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Abstract

The performance of neural machine translation relies on a large amount of data, but crawled
sentence pairs are of different quality. The low-quality sentence pairs may provide helpful trans-
lation knowledge but also teach the model to generate low-quality translations. Making the model
aware of the quality of training instances may help the model distinguish between good and bad
translations while leveraging the translation knowledge. In this paper, we evaluate the quality of
training instances with the average per-token loss (negative log-likelihood) from translation mod-
els, convert the quality scores into embeddings through vector interpolation and feed the quality
embedding into the translation model during its training. We ask the model to decode with the
best quality score to generate good translations during inference. Experiments on the IWSLT 14
German to English, WMT 14 English to German and WMT 22 English to Japanese translation
tasks show that our method can effectively lead to consistent and significant improvements across
multiple metrics.
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1 Introduction

The Transformer translation model (Vaswani et al., 2017) can produce high quality translations with large
amounts of parallel data. Most large-scale parallel corpora are automatically extracted from crawled
parallel websites and cannot ensure the quality of translation pairs. Training Neural Machine Translation
(NMT) models on the unfiltered ParaCrawl leads to degraded translation quality (Junczys-Dowmunt,
2018; Schamper et al., 2018).

Peter et al. (2023) improve the NMT performance by filtering half of the training set with neural
Quality Estimation (QE) metrics. However, this approach relies on the availability of high-performance
QE models of the target language pair and fully discards the translation knowledge within the low-quality
parallel data. Concurrently, Tomani et al. (2024) divide the training set into a number of bins based on the
MetricX-QE scores and prompt the model with quality tags of the corresponding bins. However, 1) the
quality embedding for each bin is only trained on part of the training set, 2) the quality differences inside
a bin are fully neglected, 3) close quality scores divided into adjacent bins may have different quality
embeddings, and 4) the method also relies on QE tools which may not be available for some language
pairs.

To avoid the use of QE tools, we train NMT models on the parallel data for both directions, and use
the bi-directional average per-token loss from the translation models as the quality measurements of
training instances. We derive the quality embedding through vector interpolation with the quality score,
and replace the embedding of the special start-of-sentence (<sos>) token with the quality embedding to
make the model aware of the quality of training instances. All training data and corresponding translation
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0.0 Zwei Lichter so nah beieinander : Vorsätzlich oder nur ein dummer Fehler ? <eos>

<sos> subject : protection of the Community 's financial interests <eos> 0.01 betrifft : Schutz der finanziellen Interessen der Gemeinschaft <eos>

<sos> Bravo , Mrs Mouskouri . <eos> 0.30 ich gratuliere Frau Mouskouri . <eos>

<sos> when you study a language you do exercises . <eos> 0.60 mein Formular liegt auf dem Stapel . <eos>

<sos> Two sets of lights so close to one another : intentional or just a silly error ? <eos>

Zwei Anlagen so nah beieinander : Absicht oder Schildbürgerstreich ? 0.3 Zwei Lichter , die so nah beieinander liegen : Ein Fehler ? <eos>

0.6 Es gibt zwei verschiedene Arten von Beleuchtung . <eos>

Source:

Reference:

Target:

Decoding

Training

Source: Target:

Figure 1: Quality-aware training and decoding. The left and right sides are for encoder and decoder
respectively. The quality score is the first input of the decoder to trigger the auto-regressive decoding.
Quality scores are converted into quality embeddings through linear interpolation. The best quality score
is used for evaluation. Examples decoded with worse quality scores are only to show that the model
follows the quality scores during translation.

knowledge are thus kept during the training. During inference, we prompt the model with the best quality
score, and ask the model to generate good translations. Our main contributions are as follows:

• We train NMT models on the parallel data, and evaluate the data quality based on bi-directional
scores to avoid the use of QE tools.

• We turn quality scores into quality embeddings by vector interpolation, and integrate into the trans-
lation model to help distinguish the quality of training instances while leveraging the translation
knowledge.

• Our method brings consistent and significant improvements from low-resource to high-resource
tasks across several evaluation metrics without negative impacts on the inference speed.

2 Our Method

The training and decoding of quality-aware translation are shown in Figure 1. In general, we first train
source-to-target and target-to-source vanilla translation models (baseline without quality scores). Then
we use the baseline models to calculate the average per-token prediction loss of each training instance as
quality scores. The quality scores are used for the training of the quality-aware model by replacing the
<sos> embedding with the quality embedding generated based on the quality score.

2.1 Bi-directional Self-evaluation
Fomicheva et al. (2020) show that NMT models are also strong quality estimators and can achieve good
correlation with human quality judgments.

We use the baseline NMT models to compute the average per-token loss of each training instance.
The prediction loss of the target token yn is the negative log-likelihood computed by the NMT model −→M
based on the source sentence x and all preceding tokens y<n in the reference translation.

loss(x,
−→
M, yn) = −logP (yn|x, y<n,

−→
M) (1)

But the loss of the forward direction may not fully reflect translation quality, especially when the
source sentence is inadequately translated. While the target-to-source NMT model←−M is likely to produce
high loss scores for under-translated source tokens given the target sentence as encoder input. The bi-
directional loss (lossbi) considers both directions and is computed with Equation 2.

lossbi =

|y|∑
t=1

loss(x,
−→
M, yt) +

|x|∑
t=1

loss(y,
←−
M, xt)

|y|+ |x|
(2)
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where |x| means the number of reference tokens in the source sentence x.
We normalize the bi-directional average per-token loss into the range of [0, 1] as quality score q with

Equation 3.

q =
lossbi −min(lossbi)

max(lossbi)−min(lossbi)
(3)

There is no existing theoretical basis between the amount of data and the estimation reliability to
our knowledge. But even the low-resource machine translation task (e.g., IWSLT 14 De→En) has a
much larger training set (174k sentence pairs) than the amount of available training data for the quality
estimation task and many other NLP tasks. Our method empirically works well on the low-resource
IWSLT 14 De→En task as shown in Table 1.

2.2 Quality-aware NMT

The NMT model represents discrete tokens with embeddings, but the quality score for each instance is a
continuous scalar. To make the NMT model explicitly aware of the training instance quality, we have to
turn the quality score q into an embedding and feed the quality embedding into the model.

As the quality score is normalized into a fixed range ([0, 1]), we generate quality embeddings by
vector interpolation. Specifically, we employ two vectors ve and vs as corresponding embeddings for the
quality scores of 0 and 1 respectively. The embedding eq of the other quality score q are computed by the
weighted combination of vs and ve, where the weights are the distances from q to 0 and 1 respectively,
as shown in Equation 4.

eq = q ∗ vs + (1− q) ∗ ve (4)

As the auto-regressive decoder computes in a left-to-right manner, we replace the special <sos>
embedding with the quality embedding to provide the model with quality information. We do not append
the quality scores as additional word embedding dimensions to avoid changing the embedding size or
reducing the number of dimensions for word representation. We also do not insert one more token before
the <sos> token which may increase the complexity of decoding when applying the method to the
decoder.

During inference, we feed the quality score representing the best quality into the model to generate
good translations.

3 Experiments

3.1 Settings

Datasets. IWSLT 14 (Cettolo et al., 2014) using TED talks is the cleanest. Common Crawl is the
major part of WMT 14 English (En) to German (De) task (Bojar et al., 2014)and noisy (COMET scores
of 11.23% and 1.7% of the training set are below 0.5 and 0.3 respectively). ParaCrawl constitutes the
largest part of the training set of the WMT 22 English to Japanese (Ja) task (Kocmi et al., 2022) .
Larger training sets normally tend to be more noisy. We tokenized and truecased English and German
with moses, and tokenized Japanese with MeCab (KUDO, 2010). We applied joint Byte-Pair Encoding
(BPE) (Sennrich et al., 2016b) with 16k merge operations for the low-resource IWSLT 14 De→En task
(174k), 32k merge operations for the WMT 14 En→De task (4.5M ), and independent BPE with 32k
merge operations for the WMT 22 En→Ja task (33M ).

Baselines. We compared our method with the Transformer baseline, QE-based filter (Peter et al., 2023)
and quality-aware prompting method (Tomani et al., 2024). For the Filter method (Peter et al., 2023),
we filtered half of the training set with lower COMET-QE scores. For the Prompt method (Tomani et
al., 2024), we used COMET-QE scores to divide the training set into 10 bins and replaced the <sos>
token of both source and target sentences with bin tags following their paper. Recurrent decoders may
lead to improved translation quality compared to the Transformer decoder (Chen et al., 2018). We also
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tested the performance of our approach with the MHPLSTM decoder (Xu et al., 2021). Specifically, We
replace the self-attention layers of the Transformer decoder with the MHPLSTM.

Hyperparameters. We followed the Base setting (512/2048, 8 heads) of Transformer (Vaswani et al.,
2017) for WMT 14 En→De and WMT 22 En→Ja tasks. For IWSLT De→En task, we followed the
experiment settings of Araabi and Monz (2020). For the training, we trained for 100k steps with a batch
size of around 36k target tokens for the WMT 14 En→De task and the En→Ja task, a batch size of
around 6k target tokens for the IWSLT 14 De→En task. The results in Table 1 are reproduced under the
same setting. All the experiments used the same training script and hyper-parameters.

Evaluation. we used a beam size of 4 for decoding with the averaged model of the last 5 checkpoints
saved with an interval of 1500 training steps. We evaluated with BLEU and chrF implemented by the
sacreBLEU toolkit (Post, 2018) and COMET score (Rei et al., 2022a). Human evaluation would be
valuable, but it is often impractical due to inconsistent standards across studies and neural metrics like
COMET have led to high correlation with humans. For our method, we prompt the best quality score for
high-quality translations during decoding and evaluation. The best quality score depends on the metric,
it is 0 for bi-directional translation loss and MetricX, but 1 for COMET.

We found that the performance of Transformer is quite sensitive to small variations on the quality
scores. It can vary for around 5 BLEU on the development and test sets when gradually increasing the
decoding quality score from 0 to 0.1. So we treated the quality scores (the concatenation of q and 1− q
in Equation 4) like hidden representations in the neuron network and applied dropout to them during
training to prevent the model from over-fitting the quality scores. 1

3.2 Main Results

We used bi-directional NMT losses as quality scores (§ 3.5) and added quality scores to the decoder
(§ 3.6) based on our ablation study.

Results in Table 1 show that: 1) data filtering or prompting based on quality scores can lead to consis-
tent and significant improvements across all metrics only on the high-resource WMT 22 En→Ja task of
the largest training set, but their performances are close to the baseline on the WMT 14 En→De task and
worse on the low-resource IWSLT 14 De→En task with some metrics, while our method is also effective
for low-resource and middle-resource tasks, obtaining consistent and significant improvements with all
metrics, and 2) our method can also improve the performance of the stronger recurrent decoder baseline.

Methods IWSLT 14 De→En WMT 14 En→De WMT 22 En→Ja
BLEU chrF COMET BLEU chrF COMET BLEU chrF COMET

Transformer 29.57 52.45 77.67 27.64 57.26 82.42 21.55 29.47 83.76
Filter (2023) 28.39 51.51 75.66 27.68 57.21 82.75 21.92 30.02 84.31

Prompt (2024) 29.45 52.66 77.09 27.92 57.43 82.74 22.06 30.05 84.34
Ours 29.99 52.85 78.01 28.78 57.91 83.51 22.56 30.66 84.83

MHPLSTM (2021) 29.90 53.20 78.19 28.36 57.57 83.01 22.12 30.10 84.53
Ours 30.34 53.42 79.19 29.01 57.94 83.55 22.75 30.69 84.88

Table 1: Main results. Bold scores indicate improvements of our method over corresponding baselines.

3.3 Results on Large Language Model

We tested the performance of our method with the Large Language Model (LLM) on the WMT 22
En→Ja task, which is the largest dataset. We fine-tuned Qwen3-8B (Team, 2025) with LoRA with
rank r = 128 as our baseline. LoRA was applied to the attention query/key/value projection layer.
Experiments were conducted with identical configurations, including the number of training steps and
batch size. We incorporated quality scores into the LLM fine-tuning for our method. Specifically, we

1The model leads to BLEU scores of 23.72, 28.43 and 28.36 on the WMT 14 En→De task when decoding with 0, 0.05 and
0.1 as the quality scores respectively without dropout, while obtaining a highest BLEU score of 28.78 with a quality score of 0
with dropout probability of 0.1.
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replaced the embedding of the start tag (< |im start| >) that triggers the generation with the quality
embedding. We used a beam size of 4 for decoding with the best performing model on the development
set.

Results in Table 2 show that our method outperforms the baseline across all metrics
(+1.25/+1.48/+1.24 on BLEU/chrf/COMET). The BLEU and chrF scores are lower than the results in
Table 1, but the COMET score is higher, which suggests that LLM generates more semantically adequate
translations compared to the Transformer.

Method BLEU chrF COMET

Baseline 20.49 28.28 85.85
Ours 21.74 29.76 87.09

Table 2: LLM Result on WMT 22 test set.

3.4 Effectiveness with Scaling
We tested the performance of shallower and deeper models on the WMT 14 En→De task. Results in
Table 3 show that our method can also obtain consistent improvements with varying depths, and shallow
models with our method can perform comparably to deeper baselines.

Depth
Method BLEU chrF COMETEncoder Decoder

3 3
Baseline 26.52 56.15 80.58

Ours 27.36 56.92 81.98

6 6
Baseline 27.64 57.26 82.42

Ours 28.78 57.91 83.51

12 6
Baseline 28.63 57.81 83.36

Ours 29.48 58.55 84.37

18 6
Baseline 29.06 58.16 83.50

Ours 29.84 58.67 84.39

Table 3: Results with varying depths.

3.5 Effects of Quality Estimation Methods
To verify that the translation losses (of the forward, reverse and bi-direction) are valid quality indicators,
we measure the Pearson correlation coefficients between the translation losses and the COMET (Rei
et al., 2022b)/MetricX (Juraska et al., 2023) scores. We compare with automatic metrics, because our
method only uses quality scores of the training set. The vanilla translation models are trained without
quality annotations and cannot overfit to quality scores. The quality estimation performance on the other
datasets may not be robust due to the machine translation training data limitation, but our method only
requires sufficient quality estimation performance on the training set.

Results in Table 4 show that: 1) translation losses of individual directions lead to similar Pearson coef-
ficients to the COMET scores and the bi-directional translation loss leads to a slightly higher coefficient,
and 2) the Pearson coefficient of the bi-directional translation loss (0.80) is close to that of MetricX
(0.83), supporting that the translation losses can be used as effective quality measures. The correlation
with MetricX scores is lower than with COMET for MetricX scores are somehow problematic (17.9%
are 0, 8% are 25).

We conducted experiments on the WMT 14 En→De task to test the effects of different quality scores.
Results in Table 5 show that: 1) all quality evaluation methods can lead to consistent improvements
except for the MetricX, the poor performance with MetricX may be because more than 1/4 of the training
set shares the same quality embeddings (17.9% and 8% of MetricX scores are 0 and 25 respectively) and
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Target Forward Reverse Bi-direction MetricX

COMET 0.77 0.77 0.80 0.83
MetricX 0.70 0.71 0.73 -

Table 4: Pearson correlation coefficients between translation losses, MetricX and COMET/MetricX
scores.

lacks discrimination in quality, 2) using the bi-directional loss is better than using a single direction loss,
and 3) using COMET-QE scores leads to slightly higher COMET score but slightly worse BLEU and
chrF scores than the bi-directional translation loss. This may be due to potential bias between COMET-
QE and COMET. Using COMET-QE scores can obtain comparable performance to bi-directional loss
and avoid the additional training cost of the bi-directional translation models for quality estimation, but
self-evaluation with the translation loss can avoid the reliance on the existence of QE tools.

Methods
Dev Set Test Set

BLEU chrF COMET BLEU chrF COMET

Baseline 26.13 54.32 82.24 27.64 57.26 82.42
MetricX 25.69 53.93 81.79 27.97 57.17 82.26

COMET-QE 26.31 54.69 83.64 28.63 57.84 83.57
Forward 26.22 54.44 83.15 28.45 57.64 83.37
Reverse 26.33 54.64 83.31 28.50 57.82 83.35

Bi-direction 26.43 54.76 83.48 28.78 57.91 83.51

Table 5: Ablation study of quality estimation methods on the development set (newstest 2013) and test
set (newstest 2014).

3.6 Quality-aware Encoding and Decoding

We tested the effects of providing quality scores to the encoder or the decoder or both on the WMT 14
En→De task. Results in Table 6 show that: 1) providing quality scores to either encoder or decoder can
lead to significant improvements than the baseline, showing the importance of integrating quality scores,
and 2) using quality scores in the decoder leads to better performance than in both, probably because that
it might be better to only let the decoder learn to generate translations of quality than additionally asking
the encoder to perform source language understanding for decoding of varying quality.

Methods
Dev Set Test Set

BLEU chrF COMET BLEU chrF COMET

Baseline 26.13 54.32 82.24 27.64 57.26 82.42
Encoder 26.18 54.60 83.04 28.41 57.54 83.19
Decoder 26.43 54.76 83.48 28.78 57.91 83.51

Both 26.21 54.60 83.08 28.54 57.73 83.13

Table 6: Results for quality-aware encoding/decoding on the development set (newstest 2013) and test
set (newstest 2014).

3.7 Effects of Quality Scores on Inference

To test whether the model is aware of the translation quality after training, we tested the BLEU score of
model translations with varying quality scores on the WMT 14 En→De task.

Results in Figure 2 show that the model learns to generate translations of the given quality score.
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Figure 2: Translation quality with increasing loss scores.

4 Related Work

The performance of machine translation models heavily depends on the quality of the training data. Tra-
ditional approaches often improve data quality by filtering noisy data (Junczys-Dowmunt, 2018; Scham-
per et al., 2018; Chaudhary et al., 2019). Recently, Peter et al. (2023) use QE metrics to filter low-quality
sentence pairs in the training data. And they found QE methods focus on selecting the best translation
examples and identify more fine grained problems in the training data.

On the other hand, some studies have attempted to incorporate quality signals into the model training or
decoding process. Fernandes et al. (2022) using QE for reranking or Minimum Bayes Risk decoding lead
to significant improvements over beam search decoding. Concurrently, Tomani et al. (2024) eliminate
the need for an external QE model during decoding by embedding quality signals directly into the model,
they divide the training set into a number of bins based on the quality estimation scores and prompt the
model with the quality embedding of the corresponding bin.

The evaluation methods for machine translation can be divided into two categories: reference-based
and reference-free. Reference-based evaluation (BLEU (Papineni et al., 2002), BLEURT (Sellam et al.,
2020) and COMET (Rei et al., 2022a)) requires comparing the model output with reference transla-
tions. Compared with lexical overlap based methods sush as BLEU, neural metrics like BLEURT and
COMET can capture semantic relationships. Reference-free evaluation (OpenKiwi (Kepler et al., 2019),
TransQuest (Ranasinghe et al., 2020), COMET-QE (Rei et al., 2022b) and MetricX-QE (Juraska et al.,
2023)), also named quality estimation (QE), mainly indicates that directly predicting a quality score for
the translation based on the input and model output.

Adding tags is an effective method to integrate additional signals to neural models, such as formality
level (Yamagishi et al., 2016), politeness (Sennrich et al., 2016a), domain (Kobus et al., 2017), and so
on. Johnson et al. (2017) indicate the target language for multilingual NMT. Scarton and Specia (2018)
indicate the audience for text simplification. Bandel et al. (2022) control paraphrasing via semantic
similarity, syntactic and lexical variation.

5 Conclusion

In this paper, we facilitate quality-aware NMT by self-estimated quality with bi-directional translation
losses and representing quality scores via vector interpolation. Experiments show that our method can
lead to consistent and significant improvements on low/middle/high-resource tasks. Our analysis shows
that the model is aware of the quality after training and can generate translations of the given quality
score.
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