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Abstract

Multi-modal Knowledge Graph Completion (MMKGC) discovers unobserved potential
facts from a given Multi-modal Knowledge Graph (MMKG) by integrating structured
semantic information and multi-modal features among entities. However, existing
methods generally neglect the interaction between different modalities during entity
representation and lack attention to the complementarity among modalities during the
completion process. To address these shortcomings, we propose a new model, MIDF
(Modal Interaction and Decision Fusion), to handle multi-modal interaction and com-
plementarity. The model first designs an entity multi-modal interaction fusion module,
which interacts the image and text features of entities in advance and then fuses them
with structural features to fully learn the embeddings of entities. To further utilize the
complementarity among different modalities during the completion process, we design a
relationship-guided decision fusion module. By using the prediction results of different
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modalities and relationship-guided weights, we further leverage the complementarity
of modalities and fuse the prediction results. Extensive experiments on DB15K and
MKG-W demonstrate that our MIDF outperforms the existing state-of-the-art models,
proving the effectiveness of our method.

Keywords: Multi-modal Knowledge Graph , Knowledge Graph Completion ,
Multimodal fusion
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Z RS HIR B 3 (Multimodal Knowledge Graphs, MMKGs)(Liu et al., 2019){ER{£4A11R
ERERY RIES, EiROr - BBRESESFHIES ML =TTHCKSEE, KR, BEMA)#H
1B ST, R T SRR S S S ] ORI HETE R (Sum ot al., 2020) -
L [A]2F (Hudson et al., 2019) LK KFEF 7Y (Chen et al., 2023; Dong et al., 2024)% NiF{ESS
Peft T HEATEEMENRASE - R, BT ZESHNEREMEDIEE . IUE 12BN B R
HIImE AR . Kb, ZREE# 2 (Knowledge Graph Completion, KGC)(Bordes et al.,
2013; Sun et al., 2019)FARE T2 E G TR REX A VB AESESE, TR ANREE R EZIR
J7 1] -

BRI ENREFN 27715 (Cao et al., 2022; Li et al., 2023; Xie et al., 2016; Mousselly et al.,
201838 H 2 =) GE R AN SR IR = JLAH Al = JTCH R E R - IRT, X T S HRE, (UK
FELET N B RIS Z R B ek RAFEEAER - B LEA SIS R B ARIESHIE
B, DASEEINT SRR SR B BRI AT - E OB R 2R SFHNREFN 2T, 8 H R SRR
ZIRSE BAVE NS LR R B st E8dE, A TR WA RIS PR EUFE - R, R
FIGHSLR T RS R RFRERENR, MAZ = HRmE P T = E . R, X E
THORTHI G SEAARABEAS AT B AR S B R b A]

BARZE: MENF/R, WSS 2SR E S PSR RARIES Z AFER R - BUE
ZAS AR B 27 A PHES R R EEN T S T SR SRS ER S, K
BUSEAR N, 228G T SRR RIS Z BFES 2R B — )7 R E 0 A T 2R B R B
JRIESER, Hild Transformer T LR ST E - R, HTEERAEESER,
XEETTEIE T & R REAMHETIER, IEZRNEE . &SI EZESINREE 2
B, ANESST G AR - DIE1RF], T Lionel Messiffi7EFIE R ERT, SCARKSTT
AEFEFC BarcelonaflArgentina national teamZ [B]3% 5 o T # o B A ME LA ERARRL B HO1E B
A HEHIWrLionel Messi& ™ EFKZEBNA - ARG XEHIR, ARG H IEMESR . —Lf
5%(Zhao et al., 2022)Z i HRKR A BT 1%, I o X L7540 A $R BUN R RS
HIFFE, & A FRSE S R EC = JnB G 5T - IR, X IEAE R R
RS IIAGT B REAG 5, B Z RN SAEANR K R N AR EEN -

Lionel Andrés Messi is an
Argentine footballer who plays as
a forward for Spanish club FC
~Barcelona and the Argentina
national team. He serves as the
captain of his country's national
football team .

Figure 1: S4K “Lionel Messi” FISCAFI i A B B HBE A -
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N TARBURSS B3R SE AR, 2 IS Z AR SRER,  DLURETIINA & B P AN R
ASZ IR EAME, BRI T — M 2SR EE A 2 EAIMIDF - MIDF &G 7 —1
SRR SRR AL IR, R T SRR T A SR B S8 AR (SO A3 R i A B B2 i B = Ptk
FRE B ER ORI E, KOO - EREERAE X5, R8BSR SN
P o BIanSCATRA 1 H) FC Barcelona” 5 B8 A BRAK 1 AR XS0 SLAMRL B SCRHK - T
PPl SERAEER, BATHRCEERISOR - W5 R s MR B 25 19 R om P
K, MAZEEEMEZ, WG G5 IR ZBASRAEMEE « SO MR « BT FI0 A
ANERES B EAME, BTl R A5 SR MES R TIN5 RSB SR T - BRI,
(T8 FH S 44 () 2 RS AFAE AR AS A B IR B0 ~ SUAS ~ MR/ E D i A A5 1) B RS R 7
R, HlE RAG S UEHESNE . SRR, FATRDTEE T A H:

LA T —Fr ) 2 BSFR B 2RTIMIDF, ZRA S SR 2RSS B E,
IR R AR ST S, ARSI A — RS HUBRIYE - FF HAETII Be, @i kR 5] SRR
&, SRR Z B EAME -

28R T M EAR DSBS BRI A ER, RSN RSOR- BB AS TP RIS E., AL
E BTG, WIEEHEESTE, BRI -

;ﬁﬁT%%m%%ﬂ%@%ﬁ%,ﬂ%%%%%%%%&@%,%ﬁﬂ%%&ﬁ%ﬁ%
THRE B -

AFNTHER D AT L AT T T 2 f9SC8e, SRR BT R I B AL T IR 195
%

2 MXTAE

2.1 SRR 4

REREIRE RN 2 (KGC) 55 §7EEd EAERENE (KG) KAWL =TT
. WHPTERFERETIAR, B RKGH SRR R R KA RE M ESH, IR
PEIE B = JCHEE ST - RO AR BB = ST AR & 3, DISIE=tH
DEEREDE, HRn=TTHBEBRER Oy Bin . BUEREIREE 42 (KGC) 7T L
DRPARE, ETRIFEEREK T IEMETE LT - T RIFEIRER AR =T HsS
MR LA SEAA B B AR SR 0 R B, T T R TIERITED REUE R & BN £ -
WA TransE(Bordes et al., 2013)i8id — M Ej BATRREL, RISKSEAR - AN LR Z [ A7 & 5% A
RIZIH Eh+r=t - AP, RotatE(Sun et al., 2019) ~ OTE(Tang et al., 2019)F1PairRE(Chao et
al., 2020)FELLEAM L E—B UM TP s 2T SLULEC A5 ol HOEd T LS8R . R AR
RSk Z A B A UEAE N A B & - IDistMult(Yang et al., 2014) ~ ComplEx(Trouillon
et al., 2016) ~ TuckER(Balazevi¢ et al., 2019)ff & Tk & B T IEEN T EHER, ©F
— BB YRR R 2 P LS R B AE R S

2.2 ZEAHREERNE

Z RSB (MMKGs) BT B A 4510 - UK BB BMEZESER, H8E 7 5H
FRMFEEMWMMEEGE S - ZESIIRE S 28 BRSSP Lo, AN
YR PR IG R 2 MESAHE, H B EI R 2 S E BT sk R ) =Jod - WE
FIEFEBEMNLLT =N FESGH: () ZEESEE, (50K, (3)F R . BH—M7E(Cao et
al., 2022; Chen et al., 2024; Lee et al., 2023; Wang et al., 2021; Wang et al., 2019; Xie et al.,
2016)I\ N ZEEAE BV @& 2MMKGCHIZ Ly, BUVE J7EE T — S8 JeAHLE S H . b
WAdaMF-MAT(Zhang et al., 2024 ) HEZE:# 1 H & M SN E Sh-S ARSI TTER, H3IA
STHUIGRAE B A AU AR AR BRSP4 [ - 38 — #0774 (Zhao et al., 2022; Li et al., 2023)7E
PR BB A RS TMSE SR, BiHER G RSE - 7lU0, MoSE(Zhao et al., 2022)FFHZ5#) « A
AL EE R NG =N KGC A, {0 &R ARG T EC & T - FORFE R KGO I 2R
FEEERTT, =R VE(Xu et al., 2022; Zhang et al., 2023; Zhang et al., 2022)%H S MMKGCH
LS E R MG o LATKBGan(Cai et al., 2017)f# FIXT 5L 7 5 RIEIEMMKGC A F
STHINEZREI AMMKGC,  [A) RS ARSI
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3 ESEX

— A L M AR B(MMKG) ] L # 7R HG={E,R,TM}, H HERZ L KEF X A
£ T={(hr,t)|ht Exr € RpE=IJCHSE, RS (B K Rr5 SLAEHER - MBEREER
ENMES, NEN L e CERMBER - XASZHEESHAES - FMIHE2(KGO)MFEE
HER2S — MR BREE (hrt) -ExRxE—R, BilidirE oS0k & = TH(hrt) 4
Mo HEKGC AP SRR BN R TN, ZITH S EEX A L E X, FEE T IE
ZICHKIE SR A Z T H A RAIR B, SSELIE AU AR 2 SRl B KL IE = e 15 4
B /MU TR =TS 2 - TTREIMMKG, ZESANREFN 2 (MMKGC) R i# — 5% B &
N EFMZ BB EM (e), BV 77 1EE RS BSR4 K. B0 NS4Sk
MNem,m € M}y, FHEEHHEE - MPCFHE A REA R —Fn, DHRENTHRA - HaiR
RETRITEMNZESBAYLE, B3I AEB NG - HHEMEEEHFRA, SCHE
SHREAME B HENES, MM EERF ZTH AR - ERENE, EamN%A
TE B AR SEAR FIMMKGC R (7 r,t) 8 (h,r,?) « LI SEARTIMI (h,r,?), MMKGC T
B ARe € EAL RS SLAR I B ES N A 8 (hyr,e) « BEAN, ZEALENT &R (hrt)S
PR 35 35 I HE B R AL, X ERE R THER bR B T RE Rl - 7Pl DLF 25 Bk
%%mmﬁmm@ﬂcmmmﬁﬁﬁﬁﬁ,ﬁﬁﬁﬁ%%%mww¢w5%§%ﬁWmmwm%
AERE
4 T

AR, AT RN BEATHTR HAMIDFER . qnE2fTR, AR S 5 A B
B, BTESEEISER S SIE SR AR R B rME A o S SR SR B SR FA L
WIS B R RG A H G R SCRRRL G R, BB B a5 A58 B G W0 SN 3 AR A 5 A\
SRR AESRGA A« U EHAESRHE . B TSR FAMARFRHEZ G, ERER
B, B MEGRIS A MESIE S, BEEXRRNGIS N THRERE -
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4.1 HEEXELERE

TERSEL A FT, FATeE S A FFOI G RRG LR RS R R - BB
YIZRAIBERT (Devlin et al., 2019)%F SEAK 1) SR AR H 1T 005 LUK BOUAB S B SUR ML - B
PSRUE, FATTHEMN BRSO A p 4 FH A, FEAR IR SCAR TR 38 A AR B i tokens « FF BLXFTF R
L AT BEEE B Mtokens I [AIRE, KU TMyGO(Zhang et al., 2024), FA 55T tokens H HLFHH
TR SORF R W Mokens, & AT E B token i B AT AD » K T #IL i 5 8K
Ui, AT A TIZRPIBEIT (Peng et al., 2022)%f B G#HTHIE - [FIFERT, S THEAERHM
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i tokens, FFOR B BUE A& WAy Mtokens » X TSLARMLEE R, ANFIT Z B A9 75 %R H AR
NA[ESIERE, AT T IEAIC2RS(Shu et al., 2025)2K L o SERFEE EIR ERE AL A — 1%
HEMERAE ME, X R B0 SHRFI SRR < RAVEEH - 85 8 FiNode2vec(Grover et al.,
2016)38 1 FEALIT E RIS R E D LRSS R, LA RISE A S5 tokens - BT #REHY
FTE TR ZRE TR T AR e, LURTS BB IF RO « [RIES, FEVIZRIAMR], PrE TR T R 1t
REEANERSE - ARG T ERRBETSSEEE, JNeRH XS RET SRR, R

Gi—H R,

s=Pye)), t=Pye)), v=P,e) (1)

S v

s to B FRRERA RS, BIFEMRE - SURFHE - MARAE, ef, R s NI
SRR RIS OVIIRHFE, P, B MR SHEMREE - SRS RIS Z 8 75
F, B SO A P ) BE S B S S0 B8 A A BE S ) S X SRR A LR ER Y o 7R SEAA ISR
A, FIEXMMERIERIEFEER, TR DU SR B SO A A R R X B0 ML R H B
FITCRFFE, oA R TR B A SR RS =T SR #7158 RS V6%
fE, ZA T ZPAFERBGSRI NN, R SRR ARIRE . b EA TR T — MRS
HIZCHJEMI, B R NVEE SR ERAERZEY R R - BRI, FATIREGVIEHE
BRARFHEZ G, B P R H BT transformer (Vaswani et al., 2017)F FEE I HLHIHH
TR B B BE B A0 o XA TIERERE R 2 R IR E B VAT (BEGRFRIYiER R UK
HTE SGEE) |, RGO SSAARHIE BT AR B AR R B o FATHE R SRR RN B
FREFHEIE R

Minput = (tl,tg,tgg, . ,tn, V1,V2,V3,... ,’Un) (2)

H A, Rt 581 W A token, v; v I token « 1% FF i AZIFE S BJZH,
VYRR B JZ H— 2 Wtransformeri i et il o 18 1 transformer 7 FIFEE DHLH], FAT5EMF 3
IR AR S TR R A B L AR TR VB R - BJE1S R

! ! ! / / / ! /
Moutput = (t7, 15,15, ..., Ty, U7, V, U3, ..., V) (3)

’Yn yvn

Hept!, o RREHJEHIER D UA token I B token « 15 E38 B J5 B SCASFIRL 5 tokens /& ,
N T =B EANE BRI IR SR B ESAFE, BATHE—DR G, 50T T — 2R/ E
JZ - ZEERE R8T transformer RIFIR LRI B RS KR, F Bt — DRI ER - SURKHE
WIRILRE ST, IRIVESMRERE S - B, BAEREZ MRS tokensHHE N — P51

Xinput = ([ENT], s, 81,85, ..., b7, 01, V5, ..., vp,) (4)

’rvn? rrn

HAENT]Z PMFIRIRIC, FHRIMIR LA B 2 BSR & F51E, EUIZRR B A] 2 2] BBk
N, sTORBETHTR R LRI F token - BT TR HHEFIIMIAZESMEZ, REEFELE
AL AN ] B AR S ARF AL i -

Xoutput = (€m7 €55€115Ctay 1€ty Cupy Cugy e v vy evn) (5)

Hrfe, Zomfl e T HABESHSE A SRS HRA, HTEERMHE . T2 MEE, BAIR
PEEEH ~ EBAISCARPRC RN B R SRS SE ARt as (R H, RE XX EEPRE 7 AT 45
WAL LR ENR A B Res ~ e flle, -

4.2 KRG FHPHERE

EF Bt B35S TN BERE G NS RSRHE « 4500 - SURFSEEHE. AT
DRSS, SATMAERY:, BATZ2SFAARES A EME . WEM ST
EEEMETHEARRESERIGEE — MRS R, FIES 2 BRI, Xk
PREEESAERENR - ZEZBSENRE N, X FREFE IS EE BRI - Bl andE B
B RIRRIBS A, SEAR B AL RS A O, RIS IO TR 4 SR R o X — W
2, PATERIERLA B B o 22 B PR ASFHERF 22 R 5| SRR AFD - Bk,

BT EFETEE S SRS W, H8IT-101T, Hrm, HHE, 202548H11HA14H.
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BATVRRG LA NS RAFIR RN, FHITESEES (b, v, t) A RR & 5 BOR
22U HA M . AEMIDFH AT F Tucker (Balazevié et al., 2019)1E R FATHIPE 5> AL,
PAE SN NI RN

S(hm,r,tm):Wx1 hy, Xor X3 tm (6)

HApGRORE B EARGRER, WEINGS A 2 BIRRODTKE, hy M, R EK
BFESERRIZ A - BATHED = T0HAE X HRRANGBATARTL o 7Bl L
I, el TR, MOV E AR, ST S HARRE « RIE LS BT A LRt T HES, B, 1%k
BRIV BE PR

exp (S (hin, 7, tm))
Lt i=- log !
e (h%eT Yee P (S(hm, 7 tm)) "
exp (S(hm,7,tm))
LTy = - log (®)
tail (h%eT > onee XD (S(hm, 7 tm))
Ly, = Lﬁéad + Lgﬂ (9)

HA Ly FR Z R ASm IS XL - FIREET, Bl 108 Tucker (EABATHIVE ) s EL, 3RG
GERE  SUAS « MBRRGSHIRR L ~ Ly~ Ly o RGTAIERERE & 8 FH fa] 5 ) B & A A R
ASHRK, EANBCEIR . XMAEZU T AFERAT, KERRARBSEMIREE =TS
FHIVERARR - Kb, BA6 T 3RS 21 H R R AR DS RE, B ERT
LT REEEARESEANR R R FRINE . HE—DRKR=TCH(e, r, 7), FEilefIilE:

> (ei®Or)
o (3552)
e;Or
ZjeK exp (Z(\/g ))
He, R RKEHRESEE, Bffien - e~ effle,, KERMUNMARBKEE . rRRmER, O

F7rHadamard M o a; R0 B AAE R e B 2, B TR EAE D9 AN R BRI 45 AR A
WE - EE R AT FOAMESAIAL, BB AEE] TR S R

a; =

(10)

Ljoint = mLm + asLs + ay Ly + ay Ly (11)

5 SEI

FEARTT R, AT AT 28 & LR R W AMIDFRI I BE - FoA 18 SE Ve A A IA T L 58%
B, W 2mmaE R -

5.1 SLiINE

5.1.1 HIESE

AR H, FATE B A A EMMKGCE ¥DB15K(Liu et al., 2019)FIMKG-W(Xu
et al, 2022)3 ¥ fif # & 4% € - DB15KiE HDBpedia(Lehmann et al., 2015), MKG-
W& Wikidata(Vrandecié¢ et al., 2014)f)— % . WEBHHBE G CREAESK, BEF
EMZHEE LT FrEEERERH =F R S =0l - SSRRGRSE iR, il
MARR=JCANEREFFE, SSEREGIERR R, H WEHE IR B RIAE SO
fE - BURERMFMEENRL, SN RIEEIREE NEE T L AMRFRER - %R
B, BEIREWI S MRS - FIEEANRE, HFEI 811

5.1.2  PEALbRE

AT EIR ST RTINS, X RMMKGCH I FEEAES - VA TIEMEM -, &
TEAETROER, W FIEERR (MRR) MHitQK (K=1,3,10) DUFAELEER - HHh, Fil]

BT EFETEE S SRS W, H8IT-101T, Hrm, HHE, 202548H11HA14H.
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Dataset ‘ |E| |R| Train Valid Test T V|

DB15K | 12842 279 79222 9902 9904 12818 12842
MKG-W | 15000 169 34196 4276 4274 14463 14123

Table 1: FUHREMGITEER. -

FETHM G5 5 AR A R ey B R R R E R P A ERELE =TT, DT AP i - MRR
FHitsQK 7] LLR/RUIT

|Ttest|
1 1 1
MRR — ( n ) (12)
’ﬂest’ im1 Thy Tt
|Ttest|
. 1
HitsQK = > (Arpi < K)+1(r; < K)) (13)
|Ttest| i—1

Horfry, My TR A KRS AR HE 2 AT A R SE AR, T MK =704 -

5.1.3 ELHL

FERATRERE A, FA]5 2280 AN R B e Soit fZE Sedt 47 2T B LA 04T - WARAS D A1
A&, BELA UG AR - NPT AR, HATAERNZTANSEMERETIIG, X TEE
AT, BATBINSURE BARLSE(E BAI R -

()HE B BKGCJ {%:TransE(Bordes et al.,  2013)- DistMult(Yang et al,
2014) ~ ComplEx(Trouillon et al., 2016) - RotatE(Sun et al., 2019)- PairRE(Chao et al.,
2020) - GC-OTE(Tang et al., 2019)F1Tucker(Balazevié¢ et al., 2019) - X L& 57 7 AR T
A AN R B0V e O R B RS ME S, I AnDistMultild xf 5k & FiEfE LA MR 22
AIFAHEIER, RotatB5 | ASER 2 (Al e B EAR R E MR HIR A -

(2)Z B T7 ¥ IKRL(Xie et al., 2016) ~ TBKGC(Mousselly et al., 2018) ~ TransAE(Wang
et al., 2019)~ MMKRL(Lu et al., 2022) -~ RSME(Wang et al., 2021) - VBKGC(Zhang et al.,
2022) ~ OTKGE(Cao et al., 2022) ~ IMF(Li et al., 2023) ~ QEB(Wang et al., 2023) ~ VISTA (Lee
et al., 2023) - AdaMF(Zhang et al., 2024) -~ MyGO(Zhang et al., 2024) - NativE(Zhang et al.,
2024)FIC2RS(Shu et al., 2025) - iXLTIEEE T MMKGCEA PEIGFISCRE R, JHRAT
NERIHI Z SRS 7715 o TransAEfEFH TransEW- 43 DhRETERE & BRI SURBES Z 5T 43 Al
BN, IMF3] T —FBE A AR R 2SI B e iR, SRS R -

5.1.4 SLHE4HTY

FATHPyTorchSE I T MIDF, R Il 45 A 8% & 01500, HEALER R/NKXE 74096 - fiF
FBEITHIBERTFIARC 2 TE AL /SCANRIC S - M FDBISK, # A4 E 256, 5L
PRI E CARFRIC R IXE NS - W TMKG-W, fALEERE R128, D SLKI%E E AR
ICHE R E 24 WTIERIESE, SRS EMEATICHIEE IS E N8 X FBert, AL
EH32, ¥ TBeit, IKAYEE NT68, HiT#/G, Si—H%E 2256 X TNode2Vec, #RAYEE
WE N256. FERE MBI ERE S, BT S HUT0/RMENLFE, BIRTFEKE NS 7
YEREFEH, Node2VecH % % E10MHART S /E N Y BT SR LRI, SAMAEENL. X
TEREZTHEEMZESHMEZE, FATFRHLIN B MEE L Mtransformer/Z F T 2 B8 S 4
YL gy . R BB FIEE L ftransformer 2 T = ERIE 2y - Bl 1 HAdam AL 2514
R 5] EH5e-4, dropoutihZE H0.4. FTH L3 7E— 1 B A Ubuntu20.04. 13 1E 2R 55 F1—
FKNVIDA RTX3090TI GPUILinux k55 %% FidfT .

5.2 FELER

MIDFFAEE L J7 VATE SR TN 1) B G SRR 2R « T TR IOA AT tH—Ee25 5 . E 58
HATATAE S|, MIDFZEMNMEIR LT A rBEARR, W EdESE EAEE T &ILrss

BT EFETEE S SRS W, H8IT-101T, Hrm, HHE, 202548H11HA14H.
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o XU T HA IR H S ESE A I TSR B, BRMERA TR AR RHE -
FH HACFE B N EFRAVIR T AT LLZ B, MIDFXTHit@1AIMRRATHGHEA S 5 THit@10 FIE A
FEFT - XULEH T EADNZIT IR R G| SRR A ZE T ERtE DA B3R A - Hix, 5HAZE
TE P 2B A 7S SRR A B 2 RS FR B 2R AE L, MIDFRIREER &R
i (HERIWEEMLT, XA T RIS RB G &SR . 5EMETRFEE, FAT8
T o 250 22 Bl A 5 AR RIRHES TSR A, BROFA T ARMERS 2 8] BFE A0
MIDFZADBI5K R RER A K FMKG-Y BIMERERF - X EKE N E5MKG-Y
FALL, DBISKHSEAEFHENEA I XAEEE RS, XENTERAESFHAZESER -

HiME. =,

Category ‘ Model ‘ DBISK MKG-W
| | MRR Hit@l Hit@3 Hit@10 | MRR Hit@l Hit@3 Hit@10
TransE | 24.86 12.78 31.48  47.07 | 29.19 21.06 33.20  44.23
DistMult | 23.03 14.78  26.28  39.59 | 20.99 1593 22.28  30.86
ComplEx | 27.48 18.37 31.57 4537 | 24.93 19.09 26.69  36.73
Unimodal | ROtatE | 20.28 17.87 3612 49.66 | 33.67 26.80 36.68  46.73
PairRE | 31.13  21.62 3591 49.30 | 3440 28.24 36.71  46.04
GC-OTE | 31.85 2211 36.52 5118 | 33.92 2655 3596  46.05
Tucker | 33.86 25.33 37.91 50.38 | 30.39 2444 3291 4125
IKRL 26.82  14.09 34.93  49.09 | 3236 26.11 34.75  44.07
TBKGC | 2840 15.61 37.03 49.86 | 31.48 2531 33.98 43.24
TransAE | 28.09 21.25 31.17  41.17 | 30.00 21.23 3491  44.72
MMKRL | 26.81  13.85 35.07  49.39 | 30.10 22.16 34.09  44.69
RSME | 290.76  24.15 3212 4029 | 29.23 23.36 31.97 4043
VBKGC | 30.61 19.75 37.18  49.44 | 30.61 2491 33.01 40.88
OTKGE | 23.86 1845 2589  34.23 | 3436 2885 36.25  44.88
Multiomodal | TMF 3225 2420 36.00 4819 | 3450 28.77 36.62  45.44
QEB 28.18  14.82 36.67 51.55 | 32.38 2547 35.06  45.32
VISTA | 3042 2249 3356 4594 | 3291 2612 3538  45.61
AdaMF | 3251 21.31 39.67 51.68 | 3427 27.21 37.86 4721
MANS | 2882 16.87 36.58 49.26 | 30.88 24.89 33.63  41.78
MMRNS | 32.68 23.01 3786 51.01 | 35.03 28.59 37.49 4747
NativE | 37.16  28.01 42.25 5413 | 36.58 29.56 38.57  47.81
MyGO | 37.72 30.08 41.26 5221 | 36.10 29.78 3854  47.75
C2RS 39.65 3193 4316  54.57 | 39.75 32.85 4237  52.84
MIDF 41.10 33.27 44.92 55.94 | 40.58 33.83 43.02 52.85

Table 2: DBISKFHIMKG-WHIMIDFF EEMMKGCLE B « FA1EL T2 T BT ER R
(BN 2N - BT RIsE R AR -
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5.3 THRISELR

Setting | MRR Hit@l Hit@3 Hit@10

w/o image | 40.51 32.60 44.23  55.69
w/o text 40.73  32.69 44.61  56.14
w/o MI 39.98 32.30 43.56 54.56
w/o FD 40.11  32.36  43.66 55.05

Full MIDF ‘ 41.10  33.27  44.92 55.94

Table 3: DBISKHHEIBTGULE R - Bl 1T T =HEE, 2RIIRIEARIEE « RS EARBRAT
R R B R R -

0 T HEMBATRT R AEMIDF VR R, BTt 17— RSN HTHR S - BoA]1 5 71
MBS E BT DA, AR E LR T —SERHFFITMMKGC 545 - SL504S
RARIPIR o FEVHBSCIE T, AT 7 =S, E AR PR B A SR S 2E AR R AR IEMIDF A
BRI T - WG BIOBERERAE , BT LIS HENE, SRMERASE IS R
I REMIESURES, EBRESHEREN . BATEEBRES BRI T HEAE
I, B E R BR ST AR AOPERE R - TR TORSKR S BRI SIS IERT T, BATHIR AR
IR T ERBPERESE T, JCHER AR T T -
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Figure 3: {RERIE AT HE0H5H -

Rk | EIE) | SOREIEGRR KBEISIARER
| | R@1 R@5 R@I10 | R@1 R@5 R@10

DB15K | MIDF(w/o MI) | 51.5 79.6 883 | 31.6 584 723
MIDF 95.3 972 998 | 83.1 96.0 98.2

Table 4: B REER

5.4 AL

N T H— DU TR R /5 SRRERM A PERE, 1% T (Lionel Messi, team)
FIEOL, HREN BRI 52T AL, WESH R, B EIR IR R T RN - RIFEE
ZRSH, RIRESEWEEH TR AT E A H IS RET - XUERA T % RERERLE Y
AR, AR M ES A RS Z B ERNEHE 2R 0 -

H T G ATHIMIDFAE A E B S g T SRS BRI, A TR G SRR R
FESVERIPAL 7% o KRGS R AMERTE v] DU BT BSAS BAE R - 18T AR 218
RS HMESAETE L EUCECRIRE ST, FoA 1] DLRI BTG BRI B A D iR T ANEIES 2 8]
FIE el o BARSRY, AT THAMES, BTRBESUORS RSO R B R « R
REMFFHRQKFITIFAL « ERMFATR, BIEESREE, LHRMEG SRS £ T K8 -

BT EFETEE S SRS W, H8IT-101T, Hrm, HHE, 202548H11HA14H.
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