to enhance
the fusion of speech and text representations, enabling the model to deeply understand the underlying
semantic information of the fused representations.

3) We implement a cross-modal representation alignment and fusion model called CRAF and con-
ducted experiments on eight language pairs from the MuST-C dataset. The experimental results show
that the model achieves an average BLEU score of 29.0, which is 0.3 points higher than the baseline
methods, with the highest improvement reaching 0.5 points.

The remainder of this paper is organized as follows. Section 2 reviews related work on speech-to-text
translation. Section 3 provides an overview of the design. Section 4 discusses the design details. Section
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5 presents the experiments. Section 6 presents the numerical results and analysis. Finally, Section 7
concludes the paper.

2 Related Work

End-to-end ST The traditional cascaded approach (Waibel et al., 1991) links speech recognition models
with machine translation models sequentially. However, this method faces challenges such as error prop-
agation and high latency. To overcome these limitations, end-to-end speech translation models (Bérard
et al., 2016; Duong et al., 2016) have been introduced, enabling the direct conversion of source language
speech into target language text without intermediate transcription. This paradigm has become the dom-
inant framework for speech translation (Vila et al., 2018; Salesky et al., 2019; Gangi et al., 2019; Fang
et al., 2022; Ye et al., 2022; Zhou et al., 2023; Wang et al., 2020). Nevertheless, end-to-end speech
tra‘nslation, as a cross-modal task, faces the challenge of bridging the modality gap between speech
and text. Some works have explored this issue. (Ye et al., 2022) uses contrastive learning to align the
semantic representations of speech and text; (Fang et al., 2022) employs Mixup to fuse speech and text
representations before feeding them into the encoder; (Zhou et al., 2023) first uses optimal transport (OT)
to align speech and text representations, and then fuses the encoder outputs of both modalities. However,
these methods overlook the information loss that occurs when compressing speech representations, as
well as how to make the model focus on the more important information in the representations after
fusion. In our work, we explore how to reduce information loss when compressing speech representa-
tions and how to make the model focus on more important information in the speech representation after
fusion.

Optimal Transport Optimal Transport (OT) is a mathematical framework for calculating the minimal
cost of transforming one probability distribution into another, with its theoretical foundations system-
atically detailed in (Villani, 2008). In recent years, OT has been widely applied to cross-lingual and
cross-modal tasks. For example, (Zhou et al., 2023) leverage OT to compute a transport matrix and use
Mixup to align speech and text representations, achieving notable performance gains. Similarly, (Chen
et al., 2020) and (Tsiamas et al., 2024) utilize OT for fine-grained alignment between textual, visual, and
speech representations.

3 Design of Overview

This section describes our model architecture, as shown in Figure 1. The model consists of a speech
encoder, a text embedding layer, a representation fusion module, a translation encoder, and a decoder.

Speech Encoder The main function of the speech encoder is to extract semantic information from the
original audio and align the lengths of the speech and text representations. It consists of a pre-trained
HuBERT1 (Hsu et al., 2021) model and a Dynamic Weighted Length-Adapter.

Dynamic Weighted Length-Adapter The primary function of this module is to compress speech
representations while preserving as much critical information as possible, thereby enhancing model per-
formance. It consists of two convolutional layers, a cross-attention mechanism, a LayerNorm layer, and
a weighted sum module.

Representation Fusion Module This module first aligns the semantic spaces of speech and text rep-
resentations using Optimal Transport (OT). Then, it applies a Mixup strategy to randomly sample speech
and text representations with a probability P, generating a mixed representation. Subsequently, a self-
attention mechanism is employed to further enhance the expressive power of the mixed representation.
The module primarily consists of Mixup and a self-attention mechanism.

Text Embedding The text embedding module operates in parallel with the Speech Encoder and is
designed to convert text into a sequence of embeddings.

Translation Encoder The translation encoder enhances semantic understanding by processing outputs
from both the Speech Encoder and Text Embedding module. It consists of Transformer Encoder layers
(Vaswani et al., 2017).

1 https://github.com/facebookresearch/fairseq/tree/main/examples/hubert
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Figure 1: Overview of the proposed framework with CRAF.

Translation Decoder The translation decoder processes the output from both the translation encoder
and the Representation Fusion module to deliver the final translation. It incorporates transformer decoder
layers (Vaswani et al., 2017).

4 Design Details

In this section, we first introduce the problem definition of speech translation and present Cross-Modal
Representation Alignment and Fusion (CRAF). Then, we will introduce our training strategy. By using
the Dynamic Weighted Length-Adapter and Representation Fusion Module, we can effectively align
and fuse cross-modal representations, significantly improving the performance and robustness of speech
translation.

4.1 Problem Formulation

A speech-to-text translation dataset is typically represented as a triplet D = {(S,X,Y)}, where S is
the input audio, X the source language transcription, and Y the target language translation. The goal of
end-to-end speech translation is to directly convert S into Y, bypassing the intermediate transcription X.

4.2 Cross-Modal Representation Alignment and Fusion (CRAF)

Dynamic Weighted Length-Adapter The dynamic weighted length adapter fuses hierarchical features
from different convolutional layers using cross-attention and residual connections. Specifically, the sec-
ond convolutional layer’s output serves as the query, and the first layer’s output as the key and value,
enabling inter-layer dependency modeling. A weighted summation module then adaptively combines
low- and high-level features, generating output features for the Translation Encoder. Let F1 and F2

denote the outputs of CNN1 and CNN2, respectively. The process is as follows (Bahdanau et al., 2014):

Q = WqF2, K = WkF1, V = WvF1.

CC
L 
20
25

Proceedings of the 24th China National Conference on Computational Linguistics, pages 1031-1042, Jinan, China, August 11-14, 2025.

(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China 1034



China National Conference on Computational Linguistics

Using these, the cross-attention output is computed as:

Fcross = softmax
(
QK⊤
√
d

)
·V. (1)

We obtain the weight µ through the dynamic weighted module:

µ = softmax (MLP(LayerNorm(Fcross + F2))) . (2)

Finally, a weighted sum is calculated to produce the fused output:

Fout = µ ∗ (Fcross + F2) + (1− µ) ∗ F1. (3)

Representation Fusion Module The representation fusion module first aligns speech and text fea-
tures via OT alignment, then applies random Mixup sampling with probability P to the outputs of the
Translation Encoder. A self-attention mechanism further refines the fused sequence, which is then fed
into the Translation Decoder. Here, Hs,Hx ∈ RT×d are the speech and text feature sequences, and
the OT alignment matrix A ∈ RT×T is computed by minimizing the alignment cost (Peyré and Cuturi,
2019).

A = arg min
A∈U(r,c)

T∑
i=1

T∑
j=1

aij · c(hsi , hxj ). (4)

where aij denotes the alignment weight, U(r, c) represents the set of valid distributions that satisfy the
marginal constraints, and c(hsi , h

x
j ) is a cost function.

Using the alignment matrix A, Mixup is applied to generate a fused representation M =
(m1, . . . ,mT ) as follows:

mi =

{
hsi , if p < P,

hxai , if p ≥ P.
(5)

where p is a probability parameter that controls the blending ratio between speech and text features.
The fused representation M is subsequently refined through a multi-head self-attention mechanism:

M′ = softmax
(
QK⊤
√
d

)
V. (6)

where Q = WqM, K = WkM, and V = WvM are the query, key, and value projections, respec-
tively.

This process ensures the effective integration of speech and text features through representation align-
ment, while the self-attention mechanism enhances contextual dependencies by assigning greater weight
to more important semantic information, enabling the model to focus on key elements and improving
their effectiveness for downstream tasks.

4.3 Training Strategy

Our training follows a pretraining-finetuning paradigm.
Pre-training: We first pretrain the model using text pairs (x,y) from the speech translation corpus as

a machine translation task:

LMT = −E(x,y) logP (y | x). (7)

Multitask Finetuning: We then perform multitask finetuning with triplets (s,x,y), jointly optimizing
speech translation and text translation:

LCE = −E(s,x,y)[logP (y | s) + logP (y | x)]. (8)
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To encourage distribution alignment among modalities, we minimize the KL divergence between the
fused representation (M′′), text (T), and speech (S) distributions:

LKL =
1

2

(
KL(M′′ ∥ S) + KL(S ∥ M′′) + KL(M′′ ∥ T) + KL(T ∥ M′′)

)
. (9)

The final training objective is:

LST = LCE + αLKL, (10)

where α is the KL divergence loss weight.

5 Experiments

In this section, we present the dataset used in our experiments, the experimental setup during training,
the inference method, and the baseline methods.

5.1 Dataset
We conducted experiments exclusively on the MuST-C2 (Di Gangi et al., 2019) dataset, without using
additional datasets. The MuST-C dataset, a widely used benchmark for speech translation, is primarily
derived from TED Talks. Detailed statistics for the MuST-C dataset are provided in Table 1.

Table 1: Detailed data statistics of the MuST-C dataset.
language En-De En-Es En-Fr En-Nl En-Pt En-Ro En-Ru En-It

hours 408 504 492 442 385 432 489 465
sents 234K 270K 280K 253K 211K 240K 270K 258K

5.2 Experimental Setups
Model Configurations Our model, based on CMOT (Zhou et al., 2023) and implemented with Fairseq3

(Wang et al., 2020), consists of five key components: a speech encoder, a text embedding module,
a translation encoder, a translation decoder, and a representation fusion module. The speech encoder
uses HuBERT, a pre-trained acoustic model, along with a dynamic weighted length-adapter module.
HuBERT serves as a feature extractor for speech representations and requires no additional fine-tuning
for downstream tasks.

The dynamic weighted length-adapter module, placed after HuBERT, includes two 1D convolutional
layers, a multi-head cross-attention mechanism, a residual connection, and a weighted sum module. The
convolutional layers have a kernel size of 5, stride 2, and padding 2, with a hidden layer dimension
of 1024. The multi-head cross-attention mechanism has a 512-dimensional input and output, with 4
attention heads.

Both the Translation Encoder and Translation Decoder use a Transformer architecture, each consisting
of 6 layers, with a hidden dimension of 512, 8 attention heads, and a feedforward layer of size 2048.

The representation fusion module combines Mixup (sampling rate 0.8) and a multi-head self-attention
mechanism with 8 attention heads, processing inputs and outputs of dimensionality 512.

Pre-processing We employ 16-bit, 16 kHz single-channel audio as the speech input for our model. For
text preprocessing, we use unigram-based SentencePiece4 (Kudo and Richardson, 2018) for tokenization
and construct a shared vocabulary comprising 10,000 tokens, applicable to both the source and target
languages.

Training We employ a pretraining-finetuning framework. Initially, the text embedding module, trans-
lation encoder, and decoder are pre-trained on machine translation (MT) tasks,using transcription-target
2https://ict.fbk.eu/must-c/
3 https://github.com/facebookresearch/fairseq/
4 https://github.com/google/sentencepiece/
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Table 2: The BLEU scores on the MuST-C tst-COMMON dataset. ”Speech Pre-training” indicates
whether a pre-trained speech model was used, and the bold font indicates an improvement in the BLEU
score for the corresponding language.

Models Speech BLEU Avg.

Pretraining En-De En-Fr En-Ru En-Es En-It En-Pt En-Nl En-Ro

Fairseq ST(Wang et al., 2020) × 22.7 32.9 15.3 27.2 22.7 28.1 27.3 21.9 24.8
XSTNet(Ye et al., 2021) ✓ 25.5 36.0 16.9 29.6 25.5 31.3 30.0 25.1 27.5
STEMM(Fang et al., 2022) ✓ 25.6 36.1 17.1 30.3 25.6 31.0 30.1 24.3 27.5
MCTN(Zhou and Yuan, 2024) ✓ 25.9 36.1 17.1 30.3 25.7
ConST(Ye et al., 2022) ✓ 25.7 36.8 17.3 30.4 26.3 32.0 30.6 24.8 28.0
FCCLm(Zhang et al., 2023) ✓ 25.9 36.8 17.6 30.7 26.4 31.8 30.5 25.0 28.1
ZEROSWOT(Tsiamas et al., 2024) × 27.3 35.8 17.8 31.7 26.8 31.6 30.9 25.3 28.4
CMOT(Zhou et al., 2023) ✓ 27.0 37.3 17.9 31.1 26.9 32.7 31.2 25.3 28.7
CRAF ✓ 27.5 37.6 18.0 31.6 27.0 33.0 31.4 25.6 29.0

pairs from the speech translation dataset. Subsequently, these components are fine-tuned for the speech
translation task. During pretraining, the learning rate is set to 2e-3 with 8K steps for warm-up. In the
fine-tuning phase, the learning rate is reduced to 1e-4 with a warm-up phase of 10K steps.

We use the Adam optimizer (Kingma and Ba, 2014) with β1 = 0.9 and β2 = 0.98, a dropout rate of
0.1 and label smoothing of 0.1. The KL divergence weight, α, is set to 2, and the mixup probability is
set to 0.8. All experiments are conducted on a single Nvidia GeForce RTX 4090 GPU.

Inference To derive the final model for inference, we average the weights of the last 10 checkpoints.
During the decoding phase, a beam search algorithm is employed with a beam size of 13. Evaluation is
performed on the MUST-C tst−COMMON dataset using the case− sensitive sacreBLEU5 (Post,
2018) metric, and the reported sacreBLEU scores on the test set represent the final results.

Baselines We evaluate the performance of our proposed method against several established baselines,
including fairseq-ST (Wang et al., 2020), XST-Net (Ye et al., 2021), STEMM (Fang et al., 2022), ConST
(Ye et al., 2022), CMOT (Zhou et al., 2023), FCCLm (Zhang et al., 2023), ZEROSWOT (Tsiamas
et al., 2024), and MCTN (Zhou and Yuan, 2024). XST-Net employs a progressive multi-task learning
framework, simultaneously optimizing speech translation, automatic speech recognition, and machine
translation tasks. STEMM improves representation alignment by projecting speech and text features into
a shared semantic space, facilitating efficient shared memory learning. ConST integrates a contrastive
learning mechanism to enhance the quality of extracted representations. CMOT combines Mixup and
Optimal Transport in a unified framework to boost model performance. MCTN is a multi-task collab-
orative training network designed for joint modeling of ST, MT, and ASR tasks. FCCL enhances the
performance of speech translation models by applying contrastive learning at different granularities. ZE-
ROSWOT improves model performance through the use of CTC compression and OT techniques.

6 Numerical Results and Analysis

We will discuss the proposed method through experimental results, visualization analysis, and ablation
studies. First, the quantitative results show the performance of our experiments. Second, visualization
analysis, using mutual information, confirms the method’s effectiveness in reducing information loss.
Finally, ablation studies validate the contributions of each model module.

6.1 Experimental Results

The experimental results in Table 2 show significant improvements across eight language pairs in the
MuST-C dataset, with the greatest gains in en-de and en-es. Our method achieves an average BLEU

5 https://github.com/mjpost/sacrebleu
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score of 29.0, demonstrating its effectiveness and robustness. These results highlight both the superior
performance and consistent reliability of our approach across various language pairs.

6.2 Analysis
Effect of Dynamic Weighted Length-Adapter In this study, we investigate the informational rela-
tionship between speech and text representations through the concept of mutual information (MI). MI
quantifies the degree of dependency between two variables by measuring how much the uncertainty of
one variable is reduced when the other is known. For continuous representations, MI is mathematically
expressed as follows:

I(S;X) =

∫
X

∫
S
q(s, x) log

(
q(s, x)

q(s)q(x)

)
dsdx. (11)

where S denotes the speech representation, X represents the text representation, q(s,x) is the joint
probability density function of S and X, and q(s) and q(x) are the marginal probability density functions
of S and X, respectively.

Figure 2: Effect of dynamic weighted length-adapter.

As depicted in Figure 2, the measured samples were divided into seven groups, each consisting of 10
samples, and the average value of each group was calculated to represent the final mutual information
value. The yellow region in the figure corresponds to the mutual information between the speech and
text representations obtained using the traditional method(which uses only two convolutional layers for
length alignment), while the green region represents the mutual information calculated from the repre-
sentations obtained using our method. Notably, the mutual information values achieved by our method
are consistently higher than those obtained by the traditional method , indicating that the features ex-
tracted by our approach retain more comprehensive information. This further validates the effectiveness
and robustness of our method.

Figure 3: Effect of representation Fusion Module.

The Effect of Representation Fusion Module Figure 3 shows that applying self-attention (green

CC
L 
20
25

Proceedings of the 24th China National Conference on Computational Linguistics, pages 1031-1042, Jinan, China, August 11-14, 2025.

(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China 1038



China National Conference on Computational Linguistics

dots) makes feature representations more compact and semantically clustered, enabling the model to bet-
ter focus on important features. Without self-attention (red dots), the representations are more scattered,
indicating less effective semantic capture.

6.3 Ablation Study

Our ablation experiments take the En-De language pair as an example.
The Effect of the Dynamic Weighted Length-Adapter and Representation Fusion Module We con-
ducted experiments to evaluate the effectiveness of combining the dynamic weighted length-adapter and
representation fusion modules. As shown in Table 3, when only the dynamic weighted length-adapter
module is used, the BLEU score reaches 27.2, indicating reduced information loss during length align-
ment. When only the representation fusion module is retained, the BLEU score is 27.3. These results
demonstrate that integrating both components achieves the optimal performance improvement.

Table 3: BLEU scores with different modules
Module BLEU
−Self-Attention 27.2
− Cross-Attention 27.3
CRAF 27.5

Dynamic Weighted Sum To evaluate the effectiveness of the Dynamic Weighted Sum proposed in
our paper, we compare it with the static weighted sum. The calculation formula for the static weighted
sum is as follows:

Fused rep = µ · cross+ (1− µ) · CNN1. (12)

where cross represents the output of Cross-attention , CNN1 represents the first convolution layer, and
Fused rep is the final feature representation after length alignment, with µ being the weight.

For µ in equation (12), we tested values of 0.2, 0.4, 0.6, 0.8, and 1.0. As shown in Figure 4, the exper-
imental results revealed that setting µ to 0.4 and 0.8 yields a maximum BLEU score of 27.2. However,
this result remains lower than that achieved by our dynamic weighted sum module.

Figure 4: BLEU score with different static weights µ.

Why Use Self-Attention in the Representation Fusion Module? We investigated whether the per-
formance improvement of our method is due to the increased number of parameters. The results in Table
4 show that by replacing self-attention with cross-attention, I and IV fuse the speech representation with
M ′ using the speech representation and M ′ as queries, respectively; II and III fuse the text representa-
tion with M ′ using the text representation and M ′ as queries. Comparing I with IV shows that using the
speech representation as the query yields better results. Comparing II with III shows that using M ′ as the
query improves performance. However, none of these approaches outperform our method, demonstrating
the effectiveness and advantage of our approach under the same parameter settings.
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Table 4: Effect of Self-attention
Module BLEU
I 27.3
II 27.1
III 27.3
IV 27.2
CRAF 27.5

The Effect of the Mixup To verify the effectiveness of the Mixup fusion method, we designed three
sets of comparative experiments: length-wise concatenation (Concatenation-L), feature-wise concate-
nation (Concatenation-F), and dynamic weighted fusion. Specifically, Concatenation-L refers to di-
rectly concatenating the speech and text representations along the sequence length dimension, while
Concatenation-F concatenates them along the feature dimension. In the dynamic weighted fusion strat-
egy, we first compute separate weight coefficients for the speech and text representations, and then fuse
them via a weighted sum, ensuring that the weights sum to one.

Table 5: Effect of Mixup
Module BLEU
Concatenation-L 27.2
Concatenation-F 27.0
Dynamic Weighted Sum 27.1
Mixup 27.5

As shown in Table 5, the Mixup-based fusion method achieves the best performance. We attribute this
to Mixup’s use of an optimal transport (OT) matrix, which enables distribution-aware sampling between
speech and text representations. This results in a fused representation that is primarily guided by the
speech features, supplemented by text features that are distributionally aligned with the speech. Such
a fusion strategy effectively mitigates modality mismatch and allows the textual information to com-
plement the speech features, thereby enhancing overall model performance. Furthermore, the superior
performance of Concatenation-L over Dynamic Weighted Sum may be due to the fact that the former
preserves the full information of both modalities by concatenating speech and text representations along
the length dimension. In contrast, the latter performs frame-wise weighted averaging, which may lead to
partial information loss and weaken the discriminative power of the fused representation. Compared with
Concatenation-F, Concatenation-L also performs better, likely because feature-dimension concatenation
requires aligning the sequence lengths of speech and text. This often involves truncating the speech rep-
resentations or padding the text representations, either of which may introduce redundancy or cause the
loss of crucial information, thus interfering with effective semantic modeling.

Beam Size We conducted an ablation study on the choice of beam size during decoding and visualized
the results for different values. As shown in Figure 5, the model achieves its best performance when the
beam size is set to 13.

Figure 5: BLEU score with different beam size.
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7 Conclusion

In this study, we present Cross-Modal Representation Alignment and Fusion (CRAF), designed to align
the lengths of speech and text representations while minimizing information loss and enhancing feature
fusion between the two modalities. To validate the effectiveness of CRAF, we conducted extensive
experiments on the MuST-C dataset. The results demonstrate that our method significantly reduces
information loss and strengthens the fusion of cross-modal representations, thereby improving overall
model performance.
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ermann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn,
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