CCNLG 2019

4th Workshop on Computational Creativity in Language
Generation

Proceedings of the Workshop

November 1, 2019
Tokyo, Japan

Sponsored by The University of Antwerp

(©2019 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-950737-67-3

Introduction

Welcome to the 4th Workshop on Computational Creativity in Language Generation, a workshop held in
conjunction with INLG 2019, the International Conference on Natural Language Generation, in Tokyo,
Japan.

Discussions at CC-NLG will cover the distinct approaches of CC and NLG brought about by their
respective focuses; research in computational creativity has tended to deal less with technical shifts,
directed instead at cognition, aesthetics, and novelty; whilst NLG research has tended to focus on the
technical and theoretical challenges of topics like readability. However, in recent years this distinction
has become far less defined. NLG research deals actively with concepts of style, variation, poetics, and
narrative, whilst creative researchers are developing robust implementations. This change can be seen in
dialogue systems, where the usability of an interface relies on it handling out-of-domain or spontaneous
user input. Creative methodologies are garnering fundamental and applicable returns.

—The Organizers

Table of Contents

CCNLG Papers
Toward Automated Quest Generation in Text-Adventure Games
Prithviraj Ammanabrolu, William Broniec, Alex Mueller, Jeremy Paul and Mark Riedl 1

Efficient text generation of user-defined topic using generative adversarial networks
Chenhan Yuan, Yi-Chin Huang and Cheng-Hung Tsai............ ..o, 13

Emotional Neural Language Generation Grounded in Situational Contexts
Sashank Santhanam and Samira Shaikh. e 22

Text Embellishment using Attention Based Encoder-Decoder Model
Subhajit Naskar, Soumya Saha and Sreeparna Mukherjee, 28

Noun Generation for Nominalization in Academic Writing
Dariush Saberi and John Lee e 39

Advertising Plot Generation System Based on Comprehensive Narrative Analysis of Advertisement
Videos
Juumpei Ono, Atsushi Sasaki and Takashi Ogata............. ..., 44

vii

Toward Automated Quest Generation in Text-Adventure Games

Prithviraj Ammanabrolu, William Broniec, Alex Mueller,
Jeremy Paul, and Mark O. Riedl
School of Interactive Computing
Georgia Institute of Technology
Atlanta, GA, USA

{raj.ammanabrolu,wbroniec3,alexmueller, jeremypaul, riedl}@gatech.edu

Abstract

Interactive fictions, or text-adventures, are
games in which a player interacts with a world
entirely through textual descriptions and text
actions. Text-adventure games are typically
structured as puzzles or quests wherein the
player must execute certain actions in a cer-
tain order to succeed. In this paper, we con-
sider the problem of procedurally generating a
quest, defined as a series of actions required
to progress towards a goal, in a text-adventure
game. Quest generation in text environments
is challenging because they must be semanti-
cally coherent. We present and evaluate two
quest generation techniques: (1) a Markov
chains, and (2) a neural generative model. We
specifically look at generating quests about
cooking and train our models on recipe data.
We evaluate our techniques with human par-
ticipant studies looking at perceived creativity
and coherence.

1 Introduction

Natural language can be used to express creativity
in the form of narrative. Prior research has shown
that narrative is used in everything from environ-
mental understanding (Bruner, 1991) to develop-
ing language (Johnston, 2008). Given this wide
ranging impact, using narrative in language to help
us understand human perceptions of creativity and
what it takes to replicate this through computa-
tional models is natural. Text-adventure games or
interactive fiction, in which a player interacts with
a world entirely through text, provide us with a
platform on which to explore these ideas on cre-
ativity in language. These games are usually struc-
tured as puzzles or quests in which a player must
complete a sequence of actions in order to suc-
ceed. Text games allow us to factorize the prob-
lem of creative language generation and focus on
developing more fine-grained, data-driven models.

Automated generation of text-adventure games
can broadly be split into two considerations:
(1) the structure of the world, including the layout
of rooms, textual description of rooms, objects,
and non-player characters; and (2) the quest, con-
sisting of the partial ordering of activities that the
player must engage in to make progress toward the
end of the game. In this work, we focus on meth-
ods of automatically generating such a quest and
how it can be used to better understand narrative
intelligence, specifically looking at perceived cre-
ativity and coherence. Quest generation requires
narrative intelligence as a quest must maintain co-
herence throughout and progress towards a goal.
Maintaining quest coherence also means follow-
ing the constraints of the given game world. The
quest has to fit within the confines of the world
in terms of both genre and given affordances—
e.g. using magic in a fantasy world. This is fur-
ther complicated in the case of a text-adventure as
a consequence of all interactions being in natural
language—the potential output space is combina-
torial in size. Because the player “sees” and “acts”
entirely through text, any quest generation system
must also take into account the lack of visual infor-
mation and generate sufficiently descriptive text
accordingly.

There are multiple variables that could poten-
tially affect a player’s perception of creativity in a
text-adventure game such as the vocabulary used,
the structure of the world, stylistic variations in
writing, etc. We use the TextWorld framework
(Coté et al., 2018) which lets us generate text-
adventure game worlds based on a grammar. It
lets us fix variables concerned with game world
and logic generation and focus only on the gen-
eration of quests within this world. We use this
framework’s “home” theme—providing us with
a textual simulation of a house—and restrict the
types of quests that can be generated to those in-

volving the completion of a cooking recipe. We
then attempt to learn how to generate a quest to
complete a recipe—as well as how to create the
recipe itself—using a large scale knowledge base
of recipes. In these quests, players are provided
with a list of ingredients and their locations, and
they have to navigate the environment to find and
prepare those ingredients to complete the given
recipe. For example, given a recipe to make peanut
butter cookies the quest would first tell the player
to find eggs, peanut butter, flour, and baking soda.
The player would then have to figure out that the
first ingredient is in the fridge while the others are
in the pantry and prepare each item accordingly.
Generating this sort of quest requires knowledge
of the ingredients, how they fit together, and how
those ingredients interact with the environment.

The contribution of this work is thus twofold.
We first detail a framework, and variations thereof,
that can learn to generate creative quests in a text-
adventure game. This framework includes two
quest generation models using Markov chains as
well as a neural language model. It also uses a se-
mantically grounded knowledge graph to improve
overall quest coherence. Our second contribution
provides human subject evaluations that give us
insight into how each variation of this framework
affects human perception of creativity and coher-
ence in such games.

2 Related Work

Although there has been much work recently on
text-adventure gameplay (Bordes et al., 2010; He
et al., 2016; Narasimhan et al., 2015; Fulda et al.,
2017; Yang et al., 2018; Haroush et al., 2018;
Coté et al., 2018; Tao et al., 2018; Ammanabrolu
and Riedl, 2019a; Hausknecht et al., 2019a; Am-
manabrolu and Riedl, 2019b; Hausknecht et al.,
2019b), these works focus on creating agents that
can play a given game as opposed to being able to
automatically generate content for them.

Outside of this, there has been some work on
learning to create content in the context of interac-
tive narrative. These systems mainly work to over-
come a significant bottleneck in the form of the
human authoring required to create such works.
Permar and Magerko (2013) present a method of
generating cognitive scripts required for freeform
activities in the form of pretend play. Specif-
ically, they use interactive narrative—a form of
pretend play that requires a high level of impro-

visation and creativity and uses cognitive scripts
acquired from multiple experience sources. They
take existing cognitive scripts and blend them in
the vein of more traditional conceptual blending
(Veale et al., 2000; Zook et al., 2011) to create
new blended scripts. Closely related is Magerko
et al. (2014) who present a Co-Creative Cognitive
Architecture (CoCoA), detailing the set of compo-
nents that support the design of co-creative agents
in the context of interactive narrative. These meth-
ods all follow singular cognitive models that do
not learn to generate content automatically.

Li et al. (2012) present Scheherazade, a system
which learns a plot graph based on stories written
by crowd sourcing the task of writing short sto-
ries through Amazon Mechanical Turk. This plot
graph contains details relevant for the coherence
of the story and includes: plot events, temporal
precedence, and mutual exclusion relations. The
generated narrative contains events that can be ex-
ecuted from this plot graph by both players and
non-player characters. Guzdial et al. (2015) in-
troduce Scheherazade-IF, a system that learns to
generate choose-your-own-adventure style inter-
active fictions in which the player chooses from
prescribed options. More recently, Martin et al.
(2017) introduce a pipeline systems for improvi-
sational storytelling agents capable of collabora-
tively creating stories. These agents first focus
on creating a plot for the story and then expand
that plot into natural language sentences. Urbanek
et al. (2019) introduce Light, a dataset of crowd-
sourced text-adventure game dialogs focusing on
giving collaborative agents the ability to generate
contextually relevant dialog and emotes.

Giannatos et al. (2011) use genetic algorithms
to create new story plot points for an existing game
of interactive fiction using an encoding known as
a precedence-constraint graph. This graph gives
the system information regarding the ordering of
events that must happen in the game in order to
advance. They demonstrate the workings of their
system by generating additional content for the
popular interactive fiction game Anchorhead, and
show that this can be integrated into the original
game. This work, however, is offline and relies
on existing interactive fiction games and having
knowledge of the precedence-constraint graph for
this existing game.

The Game Forge system (Hartsook et al., 2011)
also uses genetic algorithms to generate a game

Figure 1: Example of ingredient connections.

world and plot line for related type of game, a
computer role playing game (CRPG). This work
focuses on generating layouts and plot structures
to create novel game worlds through with a fit-
ness function based on a transition graph that en-
codes pre-built game requirements. Tamari et al.
(2019) focus on extracting action graphs for se-
quential decision making problems such as mate-
rial science experiments and turn them into text-
adventure games. Although these works use graph
structures in order to constrain the generation of
the game, we use these graph structures only to
maintain coherence and focus on content creation.

Although there are works that attempt to auto-
matically evaluate the creativity of the output of
a generative process by computationally modeling
potential human responses — such as with story
telling (Purdy et al., 2018), etc. — we choose to
rely on a human subject study based on the defi-
nition of creativity as presented in Boden (2007).
Specifically we focus on the concepts of novelty
and value, despite collecting data for other defined
metrics as well. We use the definition of novelty
stemming from the idea of p-creativity, i.e. a con-
cept that is entirely new to a single agent — in this
case a subject in our evaluation study. Value, as a
component of computational creativity, however,
is not defined concretely in Boden’s work for a
general domain. Our definition of value in the con-
text of text-adventure games relies on accomplish-
ment or achievement.

3 Content Generation

In this section, we present Markov chain and neu-
ral language model based models to generate con-
tent, i.e. recipes, for our quests. Content gen-
eration for a quest in a text-adventure game, in
this case a recipe, can be thought of as being
equivalent to generating a sequence of events in

which prior elements affect the probability of sub-
sequent events. Markov chains present a simpli-
fied and well studied method to generate such con-
tent. Neural language models, designed to pre-
dict an element of a sequence conditioned on a
given number of prior elements, let us generate se-
quences of events with more prior context—i.e. in
the absence of the Markov assumption.

3.1 Markov Chains

Our first quest generation model is based on the
use of Markov chains. This generation process
consists of two steps. We first learn a weighted
ingredient graph, a Markov chain, from a large
scale knowledge base of recipes and then proba-
bilistically walk along this graph to generate the
instructions for the recipe.

3.1.1 Ingredient Graph

Generating the recipe requires domain knowledge.
For example, creating a recipe for peanut butter
cookies requires an understanding that an ingre-
dient like peanut butter fits well with eggs, flour,
and sugar while something like fish does not. We
represent this knowledge with an undirected graph
of ingredients. Our ingredient graph is based off
of recipes scraped from allrecipes.com. !
The raw, uncleaned dataset included over 20,000
recipes with over 4000 unique ingredients. A list
of ingredients was extracted from each recipe, and
each of these lists was converted into a set of in-
gredient pairs (Fig. 2). In total, there were 118,116
unique ingredient pairings, and 73,088 of those
pairings (62%) only occurred once. We reduced
the number of distinct ingredients from 4460 to
1703 by merging items with the same base ingre-
dient and by replacing name-brand items with a
generic equivalent.

Each of the nodes within the graph represents a
possible ingredient, and weighted connections be-
tween these nodes represent how well the ingre-
dients go together. The weight of each edge is
the total number of occurrences of that ingredient
pair within the recipe corpus. The edge connect-
ing eggs and white sugar would have a weight of
3774 while the edge between hot milk and orange
juice would have a weight of 1. Ingredient pairings
that do not occur within the recipe corpus did not
have an edge within this network, and this helped

"https://github.com/kbrohkahn/
recipe-parser

allrecipes.com
https://github.com/kbrohkahn/recipe-parser
https://github.com/kbrohkahn/recipe-parser

recipe

ingredients ingredient pairs

ingredient edges

b’d

peanut butter

(peanut butter, sugar)

sugar (peanut butter, eggs)

engs (peanut butter, baking soda)

baking soda (sugar, eggs)

(sugar, baking soda)

(eqggs, baking soda)

Figure 2: Ingredient extraction process.

prevent our model from generating completely in-
coherent recipe pairings (e.g. hot sauce and baby
food). Take the graph in Fig. 1 as an example. In
this complete graph, all of the ingredients go well
with each other except for fish and sugar, which is
indicated by the low weight connection between
them. The weak connection between sugar and
fish suggest that they would likely not go well to-
gether in a recipe.

3.1.2 Instruction Generation

With the ingredient graph created, we begin the
process of instruction generation based on sub-
graph mining and prior generative methods based
on probabilistic graph walks (Fleishman, 1978).
We start by selecting an initial random ingredient
x’ weighted by its distribution in the graph.

Sy w(vi, 71)
k k
> ic Zj:l w(vi, v;)

p(z1) =)

We probabilistically select one of its neighbors
based on the conditional frequency of the pair.
Each iteration further computes conditional prob-
abilities and selects them. We exclude all ingredi-
ents in which any bag of words token is contained
by any other, ensuring that a variety of different
ingredients are selected.

(2)

_ 0 sz C Bl‘n+l B$n+1 g sz
1 else

In Eq. 2, By, refers to the 1-gram bag of words
model.

However, just computing complete conditional
probabilities would remove the chance for entirely
new combinations to emerge. Therefore, we cal-

culate just the partial probability of having shared
ingredients with a bias designed to favor such

combinations.

8= (Z Shared(z;, ni1))?
i=1
(3)

1 w(z1,z2) >0

Shared(zy,x2) = { 4)

0 else

This process repeated recursively to generate a
recipe with the desired number of ingredients.
-'En+1 , U])

5
Z] 1“’(5%%)

Finally, resultant combinations are referenced
back against the original corpus to guarantee nov-
elty in the result.

(6]

-'En+1

3.2 Neural Language Model

Here we use a neural language model to generate
both the ingredients for a recipe and the steps of
the ingredients as well. We use the same knowl-
edge base as described in Sec. 3.1.1 and train two
separate language models: one to generate the
ingredients, and the other to generate the recipe
given a set of ingredients.

The first language model uses a simple 4-layer
LSTM to generate a sequence of ingredients, treat-
ing all the words in a single ingredient as a single
token. For example, “peanut butter” would be con-
sidered a single token in this model. We train this
model using the sets of ingredients found in each
recipe for the entire recipe dataset, with each set
ending with an <EOI> or End of Ingredients tag.
Once trained, the model then generates a sequence
of ingredients until the <EOI> is reached using
the top-k sampling technique (Holtzman et al.,
2019).

To generate the actual recipe, we use GPT-
2 (Radford et al., 2019) and fine-tune their pre-
trained 345m parameter model on the recipe data.
The data to fine-tune this model is designed to con-
tain the recipe title, ingredients, and instructions
in an unstructured text-form. Once this model has
been fine-tuned, we use it to generate the title and
instructions for the recipe conditioned on the in-
gredients generated by the first language model.
The entire generated recipe consists of the ingre-
dients, title, and instructions.

4 Quest Assembly

We now use the generated content, i.e. the recipe,
to assemble a quest—grounding the generated in-

baking
pot ‘ ‘ stuff

spatula

surface

penshabies

m
ant spices.
panty " food

m~>{ drawer |»m+{ Kitchen }«{ mdge F{ e
i r .

food

]EIIE

grater

pesler

oven

island ‘ vegetables |

3

on]
‘ ;

baking

cheet

o | | [(m]

Figure 3: Object graph in the one room map.

gredients and instructions in the game world. This
requires us to first determine the structure of the
game world and the locations of objects within
this world in addition to transforming the set of
generated instructions into executable actions. We
use two types of semantically grounded knowl-
edge graphs to represent this information: the ob-
ject and action graphs.

The object graph is used to determine the struc-
ture of the world and the most likely locations of
objects within this world. For example, we could
have information that says that vegetables must be
stored in a refrigerator. If a recipe requires carrots,
then the carrots would automatically be placed in
a refrigerator at the start of the game. This graph is
constructed by hand and is built to make the game
world and resulting quest as coherent as possible.

We construct object graphs for two different
room layouts. The first, the one room (1R) map,
consists of a kitchen as well as the objects and ac-
tions that exist within it. The second map, the five
room (5R) map, is an extension of the first map
and contains four additional rooms.

The object graph for the 1R map as shown
in Fig. 3 is largely inspired by the simple, pre-
built game provided within TextWorld (Coté et al.,
2018). This object graph determines how and
where objects are placed within the environment
during game generation, and the action graph
(Fig.6) dictates how generated instructions are
transformed into executable actions in the game.
The object graph was constructed logically: tools
and utensils go in the drawer, meat and dairy be-
long in the refrigerator, and so on. Food item
placements are deterministic and coherent. Veg-
etables always go in the refrigerator, and fruit al-
ways goes on the kitchen island. The action graph
was also designed to prevent the player from con-
ducting illogical actions.

room

‘ garage H kitchen H backyard

garden ‘

dining room

Figure 4: Room layout in the five room map.

baking
stuff

non-
perishables
i
i

!
I e . e

pester

food
processor }’ CETER

island vegetables backyard

! — : I
‘
sink H = ‘ frut }*4-{ garden ‘ aril ‘
dining
o B e

Figure 5: Object graph in the five room map.

The SR map included a dining room, garage,
backyard, and garden in addition to the kitchen
(Fig. 4). The map (Fig. 5) is designed to main-
tain the same levels of coherency as the 1R map
while allowing for more diverse gameplay, which
could in turn lead to higher levels of perceived cre-
ativity. The additional rooms are selected based
on their possible relationships to the domain of
food and cooking, and each new room has its own
unique objects that players can interact with. For
example, the garage has an old refrigerator that
can be used to store meat. These new rooms and
objects also allow for dynamic food placement.
Meat can be placed in one of two refrigerators, and
fruits and vegetables can possibly be found in the
garden. The existence of these new locations is
not immediately clear to the player. The garage
and backyard are additionally obscured by closed
doors, adding to quest complexity. While the ad-
ditional rooms and dynamic food placement allow
for more diverse gameplay, they do not sacrifice
coherency.

The action graph contains information regard-
ing the affordances of the objects in the world and
what kinds of objects are required to complete a
given generated instruction. For example, if a gen-
erated instruction tells us to prepare vegetables,
i.e. cut them, then this graph tells us that there
must be a knife somewhere in this world. This
graph is partially extracted from static cooking
guides online using a mixture of OpenlE (Angeli

frut

Figure 6: Example action graph for both maps.

et al., 2015) and hand-authored rules to account
for the irregularities of cooking guides. An exam-
ple of an action graph is given in Fig. 6. A player
can peel fruit and vegetables, for example, but can-
not peel a steak. There are also strict rules on what
tools are required for certain actions. A player can
only cut something if they have a knife and can
only peel something with a peeler. While this re-
stricts how players can interact with the environ-
ment, it ultimately reinforces game coherency.

We also note that when generating the quests,
both the Markov chain and the neural language
model based generation systems use the object
graph to determine object placement but only the
Markov chain based model uses the action graph.
This is because the instructions generated by the
Markov chain model is in the form of a sequence
of ingredients which then requires the action graph
to determine the actions and additional objects re-
quired to turn this list of ingredients into a playable
quest. The action graph would thus take an ingre-
dient such as a carrot and determine first that it
needs to be cut and that a knife is required for this
task. The neural language model on the other hand
already generates the full action, including poten-
tially required objects, that can be executed and so
does not make use of this graph.

5 Experiments

Our experiments were designed to compare per-
ceived creativity and coherence, specifically test-
ing our models in addition to factors such as com-
plexity. We tested five types of designs: Hu-
man Designed (HD), Random Assignment (RA),
Markov Chains Simple (MCS), Markov Chains
Complex (MCC), and Language Model (LM). HD
is simply what it sounds like, a game that was
created by a person. In this game, a human cre-

ates both the ingredients and the instructions for a
recipe and is additionally responsible for quest as-
sembly, i.e. grounding the generated content in a
given game world. We do not consider experience
in designing text-adventure games when picking
a human to create this game as this task can be
performed even by novices given the easily under-
standable “home” theme of the game world. The
game is manually crafted in terms of decided what
ingredients to put where and what the final recipe
would come together to be. RA is on the oppo-
site end of the spectrum where, as the name sug-
gests, everything is placed in a random location,
and the recipe could be totally random with ingre-
dients and instructions that might not normally be
seen. MCS and MCC use our Markov chains ap-
proach to generate quest content. The difference
between MCS and MCC are that the former has
four ingredients involved in its recipe while the
latter has eight. This was to vary the complex-
ity to see how that affected perceived creativity.
LM refers to the games generated using the recipes
generated by the language model. We additionally
had one-room and five-room variants for each of
the models to test how the structure and length of
the game would affect the players.

Evaluating the creativity of the output of any
computational generation process is a difficult task
which requires concrete definitions of the metrics
being used. We thus setup the experiment by hav-
ing our game designs deployed on Amazon Me-
chanical Turk for people to play and provide feed-
back. Specifically, they would play one randomly
selected game from the 1 room layout and then
fill out a survey for that game, and then play one
randomly selected game from the 5 room layout
and fill out an identical survey. Subjects were
provided with a simple practice game that they
could play beforehand to familiarize themselves
with TextWorld and its interface. We had 75 to-
tal participants for the entire study and had an av-
erage of 15 people play each game. The only re-
strictions that we had for participants was that they
had to be fluent in English—this was determined
by means of prebuilt restrictions on Amazon Me-
chanical Turk and game completion verification.

The users were asked questions pertaining to
two metrics: coherence and creativity. We looked
at creativity as a metric in the survey using the
components of creativity as defined by Boden:
novelty, surprise, and value. The survey detailed

Coherence

p-value = 1.78E-02

HD-1 RA-1 MCS-1MCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5
Games

Figure 7: Coherence scores for each game. Error bars
indicate one standard deviation.

questions that measured our defined metrics, us-
ing Likert Scale values along a scale of 1-7. For
example, it posed questions such as "How origi-
nal was the quest you played? 1: not at all novel,
7: exceptionally novel” when measuring novelty.
The other factors were also measured using simi-
larly phrased questions. A one-way ANOVA test
was then conducted followed by Tukey HSD post-
hoc analysis to determine significance. The results
of the raw scores for each group as well as the sig-
nificant results between pairs of different models
are presented below.

6 Results and Discussion

We present results for four metrics: coherence, un-
predictability (or surprise), novelty (or original-
ity), and value (or accomplishment) for each of
the games. Additionally, we also show the p-value
result of a one way ANOVA test for the distribu-
tions in each of the categories to determine sta-
tistical significance. This test tells us if the dif-
ferences in the means across the different games
are significant for each of the categories sepa-
rately. The Tukey HSD post-hoc analysis further
tells us which specific pairs of results are signif-
icant. We hypothesized that semantic grounding
using the knowledge graph would enable our mod-
els to maintain coherence on par with the human
designed games. Further, given the stochastic na-
ture of our generative models, we further predicted
that our models would also rate as being compara-
ble in terms of creativity to the human designed
games—with all models relatively outperforming
the randomly generated games. We see below that
these predictions hold.

Unpredictability

1 p-value = 1.04E-09

o

HD-1 RA-1 MCS-1MCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5
Games

Figure 8: Unpredictability (surprise) scores for each
game. Error bars indicate one standard deviation.

We find that the results for each individual cat-
egory are significant—p < 0.05 in all the cases.
Additionally, all the specific pairwise comparisons
we make are significant with p < 0.1—a full set of
these pairwise results can be found in Appendix A.
The rest of this section will discuss each of these
metrics in more detail.

Fig. 7 displays trends in the players’ perception
of coherence for each of the games. We first see
that the one-room games were consistently rated to
be more coherent than the five-room games, indi-
cating that overall quest coherence—and thus the
coherence of our generative system—degrades the
longer and more complex the quest. Across the
games, we see that the RA models were the con-
sidered to be the least coherent. The MCS model
slightly outperforms the MCC model, showing
that the Markov chain based models are more
coherent the less complex the output. The LM
achieves a higher score than both of the Markov
chain models and maintains coherence more easily
than either. Most importantly, all of these meth-
ods are comparable in coherence to the human-
authored games, i.e. our semantically grounded
knowledge graph ensures that coherence is not lost
when generating content.

Similarly, Fig. 8 describes how surprising the
game was to the players. The difference be-
tween the one-room and five-room games here is
much more pronounced. The players find the five-
room, the longer and more complex game, much
more surprising than their one-room counterparts,
showing that complexity is an important factor in
determining surprise. Another indication of this
is that the MCC model is rated as more surpris-

Originality

p-value = 3.21E-02

HD-1 RA-1 MCS-1MCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5
Games

Figure 9: Originality (novelty) scores for each game.
Error bars indicate one standard deviation.

ing than the less complex MCS model. The LM
achieves comparable performance to MCC and
once again they all perform as well as the HD
games.

Originality (Fig. 9), which we use as a proxy
to measure novelty, exhibits similar trends as sur-
prise. The more longer, more complex games are
deemed more original. Despite being random, the
RA games are seen to be less original than the the
rest of the games perhaps indicating that there is
a link between perceptions of coherence and orig-
inality. The gaps in performance here are much
less pronounced, however, and the Markov chain
models slightly edge out the LM — with all three
being comparable to the HD games.

To measure value, or utility, in a text-adventure
game, we asked the players if they felt a sense of
accomplishment after finishing the game (Fig. 10).
We see players reported a higher sense of accom-
plishment after finishing more complex games in
general with the exception of the RA games, both
of which performed poorly—Ilikely due to them
being relatively incoherent. We also note that the
LM showed the highest values here, surpassing the
HD games. We hypothesize that this might be due
to the player having to perform a wider range of
actions, some relatively unintuitive, that are not
constrained by our action graph.

7 Conclusions

We have demonstrated a framework to automati-
cally generate cooking quests in a “home” themed
text-adventure game, although our framework can
be generalized to other themes as well. Quest
generation in a given game world is a subset

Accomplishment
71 p-value = 7.53E-05

HD-1 RA-1 MCS-1MCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5
Games

Figure 10: Accomplishment (value) scores for each
game. Error bars indicate one standard deviation.

of the overall problem of generating entire text-
adventure games. Content generated by both the
Markov chains and the neural language models
can be grounded into a given game world using do-
main knowledge encoded in the form of a knowl-
edge graph. The models each excel on different
metrics: the Markov chains model produces quests
that are more surprising and novel while the neu-
ral language model offers greater value and coher-
ence. We also note, however, that the neural lan-
guage model requires less domain knowledge than
the Markov chains and is thus potentially more
generalizable to other themes and types of quests.

Our human subject study shows us that there is
an inverse relationship between creativity and co-
herence but only when a certain threshold of co-
herence is passed. In other words, the less co-
herent a game the more creative it is, but inco-
herent games—such as those generated by the RA
model—are perceived to be less creative. Further-
more, our automatically generated games consis-
tently perform at least as well as human designed
games in this setting, both in terms of coherence
and creativity—implying that the generative pro-
cess can be automated without a loss in perceived
game quality.

8 Acknowledgements

The authors would like to thank Dr. Ashok Goel
and Fred Bane from the Cognitive Science class at
Georgia Tech for their advice and encouragement
of the ideas in this work.

References

Prithviraj Ammanabrolu and Mark O. Riedl. 2019a.
Playing text-adventure games with graph-based
deep reinforcement learning. In Proceedings of
2019 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2019.

Prithviraj Ammanabrolu and Mark O. Riedl. 2019b.
Transfer in deep reinforcement learning using
knowledge graphs. CoRR, abs/1908.06556.

Gabor Angeli, Johnson Premkumar, Melvin Jose, and
Christopher D. Manning. 2015. Leveraging Lin-
guistic Structure For Open Domain Information Ex-
traction. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers).

Margaret A Boden. 2007.
Think, 5(15):83-96.

Creativity in a nutshell.

Antoine Bordes, Nicolas Usunier, Ronan Collobert,
and Jason Weston. 2010. Towards understanding sit-
vated natural language. In Proceedings of the 2010
International Conference on Artificial Intelligence
and Statistics.

Jerome Bruner. 1991. The narrative construction of re-
ality. Critical Inquiry, 18(1):1-21.

Marc-Alexandre Coté, Akos Kadar, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, et al. 2018. Textworld: A learning en-
vironment for text-based games. arXiv preprint
arXiv:1806.11532.

Allen I Fleishman. 1978. A method for simulating non-
normal distributions. Psychometrika, 43(4):521-
532.

Nancy Fulda, Daniel Ricks, Ben Murdoch, and David
Wingate. 2017. What can you do with a rock? affor-
dance extraction via word embeddings. In Proceed-
ings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI-17, pages
1039-1045.

Spyridon Giannatos, Mark J Nelson, Yun-Gyung
Cheong, and Georgios N Yannakakis. 2011. Sug-
gesting New Plot Elements for an Interactive Story.
In In Workshop on Intellignet Narrative Technolo-
gies (INT’11).

Matthew Guzdial, Brent Harrison, Boyang Li, and
Mark Riedl. 2015. Crowdsourcing open interactive
narrative. In FDG.

Matan Haroush, Tom Zahavy, Daniel] Mankowitz, and
Shie Mannor. 2018. Learning How Not to Act in
Text-Based Games. In Workshop Track at ICLR
2018, pages 1-4.

K. Hartsook, A. Zook, S. Das, and M. O. Riedl. 2011.
Toward supporting stories with procedurally gener-
ated game worlds. In 2011 IEEE Conference on
Computational Intelligence and Games (CIG’11),
pages 297-304.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Coté, and Xingdi Yuan. 2019a. Interac-
tive fiction games: A colossal adventure. CoRR,
abs/1909.05398.

Matthew Hausknecht, Ricky Loynd, Greg Yang,
Adith Swaminathan, and Jason D. Williams. 2019b.
Nail: A general interactive fiction agent. CoRR,
abs/1902.04259.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li-
hong Li, Li Deng, and Mari Ostendorf. 2016. Deep
Reinforcement Learning with a Natural Language
Action Space. In Association for Computational
Linguistics (ACL).

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degen-
eration. CoRR, abs/1904.09751.

Judith R Johnston. 2008. Narratives Twenty-Five Years
Later. In Top Lang Disorders, volume 28, pages 93—
98.

Boyang Li, Stephen Lee-Urban, Darren Scott Appling,
and Mark O. Riedl. 2012. Crowdsourcing Narra-
tive Intelligence . In Advances in Cognitive Systems,
volume 1, pages 1-18.

Brian Magerko, Justin Permar, Mikhail Jacob,
Margeaux Comerford, and Justin Smith. 2014. An
Overview of Computational Co-creative Pretend
Play with a Human. In Proceedings of IVA 2014.

Lara J. Martin, Prithviraj Ammanabrolu, Xinyu Wang,
Shruti Singh, Brent Harrison, Murtaza Dhuliawala,
Pradyumna Tambwekar, Animesh Mehta, Richa
Arora, Nathan Dass, Chris Purdy, and Mark O.
Riedl. 2017. Improvisational Storytelling Agents.
In Workshop on Machine Learning for Creativity
and Design (NeurIPS 2017), Long Beach, CA.

Karthik Narasimhan, Tejas Kulkarni, and Regina
Barzilay. 2015. Language Understanding for Text-
based Games Using Deep Reinforcement Learning.
In Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Justin Permar and Brian Magerko. 2013. A Concep-
tual Blending Approach to the Generation of Cog-
nitive Scripts for Interactive Narrative. In 9th AAAI
Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDEI3).

Christopher Purdy, Xinyu Wang, Larry He, and Mark
Riedl. 2018. Predicting Generated Story Quality
with Quantitative Measures. In In Proceedings of
14th AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDEIS).

https://doi.org/10.24963/ijcai.2017/144
https://doi.org/10.24963/ijcai.2017/144
www.aaai.org
www.aaai.org
https://doi.org/10.1109/CIG.2011.6032020
https://doi.org/10.1109/CIG.2011.6032020
http://www.slh.org.tw/upload/files/Johnston{_}Narratives Twenty-five years later.pdf
http://www.slh.org.tw/upload/files/Johnston{_}Narratives Twenty-five years later.pdf
https://www.cc.gatech.edu/{~}riedl/pubs/acs12.pdf
https://www.cc.gatech.edu/{~}riedl/pubs/acs12.pdf
https://pdfs.semanticscholar.org/8de9/870f1d7c00cabe5d5389972c42760836d2ed.pdf
https://pdfs.semanticscholar.org/8de9/870f1d7c00cabe5d5389972c42760836d2ed.pdf
https://pdfs.semanticscholar.org/8de9/870f1d7c00cabe5d5389972c42760836d2ed.pdf
https://nips2017creativity.github.io/doc/Improvisational{_}Agents.pdf

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Ronen Tamari, Hiroyuki Shindo, Dafna Shahaf, and
Yuji Matsumoto. 2019. Playing by the book: An in-
teractive game approach for action graph extraction
from text. In Proceedings of the Workshop on Ex-
tracting Structured Knowledge from Scientific Publi-
cations, pages 62—71, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Ruo Yu Tao, Marc-Alexandre C6té, Xingdi Yuan, and
Layla El Asri. 2018. Towards solving text-based
games by producing adaptive action spaces. In Pro-
ceedings of the 2018 NeurIPS Workshop on Word-
play: Reinforcement and Language Learning in
Text-based Games.

Jack Urbanek, Angela Fan, Siddharth Karamcheti,
Saachi Jain, Samuel Humeau, Emily Dinan, Tim
Rocktischel, Douwe Kiela, Arthur Szlam, and Jason
Weston. 2019. Learning to speak and act in a fantasy
text adventure game. CoRR, abs/1903.03094.

Tony Veale, Diarmuid O’donoghue, and Mark T Keane.
2000. Computation and Blending. Cognitive Lin-
guistics, 11(3/4):253282.

Zhilin Yang, Saizheng Zhang, Jack Urbanek, Will
Feng, Alexander H. Miller, Arthur Szlam, Douwe
Kiela, and Jason Weston. 2018. Mastering the dun-
geon: Grounded language learning by mechanical
turker descent. In In proceedings of the The Sixth
International Conference on Learning Representa-
tions (ICLR’18).

Alexander Zook, Brian Magerko, and Mark Riedl.
2011. Formally modeling pretend object play. In
Proceedings of the 8th ACM Conference on Creativ-
ity and Cognition, pages 147-156, New York, NY,
USA. ACM.

https://doi.org/10.18653/v1/W19-2609
https://doi.org/10.18653/v1/W19-2609
https://doi.org/10.18653/v1/W19-2609
http://mural.maynoothuniversity.ie/8182/1/DOD-Computation-2000.pdf
https://doi.org/10.1145/2069618.2069644

A Results

Coherence
p-value = 1.78E-02
Group1l Group2 Meandiff
HD-1 RA-5 -1.3958
LM-1 RA-5 -1.5
MCC-5 RA-5 -0.5333
MCS-1 RA-5 -1.1667
RA-1 RA-5 -1.2157
LM-5 MCS-1 0.1275
LM-5 MCS-5 -0.4392
LM-5 RA-5 -1.0392
LM-1 RA-1 -0.2843
Table 1: Coherence results for the post-hoc

HD-1 RA-1 MCS-1MCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5 Tukey HSD test with p= 0.1, only Slgnlﬁ-
Games cant results are shown.

Figure 11: Coherence scores for each game. Error bars indicate one
standard deviation.

Originality
p-value = 3.21E-02

61 Group1l Group2 Meandiff
HD-1 HD-5 1.8125

HD-1 LM-1 1.2292

HD-1 LM-5 1.4007

HD-1 MCC-5 1.6125

2 HD-1 MCS-1 0.5347
3 HD-1 MCS-5 1.5458
HD-1 RA-1 1.5772

HD-1 RA-5 0.9458

MCC-1 MCC-5 1.05

MCC-1 RA-1 1.0147

Table 2: Originality results for the post-hoc

HD-1 RA-1 MCS-1MCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5 Tukey HSD test with p = 0.1, only signifi-
Games
cant results are shown.

Figure 12: Originality (novelty) scores for each game. Error bars
indicate one standard deviation.

Group1l Group2 Meandiff

HD-1 HD-5 2.6106
HD-1 LM-5 2.7463

HD-1 MCC-5 2.6875

HD-1 MCS-5 1.8875

HD-1 MCC-1 0.9375

Unpredictability HD-1 RA-1 0.9228

6 { p-value = 1.04E-09 HD-1 RA-5 1.4208

HD-5 LM-1 -2.3397

HD-5 MCC-1 -1.6731

HD-5 MCS-1 -2.5342

LM-1 LM-5 2.4755

LM-1 MCC-1 0.6667

LM-1 MCC-5 2.4167

LM-1 MCS-5 1.6167

LM-5 MCC-1 -1.8088

LM-5 MCS-1 -2.6699

LM-5 RA-1 -1.8235

LM-5 RA-5 -1.3255

MCC-1 MCC-5 1.75

MCC-1 MCS-1 -0.8611

HD-1 RA-1 MCS-1MCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5 MCC-5 RA-1 -1.7647

Games MCC-5 RA-5 -1.2667

MCS-1 MCS-5 1.8111

Figure 13: Unpredictability (surprise) scores for each game. Error MCS-1 RA-1 0.8464
bars indicate one standard deviation. MCS-1 RA-5 1.3444

Table 3: Surprise results for the post-hoc
Tukey HSD test with p = 0.1, only signif-
icant results are shown.

Group1l Group2 Meandiff

HD-1 HD-5 1.899

HD-1 LM-1 2.1042

Accomplishment HD-1 LM-5 2.7904

p-value = 7.53E-05 HD-1 MCC-5 2.0375
HD-1 MCS-1 1.6042

HD-1 MCS-5 1.7708

HD-1 RA-1 1.6728

HD-5 LM-5 0.8914

HD-5 RA-5 -1.3282

LM-1 MCC-1 -1.25

LM-1 MCS-1 -0.5

LM-1 RA-5 -1.5333

LM-5 MCC-1 -1.9363

LM-5 MCS-1 -1.1863

LM-5 MCS-5 -1.0196

LM-5 RA-1 -1.1176

LM-5 RA-5 -2.2196

HD-1 RA-1 MCS-IMCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5 MCC-1 MCC-5 1.1833
Games MCC-5 RA-5 -1.4667

MCS-5 RA-5 -1.2

Figure 14: Accomplishment (value) scores for each game. Error
bars indicate one standard deviation. Table 4: Value results for the post-hoc Tukey

HSD test with p = 0.1, only significant re-
sults are shown.

Text Embellishment using Attention Based Encoder-Decoder Model

Subhajit Naskar
University of Massachusetts
Ambherst, MA, US
snaskar@cs.umass.edu

Soumya Saha
University of Massachusetts

Ambherst, MA, US
soumyasahalcs.umass.edu

Sreeparna Mukherjee
University of Massachusetts

Ambherst, MA, US
sreeparnamuk@cs.umass.edu

Abstract

Text embellishment is a natural language gen-
eration problem that aims to enhance the lex-
ical and syntactic complexity of a text. i.e.,
for a given sentence, the goal is to generate
a sentence that is lexically and syntactically
complex while retaining the same semantic in-
formation and meaning. In contrast to text
simplification (Wang et al., 2016), text embel-
lishment is considered to be a more complex
problem as it requires linguistic expertise, and
therefore are difficult to be shared across dif-
ferent platforms and domain. In this paper, we
have explored this problem through the light
of neural machine translation and text simpli-
fication. Instead of using a standard sequen-
tial encoder-decoder network, we propose to
improve text embellishment with the Trans-
former model. The proposed model yields su-
perior performance in terms of lexical and syn-
tactic embellishment and demonstrates broad
applicability and effectiveness. We also intro-
duce a language and domain agnostic evalua-
tion set up specifically for the task of embel-
lishment that can be used to test different em-
bellishment algorithms.

1 Introduction

In recent years, deep neural networks have
achieved some promising results in natural lan-
guage tasks such as speech recognition, text gener-
ation, and machine translation. (Kim et al., 2015);
(Zaremba et al., 2014); (Mikolov et al., 2010).
(Rajeswar et al., 2017). Many of these models fol-
low a teacher forcing technique, where the model
is trained to predict the next word in the sequence
given the previous words. This is usually done
using maximume-likelihood training of these mod-
els. These models are then evaluated based on
sequence level metrics such as BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), etc.

Narrative generation or story generation is a

common natural language generation task. Nar-
rative generation pipeline consists of two steps
(Yao et al., 2018): First step is to generate a sim-
plified story by a human or a machine learning
model. The second step mainly consists of dis-
course generation, i.e., producing narratives that
sound meaningful and appealing to the readers.
Our model, which performs text embellishment,
can be used in the second step mentioned above.
We use the word "Embellishment” as a method to
produce engaging texts out of simplified texts.

Previous researches on similar tasks have
mainly dealt with rule-based approaches for dis-
course, where the model designer has predefined
these rules. These rule-based approaches re-
quire significant expertise of the language and,
more specifically, the field of the text. Further-
more, there is no scope of model generalization,
i.e., a model for one type of text may not be
used for a different type. Therefore, a domain-
independent model for text embellishment has sig-
nificant importance in the field of natural language
generation, particularly narrative generation. A
domain-independent model allows the designer to
build a light-weight system to generate simple text
and use a domain-independent text embellishment
model to make their model more diverse in terms
of sentence complexity.

The embellishment characteristic of a sentence
can be categorized into two types,

e Lexical embellishment: The intent behind
lexical embellishment is to replace com-
monly occurring vocabulary words with their
complex counterparts while keeping the over-
all meaning of the sentence undisturbed.
Here complexity is judged based on a sim-
ilar methodology as Word Complexity Mea-
sure used for phonological assessment.

e Syntactic embellishment: Syntactic embel-
lishment targets to increase the complexity of
a sentence as a whole. This includes both
grammatical and structural complexity en-
hancement.

In this paper, we primarily focus on lexical em-
bellishment, i.e., for a given sentence, we try to
generate grammatically correct sentence that has
more complex words without changing the mean-
ing of the sentence while exploring the possibility
of syntactical embellishment.

The text embellishment task is often interpreted
as the inverse to text simplification (TS), which
has significant work and literature. Recent works
on text simplification systems are capable of sim-
plifying text both lexically and syntactically inde-
pendent of domains or any predefined rules. Thus,
we were encouraged to explore the possibility of
a domain-independent text embellishment. How-
ever, we do acknowledge that text embellishment
is generally a significantly complicated task com-
pared to text simplification. Text simplification of-
ten can be regarded as a careful information reduc-
tion process, whereas text embellishment requires
language generation. So, defining text embellish-
ment as merely the inverse task of text simplifica-
tion can be misleading.

Instead, we would like to argue that text embel-
lishment shares certain traits with machine trans-
lation. Since our goal is to embellish sentences by
replacing simple words with more complex words,
our goal can be interpreted as a translation task
where the source language is simple English and
the target language is complex English.

While exploring past machine learning and nat-
ural language literature, we found that domain-
independent text embellishment is a relatively un-
explored task and seems exciting and promising.
Furthermore, there is no prior work on domain-
independent text embellishment that was able to
show promising results in terms of either lexi-
cal embellishment or syntactic embellishment. In
this paper, we solely explore the possibility of
neural encoder-decoder architecture in develop-
ing a domain-agnostic text embellishment system.
We use Transformer based architecture to improve
embellishment quality and compare the results
with seq2seq based architecture used on the same
task.

2 Related Work

Research in computational narrative traces back
to the 1960s and 1970s, intending to instill nar-
rative intelligence in machines. One of the
most well-known generation systems is TALE-
SPIN, which produces narratives by emphasiz-
ing problem-solving techniques (Meehan, 1977).
While this work focused on the idea that events
follow each other sequentially, the work of (Call-
away and Lester, 2002) explicitly addressed the
gap between computational narrative and Natural
Language Generation. These works use rule-based
language models that produce naturally sounding
narratives. Even though these approaches make
use of text embellishment, the main disadvantage
is that these rules have to be devised before the
system’s architecture design, which limits the per-
formance of the model.

Another close area of research in this domain is
incorporation of linguistic style. Here, style can
refer to features of lexis, grammar, and semantics,
which is individual to a particular author or a spe-
cific situation. While research in this area started
with rule-based methods, but from the early 2000s,
the shift has been towards a data-driven approach.
(Paiva and Evans, 2005) developed an algorithm
that identifies a series of local decisions that max-
imize the desired stylistic capacity. More recently,
(Ficler and Goldberg, 2017) demonstrate control-
ling several stylistic variations in generated text
through conditioned language models. On the
contrary, we are trying to make the machine learn
natural language representation from human data
and enhance narratives that have been generated
before in a domain-independent manner.

This approach can be compared with other ex-
isting works in the field of natural language pro-
cessing such as statistical machine translation, text
summarization, and, most importantly, text sim-
plification. If we look at the summarization and
simplification task, we will understand that the
main goal is to extract the necessary informa-
tion, maintain a natural language structure and re-
move linguistic embellishment that is not neces-
sary for understanding the context. Thus, we see
that our work is complementary in its objective to
both of these tasks. Thus, the applications of text
simplification include reducing the complexity of
a natural language sentence by focusing on the
discourse level aspects of syntactic simplification
(Siddharthan, 2002), whereas on the other hand

(Coster and Kauchak, 2011) aims to reduce the
reading complexity of a sentence by incorporating
more accessible vocabulary and sentence struc-
ture. Thus, here in our task is more similar to the
later as we aim to increase the complexity of a sim-
ple sentence by adorning its vocabulary with more
complex words. Another prominent work is this
field by (Shardlow, 2014), where they distinguish
between syntactic and lexical simplification. Syn-
tactic simplification aims to reduce the complex-
ity of sentence structure, whereas lexical simpli-
fication aims to replace difficult vocabulary with
simpler words. Previously, these two types of sim-
plification tasks have been addressed separately. (
(Siddharthan, 2006), (Biran et al., 2011), (Paetzold
and Specia, 2017)). More recently, we have seen
that both these tasks have been addressed simulta-
neously ((Wang et al., 2016), (Zhang and Lapata,
2017)). These tasks address this problem as an ex-
tension of machine translation and borrow ideas
from automatic natural language generation (Wen
et al.,, 2015). So, the problem of simplification
comes down to monolingual machine translation,
where the goal is to translate from a complex En-
glish to a simple English. Following the recent
success of neural machine translation, we see an
increased use of LSTM based encoder-decoder ar-
chitecture in these tasks. ((Bahdanau et al., 2014),
(Cho et al., 2014)). Work by (Hochreiter and
Schmidhuber, 1997) on Long Short-term Memory
architecture has long been used to solve sequence
to sequence tasks where both the input and output
sequence can be of varied length.

Although we have seen significant progress in
the domain of text simplification, little work has
been done in text embellishment. What makes text
embellishment promising right now are the vast
corpora on which text simplification tasks have
been trained for more than two decades. However,
text embellishment is a much more difficult task
than text simplification as adding of information
might lead to an introduction of semantic contra-
dictions.

Nevertheless, quite recently, a promising work
in this field has been done by (Berov and Stand-
voss, 2018), motivated from researches in text
simplification and machine translation. The au-
thors have proposed a network design similar to
what (Wang et al., 2016) have used in their text
simplification work, which uses a Long Short-
Term Memory (LSTM) Encoder-Decoder model

for sentence-level text simplification as it makes
minimal assumptions about word sequence. We
replicate their model and use it as our baseline
model for evaluation and experimentation.

In this paper, we focus on neural encoder-
decoder architecture in developing a domain-
agnostic text embellishment system. To our
knowledge, there are no existing linguistically mo-
tivated, non-neural architecture for text embellish-
ment. However, one can see how a word or phrase
substitution method can be employed using a pre-
defined mapping between simple word/phrase to
complex word/phrase. This can be done using
Wordnet (Miller, 1995) as shown by (Tambe et al.,
2019) in context of text simplification. However,
such substitution may lead to incorrect substitu-
tion in the context of a specific domain. As,
a substitution that might be valid for a literary
text(novel, short story) may be incorrect and mis-
informing for a different domain such as a scien-
tific journal. That will necessitate domain-specific
rule design. As discussed in (Tambe et al., 2019),
Such methodology requires additional steps such
as word sense disambiguation, lexical simplifica-
tion, which are out of the scope of this paper. Fur-
thermore, such substitution will limit the possibil-
ity of syntactic embellishments, such as structural
and grammatical complexity enhancement. There-
fore, we avoid discussing the substitution based
embellishment strategy in this paper.

3 Methodology

We achieve the goal of embellishing a sen-
tence by modeling the distribution of the embel-
lished sentence given the simple sentence. i.e.
P(Y|X) where X denotes the simple sentence and
the words of the simple sentence is denoted as
x1,T2,...,Tn. Similarly, Y denotes the embel-
lished sentence, and the words of the embellished
or target sentence are yi,y2, ..., Ym. We model
our task similar to a machine translation task and
employ an encoder-decoder architecture. The en-
coder consumes the input text and computes a rep-
resentation of context vector c. The decoder gen-
erates one target word given the context vector c
and all the previous predicted words 1, ..., Yi—1-

T
p(y) = Hp(yt|g1,---7yt_—170) (1)
t=1

For both of our models, we used named entity
masking and byte pair encoding in input sentences

and beam search decoding while generating em-
bellished sentences.

3.0.1 LSTM Architecture

From the work of (Wang et al., 2016), we can
see that the LSTM Encoder-Decoder model can
learn operational rules such as reversing, sorting,
and replacing from sequence pairs. This shows
such Encoder-Decoder model may potentially ap-
ply rules like modifying sentence structure, substi-
tuting words, and removing words for text simpli-
fication as well as text embellishment.

We chose our model as 3 LSTM layers having
300 hidden units for each encoder and decoder.
All weights were uniformly initialized as [-0.1,
0.1]. We have used Harvards OpenNMT PyTorch
framework (Klein et al., 2017) to set up the above
network and used the model for our task. We have
used a system having 8 core CPU with 2 NVIDIA
P100 GPU to train our network.

3.1 Transformer architecture

The LSTM based encoder-decoder model operates
sequentially using recurrence. Compared to se-
quence to sequence models, the Transformer pro-
cesses all words or symbols in the sequence in par-
allel while making use of a self-attention mech-
anism to incorporate context from words farther
away from it. By processing all words in paral-
lel and letting each word attend to other words in
the sentence over multiple processing steps, the
Transformer is computationally much more effi-
cient and gives superior performance in many nat-
ural language processing tasks. However, in our
case, we will focus on the sequential nature of
LSTMs and limitations. i.e., it is prone to be in-
ferior in handling long term dependencies (even
with attention). However, in our case, we require
an architecture that is capturing semantic informa-
tion and long term dependencies effectively. This
motivated us to use the transformer model as it
comes out as a promising architecture to address
this problem.

The architecture we used in our implementation
consists of 6 identical layers for each encoder and
a decoder network with all the sublayers having
512 units and 8 parallel attention layers or heads.
For our best performing model, we used Byte-pair-
encoding on the input text. The model was trained
on 2 NVIDIA GTX 1080 Ti GPUs.

4 Datasets

To train the model, we are using the WikiLarge
dataset, constructed by (Zhang and Lapata, 2017).
The dataset consists of 256252 aligned sentences
for training, 854 aligned sentences for validation,
and 358 sentences for test. We have chosen this
particular dataset, primarily because this is the
largest sentence-aligned dataset which is widely
used for text simplification task. ((Xu et al., 2016)
, (Vu et al., 2018) (Zhao et al., 2018))

Thus, since this task is complementary to text
simplification, we have interchanged the source
and target datasets, and now the goal of the model
will be to produce “complex” sentences from the
”simple” input sentences.

5 Results

The LSTM encoder-decoder model was able to
achieve some basic lexical replacements (found —
discovered, stayed — remained) and grammati-
cal corrections such as character case-correction,
punctuation correct. For example, It was found
by PERSON@] ... — It was discovered by PER-
SON@] ..., the former district PERSON@] ... —
The former district PERSON@]....

It is to be noted, such instances of lexical em-
bellishment were relatively limited, and in most
cases, the output is identical to the input sentence.
and there were no such instances of syntactic em-
bellishment.

However, in the case of the Transformer model,
there was a significantly high number of lexical
embellishment. Also, along with one-one lexical
replacement(replacing a single word with a more
complex synonym), Transformer was able to re-
place POS phrases with more complex word(very
very — extremely). Which was more impressive
and noteworthy was, in some instances, we ob-
served syntactic embellishment as well.

5.1 Lexical embellishment

Entrance to LOCATION@ 1 is very very difficult
— Entrance to LOCATION@] is extremely diffi-
cult.

Their culture is similar to the culture ... The cul-
ture of LOCATION@ is closely associated with
the culture ...

5.2 Syntactic embellishment

It is a starting point for people wanting ... — It
also serves as a starting point for people wanting

. appears as a stretched object . A stretched
object |was the major axis .It pointing towards
Uranus — appears as an elongated object,with
the major axis pointing towards Uranus

From this example, we can see that our pro-
posed model was able to achieve a more complex
type of lexical embellishment and some impres-
sive syntactic embellishment.

6 Evaluation

Primarily, we evaluate our models using two dif-
ferent evaluation setup: BLEU, readability scores.
However, these standard metrics have certain lim-
itations and may not always be sufficient for eval-
uating the embellishment capability of a model.
Therefore, we design a human evaluation setup
that is suitable for our task.

6.1 BLEU

To measure the proximity of generated output sen-
tence’s context to the original sentence, we have
used BLEU score, which is an automated method
to evaluate machine translation tasks. The main
purpose of BLEU metric is to evaluate the close-
ness of a machine-generated translation with ref-
erence to its human translation. Now, in the con-
text of our task, we use this metric to evaluate if
the context of the sentence has been changed or
not. Thus, a high BLEU score would indicate that
the context is close or similar to the original sen-
tence, whereas a low BLEU score would indicate
that context has changed. One point to be noted
is that this evaluation metric does not measure the
level of embellishment in the hypothesis sentence
compared to the reference sentence. In the follow-
ing table, we present the BLEU scores of the best
models we have trained.

] Measure \ LSTM \ Transformer ‘
| BLEU | 91.04 | 66.10 |

Table 1: BLEU with source sentence

From the high BLEU score of LSTM network, it
can be inferred that LSTM network mainly learned
to reproduce the input correctly without modi-
fying any words in the source sentence. While
the Transformer model produces sentences with
a lower BLEU score, it does not provide us any
significant information regarding its capability for
embellishment. Furthermore, BLEU is often con-
sidered unsuitable and controversial for the lan-

guage generation task, as argued by (Reiter, 2018).
Thus, we have used Readability Measurements for
that purpose.

6.2 Readability measures

To measure the complexity of the generated sen-
tences, we are using three measures based on
the readability of text. We have evaluated the
generated sentences of both our models using
these three measures, Flesch Reading Ease score
(FRES), Flesch-Kincaid Grade Level (FKGL) and
SMOG Index. More details and corresponding
equations used for each of the Readability Mea-
sures have been described in the Appendix section.
In the following diagram, we have shown the read-
ability statistics of the output of the LSTM and
Transformer. We evaluate our test dataset based on
the three different readability metrics and record
the percentage of sentences where the readability
scores increased, decreased, or stayed the same af-
ter embellishment.

From, figure 1, we can see that for all readabil-
ity metrics, the percentage of data where the input
and output sentence has the same readability score
is significantly high in the case of LSTM. Which,
further confirms the result reported by (Berov and
Standvoss, 2018), that LSTM model is prone to
copying the input to output without achieving any
embellishment. However, if we compare the ra-
tio of data with increased readability level, we
see, Transformer model shows better embellish-
ment performance. However, the percentage of
data with readability is also high for Transformer.
To inspect that phenomenon, we employ human
evaluation and design our task-specific evaluation
setup that will shed more light on this issue.

Readability scores
100

. ST
B Transformer

Measure

20

FRES FRES FRES FKGL FKGL FKGL Smog Smog Smog
inc) idec) (same) (inc) (dec) (same) index index index
(incy (dec) Isame)

Figure 1: Readability Scores

6.3 Human evaluation

The shortcoming and limitations of the aforemen-
tioned evaluation metrics motivate a human evalu-
ation process. For human evaluation, we designed
metrics to score generated results. We employed
12 human evaluators who are proficient in En-
glish and are capable of evaluating the complex-
ity of a text. Evaluators were randomly assigned
to a group of 4, and 3 groups were formed to
score model-generated results based on the scor-
ing metrics. Then we used this scores to devise
5 model performance metrics, namely contextual
capacity, generative capacity, consistency measure
that measure a different aspect of how contextually
coherent and meaningful the results are, and em-
bellishment capacity and conditional embellish-
ment capacity that measures the model’s ability to
embellish a given simple sentence. First, we will
define the scoring metrics used by the evaluators to
score the generated results. Then we will discuss
the performance metrics.

6.3.1 Score metrics

The underlying goal of this task to design a system
that can generate a meaningful, contextually iden-
tical, and embellished sentence for a given input
sentence. Therefore, we designed scoring metrics
to capture exactly that. We asked our evaluator
to score each generated sentence on a categorical
scale of 0,1,2 for the following three metrics.

e Grammatical Coherence score: If embel-
lished sentences were grammatically correct
and are a meaningful sentence.

e Context Coherence score: If the embel-
lished sentence is within the same context of
the simple source sentence.

o Embellishment score: If the generated sen-
tence is overall more complex than the source
sentence. If the model achieves generate a
structurally complex sentence, that will be
considered a successful embellishment. If
the model manages to replace words, We
asked participants to evaluate each word re-
placement based on whether the embellished
words were more complex and if such re-
placement is leading to the embellished sen-
tence becoming more complex.

6.3.2 Aggregate Performance metrics

The aforementioned scoring metrics are used to
calculate the performance metrics defined below.

o Contextual Capacity: Model’s capacity to
generate contextually correct sentences.

e Generative Capacity: Model’s capacity to
generate contextually and grammatically cor-
rect sentences.

¢ Embellishment Capacity: Model’s capacity
to generate embellished sentences.

e Conditional Embellishment Capacity:
Model’s capacity to achieve embellishment
given that the model generates contextually
and grammatically correct sentences.

e Consistency Measure: Model’s consistency
of generating embellished sentence or the
same sentence was given that the model al-
ways generates contextually and grammati-
cally correct sentences.

For the sake of brevity, the categorical definition
of scoring metrics and calculation procedure of
performance metrics are documented in the Ap-
pendix.

Evaluation Metrics

. LSTM
mm Transformer

100

Average Scores (%)
5 3

20

Contextual
Capacity

Generative
Capacity

Consistency
Measure

Figure 2: Evaluation metrics

Evaluation Metrics
100

. LSTM
mm Transformer

Average Scores (%)

20

Embellishment

Conditional Embellishment
Capacity Capacity

Figure 3: Evaluation metrics

From Figure 2, we can see that the LSTM model
generates more contextually and grammatically
consistent sentences, i.e., there are significantly

fewer cases of random embellished output. The
reason being, LSTM model, fails gracefully, i.e.,
when it fails to generate a lexically or syntacti-
cally complex sentence, it simply copies the in-
put words to the output sentence. This same phe-
nomenon was also recorded by (Berov and Stand-
voss, 2018) as well. Moreover, that is where
we were able to achieve significant improvement.
In figure 3, if we compare the embellishment
capacity, the Transformer is significantly better
(nearly double embellishment capacity) compared
to LSTM encoder-decoder model. If we condition
our evaluation on grammatically and contextu-
ally consistent outputs only, the transformer model
outperforms LSTM encoder-decoder significantly.
This may indicate that, when Transformer model
can generate a contextually and grammatical con-
sistent sentence, it has a significantly better power
to achieve text embellishment.

7 Conclusions

Text embellishment is quite an unexplored track
in the research field of Natural Language Gener-
ation because it would require a massive amount
of data, training hours as well as various idiosyn-
cratic, hand-coded rules to get performance which
is close to human efficiency.

In this paper, the results from the LSTM
encoder-decoder or the transformer network can-
not be used for production purposes yet. Maybe,
it is because the network is not able to learn all the
nuances of human languages in a specific domain
with the help of a dataset that is flawed with few
grammatical and typographical errors. The avail-
ability of sentence aligned massive datasets that
are more apt for this specific task is also rare.

In this paper, we show that our LSTM net-
work achieved a BLEU score of 91.04, which
is closer (92.13) to what (Berov and Standvoss,
2018) achieved with similar LSTM architecture.
However, we showed why such measurements can
be misleading and which motivated us to design
a task-specific human evaluation setup. Based on
the evaluation setup, we showed how transformer
architecture is significantly better for the text em-
bellishment task. Thus our initial assumption that
in the case of generation tasks, especially text
embellishment, a self-attention based architecture
performs better than a seq2seq model with atten-
tion, holds. This is because these models are more
capable of capturing the semantic information of a

sentence.

8 Future work

In this paper, we aimed to work on the task of
text embellishment for a single sentence. The
same methodology and architecture can be ex-
tended to paragraphs, where we intend to gener-
ate a lexically and syntactically complicated para-
graph given a simple paragraph. Such a task may
require a hierarchical attention mechanism where
we attend to single words as well as sentences to
capture the semantics of a sentence and paragraph.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Leonid Berov and Kai Standvoss. 2018. Discourse em-
bellishment using a deep encoder-decoder network.
arXiv preprint arXiv:1810.08076.

Or Biran, Samuel Brody, and Noémie Elhadad. 2011.
Putting it simply: A context-aware approach to
lexical simplification. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies:
Short Papers - Volume 2, HLT ’11, pages 496501,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Charles B. Callaway and James C. Lester. 2002. Narra-
tive prose generation. Artif. Intell., 139(2):213-252.

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

William Coster and David Kauchak. 2011. Simple en-
glish wikipedia: A new text simplification task. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Short Papers - Volume 2, HLT
11, pages 665—-669, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. CoRR, abs/1707.02633.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2015. Character-aware neural lan-
guage models. CoRR, abs/1508.06615.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://dl.acm.org/citation.cfm?id=2002736.2002835
http://dl.acm.org/citation.cfm?id=2002736.2002835
https://doi.org/10.1016/S0004-3702(02)00230-8
https://doi.org/10.1016/S0004-3702(02)00230-8
http://dl.acm.org/citation.cfm?id=2002736.2002865
http://dl.acm.org/citation.cfm?id=2002736.2002865
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/1508.06615
http://arxiv.org/abs/1508.06615

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine trans-
lation. In Proc. ACL.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out.

James R. Meehan. 1977. Tale-spin, an interactive pro-
gram that writes stories. In Proceedings of the 5th
International Joint Conference on Artificial Intelli-
gence - Volume 1, IJCAT’77, pages 91-98, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Tomas Mikolov, Martin Karafidt, Lukds Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39-41.

Gustavo Paetzold and Lucia Specia. 2017. Lexical sim-
plification with neural ranking. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, volume 2, pages 34—40.

Daniel S. Paiva and Roger Evans. 2005. Empirically-
based control of natural language generation. In
ACL 2005, 43rd Annual Meeting of the Association
for Computational Linguistics, Proceedings of the
Conference, 25-30 June 2005, University of Michi-
gan, USA, pages 58—65.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL *02, pages 311-318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Sai Rajeswar, Sandeep Subramanian, Francis Dutil,
Christopher Joseph Pal, and Aaron C. Courville.
2017. Adversarial generation of natural language.
CoRR, abs/1705.10929.

Ehud Reiter. 2018. A structured review of the validity
of BLEU. Computational Linguistics, 44(3):393—
401.

Matthew Shardlow. 2014. A survey of automated text
simplification. [International Journal of Advanced
Computer Science and Applications, 4.

Adbvaith Siddharthan. 2002. An architecture for a text
simplification system. In Proceedings of the Lan-
guage Engineering Conference (LEC’02), LEC °02,
pages 64—, Washington, DC, USA. IEEE Computer
Society.

Advaith Siddharthan. 2006. Syntactic simplification
and text cohesion. Research on Language and Com-
putation, 4(1):77-1009.

Mrunmayee Tambe, Preeti Ballal, Vishal Dolase, Kajol
Agrawal, and Yogesh Rajmane. 2019. Lexical Text
Simplification Using WordNet, pages 114—122.

Tu Vu, Baotian Hu, Tsendsuren Munkhdalai, and
Hong Yu. 2018. Sentence simplification with
memory-augmented neural networks. CoRR,
abs/1804.07445.

Tong Wang, Ping Chen, Kevin Michael Amaral, and
Jipeng Qiang. 2016. An experimental study of
LSTM encoder-decoder model for text simplifica-
tion. CoRR, abs/1609.03663.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
hao Su, David Vandyke, and Steve J. Young.
2015. Semantically conditioned Istm-based natural
language generation for spoken dialogue systems.
CoRR, abs/1508.01745.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401-415.

Lili Yao, Nanyun Peng, Ralph M. Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2018. Plan-
and-write: Towards better automatic storytelling.
CoRR, abs/1811.05701.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
simplification with deep reinforcement learning. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
595-605. Association for Computational Linguis-
tics.

Sanqgiang Zhao, Rui Meng, Daqing He, Andi Saptono,
and Bambang Parmanto. 2018. Integrating trans-
former and paraphrase rules for sentence simplifica-
tion. CoRR, abs/1810.11193.

9 Appendix

9.1 Human evaluation method

The readability measurements are apt for evalua-
tion of human-generated embellishments, but they
often fail in case of machine-generated text em-
bellishments. Thus to provide leniency consider-
ing the capabilities of various deep learning archi-
tectures in this particular task, we have decided to
evaluate our model using a small survey. We be-
lieve human judgment will be the best in under-
standing the level of embellishments in sentences
produced using our methods. These groups of
judges were asked to score the generated sentences
based on lexical embellishment and grammatical
and context coherence.

https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
http://aclweb.org/anthology/W04-1013
http://aclweb.org/anthology/W04-1013
http://dl.acm.org/citation.cfm?id=1624435.1624452
http://dl.acm.org/citation.cfm?id=1624435.1624452
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://www.aclweb.org/anthology/P05-1008/
https://www.aclweb.org/anthology/P05-1008/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1705.10929
https://doi.org/10.1162/coli_a_00322
https://doi.org/10.1162/coli_a_00322
https://doi.org/10.14569/SpecialIssue.2014.040109
https://doi.org/10.14569/SpecialIssue.2014.040109
http://dl.acm.org/citation.cfm?id=788016.788727
http://dl.acm.org/citation.cfm?id=788016.788727
https://doi.org/10.1007/s11168-006-9011-1
https://doi.org/10.1007/s11168-006-9011-1
https://doi.org/10.1007/978-981-13-9942-8_11
https://doi.org/10.1007/978-981-13-9942-8_11
http://arxiv.org/abs/1804.07445
http://arxiv.org/abs/1804.07445
http://arxiv.org/abs/1609.03663
http://arxiv.org/abs/1609.03663
http://arxiv.org/abs/1609.03663
http://arxiv.org/abs/1508.01745
http://arxiv.org/abs/1508.01745
https://transacl.org/ojs/index.php/tacl/article/view/741
https://transacl.org/ojs/index.php/tacl/article/view/741
http://arxiv.org/abs/1811.05701
http://arxiv.org/abs/1811.05701
http://arxiv.org/abs/1409.2329
http://aclweb.org/anthology/D17-1063
http://aclweb.org/anthology/D17-1063
http://arxiv.org/abs/1810.11193
http://arxiv.org/abs/1810.11193
http://arxiv.org/abs/1810.11193

e Grammatical Coherence: Each participant
were asked to judge if the embellished sen-
tences were grammatically correct and is a
meaning sentence.

’ Score ‘ Interpretation
0 Not grammatical and meaningful
1 Grammatically partially correct
2 Grammatically correct

Table 2: Rubric for Grammatical coherence score

e Context Coherence: Each participant were
asked to judge if the embellished sentence is
within the same context of the simple source

sentence.
’ Score \ Interpretation
0 Deviated from context
1 Partially correct context
2 Correct context

Table 3: Rubric for Context coherence score

e Embellishment: We asked each participant
to evaluate each word replacement based on
whether the embellished words were more
complex or the embellished sentence was
more complex. Each participants assigned a
score between 0 to 2 for each sentence.

’ Score ‘ Interpretation
0 Not meaningful sentence
1 Same sentence or hard to decide
2 Embellishment

Table 4: Rubric for Embellishment score

For ease of evaluation, we also asked the par-
ticipants to judge the source or simple sentences
based on their grammatical correctness, sentence
structure to decide if the sentence is a correct En-
glish sentence and has any scope of textual embel-
lishment.

’ Score ‘ Interpretation
0 Grammatically incorrect
1 Confusing or conveys no meaning
2 Proper English sentence

Table 5: Rubric for source score

This source score will help us record the num-
ber of sentences in the test data that can be em-
bellished. However, For human evaluation based

measurements we will discard all sentences with
source score of 0 and 1.
Based on these scores, we recorded the follow-

e Context-wise correct: Number of embel-

lished sentences with context coherence
score(C) of 2, denoted as f(C' = 2).

Grammatically and context-wise correct:
Number of embellished sentences with con-
text coherence score(C) 2 and grammatical
coherence score(G) 2, denoted as f(C =
2,G=2).

Grammatically, context-wise correct and
good embellishment: Number of embellished
sentences with context coherence score(C) 2
and grammatical coherence score(G) 2 and
embellishment score 2, denoted as f(C =
2,G=2,FE=2)

Grammatically, context-wise correct and par-
tial embellishment: Number of embellished
sentences with context coherence score(C) 2
and grammatical coherence score(G) 2 and
embellishment score 2, denoted as f(C =
2,G=2,E=1)

Based on this, we will derive the following perfor-
mance measures where N is the total number of
test sentences used:

o Contextual Capacity: Model’s capacity to

generate contextually correct sentences.

Contextual Capacity = f(CiN:2)

o Generative Capacity: Model’s capacity to

generate contextually and grammatically cor-
rect sentences.

f(C=2,G=2)

Generative Capacity = N

Embellishment Capacity: Model’s capacity
to generate embellished sentences.

f(E=2)

Embellishment Capacity = N

Conditional Embellishment Capacity:
Model’s capacity to achieve given that the
model always generates contextually and
grammatically correct sentence.

Conditional Embellishment Capacity =
f(C=2,G=2,E=2)
flC=2,G=2)

e Consistency Measure: Model’s consistency
of generating embellished sentence or same
sentence given that the model always gener-
ates contextually and grammatically correct
sentence.

Consistency Measure =

F(C=2,G=2E=2)

J(C=2G=2)
f(C=2,G=2E=1)
f(C=2G=2)

9.2 Readability Measures
e Flesch Reading Ease score (FRES)

The Flesch Reading Ease score, developed by
Rudolf Flesch, is the most commonly used
readability measure. The score on the test
will tell us roughly what level of education
someone will need to be able to read a piece
of text easily. The Reading Ease formula
generates a score between 1 and 100. The
formula for the Flesch reading ease score
(FRES) test is

FRES = 206,835 — 1.015 —ond WOrds_
total sentences

846 total syllables
total words

e Flesch-Kincaid Grade Level (FKGL)

The Flesch-Kincaid Grade Level index is one
way to measure and report the readability of
English text. Both Flesch reading ease and
Flesch-Kincaid grade level use the same core
metrics: word length and sentence length.
But they correlate inversely. If one receives
a high score on the reading ease test, one
should receive a lower grade level score. The
FKGL formula presents a score as a U.S.
grade level, making it easier for teachers, par-
ents, librarians, and others to judge the read-
ability level of various books and texts. It can
also mean the number of years of education
generally required to understand this text, rel-
evant when the formula results in a number

greater than 10. The grade level is calculated
with the following formula:

FKGL = 0.39 % _ total words
total sentences

total syllabl
11,8 5 A SYRADIES 4 59
total words

e SMOG Index

The SMOG Index is also a measure of read-
ability that estimates the years of educa-
tion needed to understand a piece of writing.
What is different from the above two evalu-
ation measures is it considers the number of
polysyllables (words of 3 or more syllables)
whereas the above two measures consider av-
erage number of syllables per sentence. The
formula for calculating SMOG index is:

SMOG = 1.043 = \/ # of polysyllables

30

— 4+ 3.1291
total sentences

9.3 Additional results

9.3.1 LSTM encoder-decoder

It was found by PERSON@| in images from the
Voyager NUMBER@1 — It was discovered by
PERSON@] in images from the Voyager NUM-
BER@]

This stamp stayed the standard letter stamp for
the rest of PERSON@] ’s reign, and many were
printed — This stamp remained the standard let-
ter stamp for the rest of PERSON@ [’s reign , and
many were printed .

In the year NUMBER@] ,the population was
NUMBER@2 . — The population was NUM-
BER®@] at the NUMBER@?2 census .

the former district PERSON@1 , also resem-
bles the upper half of the coat of arms . — The
former district PERSON@] , also resembles the
upper half of the coat of arms .

In December, NUMBER@] , PERSON@] was
honored as part of the Righteous Among the Na-
tions by the State of LOCATION®@] . — In De-
cember NUMBER@1 , PERSON@ I was honored
as part of the Righteous Among the Nations by the
State of LOCATION@] .

9.3.2 Transformer

It is a starting point for people wanting to ex-
plore LOCATION@] , LOCATION®@2 and LO-
CATION@3 . — It also serves as a starting point
for people wanting to explore LOCATION@] ,
LOCATION@2 and LOCATION@3 .

Their culture is similar to the culture of the
coastal peoples of LOCATION@ 1 . — The culture
of LOCATION@1 is closely associated with the
culture of the coastal people of LOCATION@ [

entrance to LOCATION@ | is very very difficult
. — entrance to LOCATION@ | is extremely diffi-
cult .

ORGANIZATION@ | named him ~ Sportsman
of the Year ” in NUMBER@1 . — ORGANIZA-
TION@] crowned him ” Sportsman of the Year ”
in NUMBER@].

Early September NUMBER@ 1 , dry air wrap-
ping around the southern area of the cyclone
caused most of the heat to leave . — Early Septem-
ber NUMBER®@] , dry air wrapping around the
southern area of the cyclone caused most of the
heat to evacuate .

At the Voyager NUMBER@I pictures PER-
SON@]| appears as a stretched object . A
stretched object was the major axis . It point-
ing towards Uranus . — At the Voyager NUM-
BER@] pictures PERSON@ I appears as an elon-
gated object, with the major axis pointing to-
wards Uranus .

Some clauses are rather lengthy and rich in
content while others are shorter -LRB- possibly
stubs -RRB- and of lesser quality . — Some lan-
guage content are rather lengthy in content while
others are shorter -LRB- possibly stubs -RRB- and
of lesser quality .

In NUMBER@ [PERSON@ | was inducted into
the Rock and ORGANIZATION@] . — In NUM-
BER@], PERSON@] was inducted into the Rock
and ORGANIZATION@] .

Emotional Neural Language Generation Grounded in Situational
Contexts

Sashank Santhanam and Samira Shaikh
Department of Computer Science
University of North Carolina at Charlotte

Charlotte, NC, USA
{ssanthal, samirashaikh}@uncc.edu

Abstract

Emotional language generation is one of the
keys to human-like artificial intelligence. Hu-
mans use different type of emotions depend-
ing on the situation of the conversation. Emo-
tions also play an important role in mediat-
ing the engagement level with conversational
partners. However, current conversational
agents do not effectively account for emotional
content in the language generation process.
To address this problem, we develop a lan-
guage modeling approach that generates af-
fective content when the dialogue is situated
in a given context. We use the recently re-
leased Empathetic-Dialogues corpus to build
our models. Through detailed experiments, we
find that our approach outperforms the state-
of-the-art method on the perplexity metric by
about 5 points and achieves a higher BLEU
metric score.

1 Introduction

Rapid advancement in the field of generative mod-
eling through the use of neural networks has
helped advance the creation of more intelligent
conversational agents. Traditionally these conver-
sational agents are built using seg2seq framework
that is widely used in the field of machine trans-
lation (Vinyals and Le, 2015). However, prior re-
search has shown that engaging with these agents
produces dull and generic responses whilst also
being inconsistent with the emotional tone of con-
versation (Vinyals and Le, 2015; Li et al., 2016c¢).
These issues also affect engagement with the con-
versational agent, that leads to short conversations
(Venkatesh et al., 2018). Apart from producing en-
gaging responses, understanding the situation and
producing the right emotional response to a that
situation is another desirable trait (Rashkin et al.,
2019).

Emotions are intrinsic to humans and help in
creation of a more engaging conversation (Poria

et al., 2019). Recent work has focused on ap-
proaches towards incorporating emotion in con-
versational agents (Asghar et al., 2018; Zhou et al.,
2018; Huang et al., 2018; Ghosh et al., 2017),
however these approaches are focused towards
seq2seq task. We approach this problem of emo-
tional generation as a form of transfer learning, us-
ing large pretrained language models. These lan-
guage models, including BERT, GPT-2 and XL-
Net, have helped achieve state of the art across
several natural language understanding tasks (De-
vlin et al., 2019; Radford et al., 2019; Yang et al.,
2019). However, their success in language mod-
eling tasks have been inconsistent (Ziegler et al.,
2019). In our approach, we use these pretrained
language models as the base model and perform
transfer learning to fine-tune and condition these
models on a given emotion. This helps towards
producing more emotionally relevant responses
for a given situation. In contrast, the work done
by Rashkin et al. (2019) also uses large pretrained
models but their approach is from the perspective
of seq2seq task.

Our work advances the field of conversational
agents by applying the transfer learning approach
towards generating emotionally relevant responses
that is grounded on emotion and situational con-
text. We find that our fine-tuning based approach
outperforms the current state of the art approach
on the automated metrics of the BLEU and per-
plexity. We also show that transfer learning ap-
proach helps produce well crafted responses on
smaller dialogue corpus.

2 Approach

Consider the example show in Table 1 that shows
a snippet of the conversation between a speaker
and a listener that is grounded in a situation rep-
resenting a type of emotion. Our goal is to pro-

duce responses to conversation that are emotion-
ally appropriate to the situation and emotion por-
trayed. We approach this problem through a lan-

Emotion: Confident
Situation: I just knew I was going to do well at
work this morning.

Speaker: I just knew I was going to do well at
work this morning. I was prepared
Listener: That is the way to go! Keep it up!

Table 1: Example of conversations between a speaker
and a listener

guage modeling approach. We use large pre-
trained language model as the base model for our
response generation. This model is based on the
transformer architecture and makes uses of the
multi-headed self-attention mechanism to condi-
tion itself of the previously seen tokens to its left
and produces a distribution over the target to-
kens. Our goal is to make the language model
p(y) = p(y1, Y2, ..., y; 0) learn on new data and
estimate the conditional probability p(y|z). Rad-
ford et al. (2019) demonstrated the effectiveness
of language models to learn from a zero-shot ap-
proach in a multi-task setting. We take inspira-
tion from this approach to condition our model on
the task-specific variable p(y;|x, y<¢), where x is
the task-specific variable, in this case the emotion
label. We prepend the conditional variable (emo-
tion, situational context) to the dialogue similar to
the approach from Wolf er al (2019). We ensure
that that the sequences are separated by special to-
kens.

3 Experiments

3.1 Data

In our experiments we use the Empathetic Dia-
logues dataset made available by Rashkin et al.
(2019). Empathetic dialogues is crowdsourced
dataset that contains dialogue grounded in a emo-
tional situation. The dataset comprises of 32 emo-
tion labels including surprised, excited, angry,
proud, grateful. The speaker initiates the con-
versation using the grounded emotional situation
and the listener responds in an appropriate man-
ner' .Table 2 provides the basic statistics of the cor-
pus.

"More information about the dataset made available on
the (Rashkin et al., 2019)

Train Valid. Test
Num. Conversations 19433 2770 2547
Utterances 84324 12078 10973
CAVg Length 431 436 431
onversations

Table 2: Statistics of Empathetic Dialogue dataset used
in our experiments

3.2 Implementation

In all our experiments, we use the GPT-2 pre-
trained language model. We use the publicly
available model containing 117M parameters with
12 layers; each layer has 12 heads. We imple-
mented our models using PyTorch Transformers.”
The input sentences are tokenized using byte-pair
encoding(BPE) (Sennrich et al., 2016) (vocabu-
lary size of 50263). While decoding, we use
the nucleus sampling (p = 0.9) approach in-
stead of beam-search to overcome the drawbacks
of beam search (Holtzman et al., 2019; Ippolito
et al., 2019). All our models are trained on a
single TitanV GPU and takes around 2 hours to
fine-tune the model. The fine-tuned models along
with the configuration files and the code will be
made available at: https://github.com/
sashank06/CCNLG-emotion.

3.3 Maetrics

Evaluating the quality of responses in open do-
main situations where the goal is not defined is
an important area of research. Researchers have
used methods such as BLEU , METEOR (Baner-
jee and Lavie, 2005), ROUGE (Lin, 2004) from
machine translation and text summarization (Liu
etal., 2016) tasks. BLEU and METEOR are based
on word overlap between the proposed and ground
truth responses; they do not adequately account
for the diversity of responses that are possible for
a given input utterance and show little to no cor-
relation with human judgments (Liu et al., 2016).
We report on the BLEU (Papineni et al., 2002) and
Perplexity (PPL) metric to provide a comparison
with the current state-of-the-art methods. We also
report our performance using other metrics such as
length of responses produced by the model. Fol-
lowing, Mei et al (2017), we also report the diver-
sity metric that helps us measure the ability of the
model to promote diversity in responses (Li et al.,

https://github.com/huggingface/
pytorch-transformers

https://github.com/sashank06/CCNLG-emotion
https://github.com/sashank06/CCNLG-emotion
https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers

2016a). Diversity is calculated as the as the num-
ber of distinct unigrams in the generation scaled
by the total number of generated tokens (Mei et al.,
2017; Li et al., 2016c). We report on two addi-
tional automated metrics of readability and coher-
ence. Readability quantifies the linguistic quality
of text and the difficulty of the reader in under-
standing the text (Novikova et al., 2017). We mea-
sure readability through the Flesch Reading Ease
(FRE) (Kincaid et al., 1975) which computes the
number of words, syllables and sentences in the
text. Higher readability scores indicate that utter-
ance is easier to read and comprehend. Similarly,
coherence measures the ability of the dialogue sys-
tem to produce responses consistent with the topic
of conversation. To calculate coherence, we use
the method proposed by Dziri et al. (2018).

4 Results

4.1 Automated Metrics

We first compare the performance of our approach
with the baseline results obtained from Rashkin et
al. (2019) that uses a full transformer architec-
ture (Vaswani et al., 2017), consisting of an en-
coder and decoder. Table 3 provides a compari-
son of our approach with to the baseline approach.
In Table 3, we refer our “Our Model Fine-Tuned”
as the baseline fine-tuned GPT-2 model trained on
the dialogue and “Our-model Emo-prepend” as the
GPT-2 model that is fine-tuned on the dialogues
but also conditioned on the emotion displayed in
the conversation. We find that fine-tuning the
GPT-2 language model using a transfer learning
approach helps us achieve a lower perplexity and
a higher BLEU scores. The results from our ap-
proach are consistent with the empirical study con-
ducted by Edunov et al (2019) that demonstrate
the effectiveness of the using pre-trained model di-
minishes when added to the decoder network in
an seq2seq approach. We also perform a compar-
ison between our two models on the metrics of
length, diversity, readability and coherence. We
find that our baseline model produces less diverse
responses compared to when the model is con-
ditioned on emotion. We find that the our emo-
prepend model also higher a slightly higher read-
ability score that our baseline model.

4.2 Qualitative Evaluation

To assess the quality of generations, we conducted
a MTurk human evaluation. We recruited a total

of 15 participants and each participant was asked
to evaluate 25 randomly sampled outputs from the
test set on three metrics:

1. Readability - Is the response easy to under-
stand, fluent and grammatical and does not
have any consecutive repeating words.

2. Coherence - Is the response relevant to the
context of the conversation.

3. Emotional Appropriateness- Does the re-
sponse convey emotion suitable to the context
of the conversation?

Table 5 shows the results obtained from the hu-
man evaluation comparing the performance of our
fine-tuned, emotion pre-pend model to the ground-
truth response. We find that our fine-tuned model
outperforms the emo-prepend on all three metrics
from the ratings provided by the human ratings.

5 Related Work

The area of dialogue systems has been studied ex-
tensively in both open-domain (Niu and Bansal,
2018) and goal-oriented (Lipton et al., 2018)
situations. Extant approaches towards building
dialogue systems has been done predominantly
through the seg2seq framework (Vinyals and Le,
2015). However, prior research has shown that
these systems are prone to producing dull and
generic responses that causes engagement with
the human to be affected (Vinyals and Le, 2015;
Venkatesh et al., 2018). Researchers have tackled
this problem of dull and generic responses through
different optimization function such as MMI (Li
et al., 2016b) and through reinforcement learn-
ing approaches(Li et al., 2016d). Alternative ap-
proaches towards generating more engaging re-
sponses is by grounding them in personality of
the speakers that enables in creating more person-
alized and consistent responses (Li et al., 2016c;
Zhang et al., 2018; Wolf et al., 2019).

Several other works have focused on creating
more engaging responses by producing affective
responses. One of the earlier works to incor-
porate affect through language modeling is the
work done by Ghosh et al. (Ghosh et al., 2017).
This work leverages the LIWC (Pennebaker et al.,
2001) text analysis platform for affective fea-
tures. Alternative approaches of inducing emo-
tion in generated responses from a seg2seq frame-
work include the work done by Zhou et al(2018)
that uses internal and external memory, Asghar
et al. (2018) that models emotion through af-

Valid

Experiment PPL BLEU Readability Coherence Length Diversity
Baseline
Fine-Tuned 21.24 6.27 X X X X
(Rashkin et al., 2019)
Baseline
Emo-prepend 24.30 4.36 X X X X
(Rashkin et al., 2019)
Our Model 1832 771 0.78 0.93 977 00031
Fine-Tuned
Our Model 1949 7.78 0.79 0.93 9.71 0.0033

Emo-prepend

Table 3: Comparison of the performance of our model to the baseline model proposed by Rashkin et al (2019)
across a variety of automated metrics to provide a thorough comparison. x indicates that these metrics were not

provided in the Rashkin et al (2019) work.

Input
Conversation Model Outputs
Ground . .
| ! |
Person A: I think T aced my supervisor Truth Woo hoo! That is awesome! Congrats! When will you find out
exam! Fine
it?
Tuned What was it?
Emo Wow, that’s impressive!
Prepend ’ p ’
Person A: I had pizza at a restaurant a Ground It is disgusting. What did you do?
. Truth
couple days ago and found a hair on my
pizza! Fine I
Tuned was so angry
Emo , . . P
Prepend That’s terrible, did you clean it up?
Table 4: Example generations from our two model along with the ground truth responses.
Emotional formers models have also helped created large pre-
Readability Coherence App;‘:g:‘ate‘ trained language models such as BERT (Devlin
Our Model et al., 2019), XL-NET (Yang et al., 2019), GPT-2
ur VMiode .
Fine-Tuned ~ +14 3.50 3.70 (Radford et al., 2019). However, these pre-trained
models show inconsistent behavior towards lan-
Our Model 5 o, 3.4 3.19 ~ '
Emo-prepend : ‘ guage generation (Ziegler et al., 2019).
Ground
Truth 3.92 3.86 4 6 Conclusion and Discussion

Table 5: Human ratings demonstrating a comparison
between our models to the ground truth responses on
the metrics of readability, coherence and emotional ap-
propriateness

fective embeddings and Huang et al (2018) that
induce emotion through concatenation with input
sequence. More recently, introduction of trans-
former based approaches have helped advance the
state of art across several natural language under-
standing tasks (Vaswani et al., 2017). These trans-

In this work, we study how pre-trained language
models can be adopted for conditional language
generation on smaller datasets. Specifically, we
look at conditioning the pre-trained model on the
emotion of the situation produce more affective
responses that are appropriate for a particular sit-
uation. We notice that our fine-tuned and emo-
prepend models outperform the current state of the
art approach relative to the automated metrics such
as BLEU and perplexity on the validation set. We
also notice that the emo-prepend approach does
not out perform a simple fine tuning approach on

the dataset. We plan to investigate the cause of
this in future work from the perspective of bet-
ter experiment design for evaluation (Santhanam
and Shaikh, 2019) and analyzing the models focus
when emotion is prepended to the sequence (Clark
etal., 2019). Along with this, we also notice other
drawbacks in our work such as not having an emo-
tional classifier to predict the outcome of the gen-
erated sentence, which we plan to address in future
work.

Acknowledgments

This work was supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under
Contract No FA8650-18-C-7881. All statements
of fact, opinion or conclusions contained herein
are those of the authors and should not be con-
strued as representing the official views or poli-
cies of AFRL, DARPA, or the U.S. Government.
We thank the anonymous reviewers for the helpful
feedback.

References

Nabiha Asghar, Pascal Poupart, Jesse Hoey, Xin Jiang,
and Lili Mou. 2018. Affective neural response gen-
eration. In European Conference on Information
Retrieval, pages 154—-166. Springer.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65-72.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019. What does bert look
at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Nouha Dziri, Ehsan Kamalloo, Kory W Mathewson,
and Osmar Zaiane. 2018. Augmenting neural re-
sponse generation with context-aware topical atten-
tion. arXiv preprint arXiv:1811.01063.

Sergey Edunov, Alexei Baevski, and Michael Auli.
2019. Pre-trained language model representations
for language generation. In Proceedings of the

2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 4052-4059, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Sayan Ghosh, Mathieu Chollet, Eugene Laksana,
Louis-Philippe Morency, and Stefan Scherer. 2017.
Affect-LM: A neural language model for customiz-
able affective text generation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
634—-642, Vancouver, Canada. Association for Com-
putational Linguistics.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degen-
eration. arXiv preprint arXiv:1904.09751.

Chenyang Huang, Osmar Zaiane, Amine Trabelsi, and
Nouha Dziri. 2018. Automatic dialogue genera-
tion with expressed emotions. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 49-54.

Daphne Ippolito, Reno Kriz, Joao Sedoc, Maria
Kustikova, and Chris Callison-Burch. 2019. Com-
parison of diverse decoding methods from condi-
tional language models. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3752-3762, Florence, Italy.
Association for Computational Linguistics.

J Peter Kincaid, Robert P Fishburne Jr, Richard L
Rogers, and Brad S Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for
navy enlisted personnel.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110-119. Association for Computational Lin-
guistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016b. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110-119, San Diego, California. Association
for Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016¢c. A
persona-based neural conversation model. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 994—1003, Berlin, Germany. Associ-
ation for Computational Linguistics.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1409
https://doi.org/10.18653/v1/N19-1409
https://doi.org/10.18653/v1/P17-1059
https://doi.org/10.18653/v1/P17-1059
https://www.aclweb.org/anthology/P19-1365
https://www.aclweb.org/anthology/P19-1365
https://www.aclweb.org/anthology/P19-1365
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/P16-1094
https://doi.org/10.18653/v1/P16-1094

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016d. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1192—
1202. Association for Computational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Zachary Lipton, Xiujun Li, Jianfeng Gao, Lihong Li,
Faisal Ahmed, and Li Deng. 2018. Bbg-networks:
Efficient exploration in deep reinforcement learn-
ing for task-oriented dialogue systems. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How not to evaluate your dialogue system: An em-
pirical study of unsupervised evaluation metrics for
dialogue response generation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 2122-2132. Associa-
tion for Computational Linguistics.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2017. Coherent dialogue with attention-based lan-
guage models. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), San Fran-
cisco, CA.

Tong Niu and Mohit Bansal. 2018. Polite dialogue gen-
eration without parallel data. Transactions of the As-
sociation of Computational Linguistics, 6:373-389.

Jekaterina Novikova, Ondfej Dusek, Amanda Cer-
cas Curry, and Verena Rieser. 2017. Why we need
new evaluation metrics for NLG. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 2241-2252,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311-318. Association for
Computational Linguistics.

James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Asso-
ciates, 71(2001):2001.

Soujanya Poria, Navonil Majumder, Rada Mihalcea,
and Eduard Hovy. 2019. Emotion recognition in
conversation: Research challenges, datasets, and re-
cent advances. arXiv preprint arXiv:1905.02947.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8).

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards empathetic open-
domain conversation models: a new benchmark and
dataset. In ACL.

Sashank Santhanam and Samira Shaikh. 2019.
Towards best experiment design for evaluat-
ing dialogue system output. arXiv preprint
arXiv:1909.10122.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715—
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998-6008.

Anu Venkatesh, Chandra Khatri, Ashwin Ram, Fen-
fei Guo, Raefer Gabriel, Ashish Nagar, Rohit
Prasad, Ming Cheng, Behnam Hedayatnia, Ange-
liki Metallinou, et al. 2018. On evaluating and
comparing conversational agents. arXiv preprint
arXiv:1801.03625.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A
transfer learning approach for neural network
based conversational agents. arXiv preprint
arXiv:1901.08149.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2204—
2213, Melbourne, Australia. Association for Com-
putational Linguistics.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018. Emotional chatting ma-
chine: Emotional conversation generation with in-
ternal and external memory. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Zachary M Ziegler, Luke Melas-Kyriazi, Sebastian
Gehrmann, and Alexander M Rush. 2019. Encoder-
agnostic adaptation for conditional language gener-
ation. arXiv preprint arXiv:1908.06938.

https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205

Noun Generation for Nominalization in Academic Writing

Dariush Saberi, John Lee
Department of Linguistics and Translation
City University of Hong Kong

dsaberi2-c@my.cityu.edu.hk,

Abstract

Nominalization is a common technique in aca-
demic writing for producing abstract and for-
mal text. Since it often involves paraphras-
ing a clause with a verb or adjectival phrase
into a noun phrase, an important task is to
generate the noun to replace the original verb
or adjective. Given that a verb or adjective
may have multiple nominalized forms with
similar meaning, the system needs to be able
to automatically select the most appropriate
one. We propose an unsupervised algorithm
that makes the selection with BERT, a state-
of-the-art neural language model. Experimen-
tal results show that it significantly outper-
forms baselines based on word frequencies,
word2vec and doc2vec.

1 Introduction

Automatic paraphrasing — re-writing a sentence
while preserving its original meaning — has re-
ceived much interest in the computational linguis-
tics community in recent years. One type of
paraphrasing is lexical substitution (McCarthy and
Navigli, 2009), which replaces a word or short
phrase with another. Paraphrasing can also in-
volve manipulation of the clausal structure of a
sentence, with a range of options that has been
described as the “cline of metaphoricity” (Hall-
iday and Matthiessen, 2014). Towards one end
of this cline, the text offers a “congruent con-
strual of experience”, and the sentences tend to
be clausally complex but lexically simple (e.g.,
the complex clause “Because she didn’t know
the rules, she died”'). Towards the other end
of the cline, the text exhibits a “metaphorical re-
construal”, and the sentences are clausally simpler
and lexically denser (e.g., the nominal group “Her
death through ignorance of the rules”).

!This example and the next are both taken from Halliday
and Matthiessen (2014).

jsyleelcityu.edu.hk

Previous studies on automatic manipulation of
clausal structure have mostly concentrated on
syntactic simplification, typically by splitting a
complex sentence into two or more simple sen-
tences (Siddharthan, 2002; Aluisio et al., 2008;
Narayan and Gardent, 2014). More recent re-
search has also attempted semi-automatic nomi-
nalization (Lee et al., 2018), which aims to para-
phrase a complex clause into a simplex clause by
transforming verb or adjectival phrases into noun
phrases.

Noun generation is a core task in the nom-
inalization pipeline (Table 2). Resources such
as NOMLEX (Meyers et al., 1998) and CAT-
VAR (Habash and Dorr, 2003) have greatly facili-
tated this task by providing lists of related nouns,
verbs and adjectives. However, straightforward
look-up in these lists does not suffice since a word
may have multiple nominalized forms with similar
meaning. For example, the verb “dominate” can
be transformed into “domination”, “dominance”,
“dominion”, as well as the gerund form “dom-
inating”. We will henceforth refer to these as
the “noun candidates”. As shown in Table 1,
in the context of the clause “The British dom-
inated India”, “domination” would be preferred
(i.e., “British domination of India”); in the context
of the clause “older people dominated this neigh-
borhood”, “dominance” would be more appropri-
ate (i.e., “The dominance of older people in this
neighborhood”).

The goal of this paper is to evaluate a noun gen-
eration algorithm that selects the best noun candi-
date during nominalization. The approach taken
by Lee et al. (2018), which considers noun fre-
quency statistics alone, always selects the same
noun regardless of the sentential context. We use
instead a neural language model, BERT, for noun
generation. Experimental results show that it sig-
nificantly outperforms baselines based on word

Verb-to-noun mapping | Example sentence

Nominalized version

dominate —

The British dominated India ...

British domination of India ...

{entrance, entry, ...}
country ...

{dominance, Older people dominated this The dominance of older people
domination, ...} neighborhood ... in this neighborhood ...

move — They moved northward ... Their move northward ...

{motion, move, ...} The particle moved irregularly ... | The irregular motion of the particle ...
enter — The clown entered the stage ... The clown’s entrance to the stage ...

The immigrants entered the

The entry of the immigrants into
the country ...

measure — {measure,
measurement, ...}

Success is measured ...
Blood pressure is measured ...

The measure of success ...
The measurement of blood pressure ...

Table 1: Example verb-to-noun mappings with multiple noun candidates (left column), illustrated by sentences
with the same verb (middle column) requiring different target nouns (right column) in their nominalized version.

frequencies, word2vec and doc2vec.

The rest of the paper is organized as follows.
Following a review of previous work (Section 2),
we give details on our dataset (Section 3) and out-
line our approach (Section 4). We then report ex-
perimental results (Section 5) and conclude.

2 Previous work

We first discuss the relation between our task and
lexical substitution (Section 2.1) and word sense
disambiguation (Section 2.2). We then describe
an existing nominalization system (Section 2.3),
whose noun generation algorithm will serve as our
baseline.

2.1 Relation to lexical substitution

Noun generation in nominalization can be con-
sidered a specialized kind of lexical substitution.
While lexical substitution typically aims for a
paraphrase in the same part-of-speech (POS) (e.g.,
“dominate” — “prevail”), our task by definition
involves a change in POS, usually from a verb or
adjective to a noun (e.g., “dominate” — “domi-
nation”). This difference is reflected in the lim-
ited number of verb-noun or adjective-noun en-
tries in open-source paraphrase corpora such as
PPDB (Ganitkevitch et al., 2013).

2.2 Relation to word sense disambiguation

Word sense disambiguation (WSD) is relevant to
noun generation to the extent that verb senses can
guide the choice of noun candidates. For exam-
ple, “succeed” in the sense of “achieve the desired
result” should be paraphrased as “success” (“He
succeeded in ...” — “His success in ...”), whereas
“succeed” in the sense of “take over a position”

would require “succession” (“He succeeded to the
throne ...” — “His succession to the throne ...”).

WSD is not necessary for noun generation when
the verb corresponds to a noun with the same
range of meanings. Consider the verb “conclude”,
which may mean either “to finish” or “to reach
agreement”. Nominalization requires no WSD
since the noun ‘“conclusion” preserves the same
semantic ambiguity.

In other cases, our task requires fine-grained
WSD, especially when the noun candidates are se-
mantically close. Their differences can be rather
nuanced (e.g., “domination” vs. ‘“dominance”),
making it challenging for typical WSD models to
distinguish.

2.3 Nominalization pipeline

In the first reported tool for semi-automatic nom-
inalization aimed at academic writing (Lee et al.,
2018), the system first parses the input clause to
detect the potential for nominalization. If its de-
pendency tree exhibits an expected structure (e.g.,
Table 2(i)), the system proceeds to lexical map-
ping (Table 2(ii)), which includes transforming
the main verb (“entered”) to a noun (“entrance”);
an adverb (“abruptly”) to an adjective (‘“abrupt”);
and the subject (“the clown”) to a possessive form
(“the clown’s” or “of the clown™) . Finally, the
system generates a sentence by choosing one of
the possible surface realizations through heuristics
(Table 2(iii)).

The noun generation task in lexical mapping
utilizes verb-to-noun and adjective-to-noun map-
pings, some examples of which are shown in Ta-
ble 1. The system constructed these mappings on
the basis of NOMLEX (Meyers et al., 1998) and

(i) Parsing

The clown abruptly entered the stage

(ii) Lexical the clown abruptly entered the stage
mapping \ 1 { {
the clown’s abrupt entrance to the stage
(iii) Sentence | The abrupt entrance of the clown to the stage ...
generation The clown’s abrupt entrance to the stage ...
His abrupt entrance to the stage ...

Table 2: The nominalization pipeline (Lee et al., 2018): (i) syntactic parsing; (ii) lexical mapping, including noun
generation (bolded), which is the focus of this paper; and (iii) sentence generation.

CATVAR (Habash and Dorr, 2003)?, with a to-
tal of 7,879 verb-to-noun mappings, and 11,369
adjective-noun mappings.

3 Dataset

Among the mappings described in Section 2.3,
there were 7,380 verb-to-noun and 5,339
adjective-to-noun mappings with at least two
noun candidates. We constructed our dataset on
the basis of these mappings only, because the
others do not require selection from multiple
candidates.

The ideal dataset for this research would con-
sist of input sentences containing these verbs and
adjectives; and, as gold output, the noun candi-
date selected for use in the nominalized version
of these sentences. Unfortunately, no such large-
scale dataset exists. One option is to sample sen-
tences in a corpus and ask human experts to nomi-
nalize them; this would however require consider-
able manual annotation. To avoid this cost, an al-
ternative is to work backwards: identify sentences
containing noun phrases that could plausibly be
the result of nominalization (e.g., those in the right
column of Table 1). This methodology produces
the gold noun candidate automatically. One can
then retrieve from the mappings the verb or ad-
jective that would be in the hypothetical sentence
before nominalization (e.g., those in the middle
column of Table 1). Adopting this methodology,
we constructed a challenging dataset by prioritiz-
ing verbs and adjectives that are more ambiguous,
i.e., those with more noun candidates.

One potential issue is the plausibility of the se-
lected sentences as the nominalized form of an in-

2Verbs-to-be and modal verbs were not treated.

put sentence. To make our dataset as realistic as
possible, we required sentences to have one of the
three common nominalized forms, corresponding
to the three surface forms shown in Table 2(iii):

e “the <target noun> of <subject> ...”
e “<subject>’s <target noun> ...”
e “<poss> <target noun> ...”

where <target noun> is the gold noun candidate,
<poss> is a possessive pronoun and <subject> is
the noun subject of the hypothetical input sentence
before nominalization. In addition, we require the
target noun, verb and adjective to be tagged as
such at least two times in the Brown Corpus (Fran-
cis and Kucera, 1979), to avoid words with rare
usage.

Our dataset consists of a total of 620 sentences
that satisfy the above requirements, including 332
retrieved from the Brown Corpus and 288 from the
British Academic Written English (BAWE) Cor-
pus (Nesi, 2008). The sentences contain 73 dis-
tinct verbs and 19 distinct adjectives, each with an
average of 2.67 noun candidates.

4 Approach

The noun generation algorithm used by Lee et
al. (2018) considers only the word frequency
statistics of the noun candidates. It therefore al-
ways chooses the same noun candidate for a verb
(or adjective), even if the sentential context war-
rants a different choice due to word sense, register
or fluency considerations.

To remove this limitation, we use BERT (De-
vlin et al., 2019), a state-of-the-art neural lan-
guage model based on the “Transformer” architec-

ture (Vaswani et al., 2017). BERT has been shown
to be effective in a wide range of natural language
processing tasks. The model is bi-directional, i.e.,
trained to predict the identity of a masked word
based on the words both before and after it. We
consider the suitability of each noun candidate in
the verb-to-noun and adjective-to-noun mappings
as the masked word.

In each sentence in our dataset, we mask the tar-
get noun and ask BERT for its word predictions
for the masked position.> Among the noun candi-
dates, we identify the highest-ranked one among
the first 15,000 word predictions. If none of the
candidates is ranked, we create a sentence with
each candidate by replacing the masked word with
it, and obtain the BERT score for the sentence. We
select the candidate that yields the sentence with
the highest score.

5 Results

We compared our proposed approach with four
baselines:

Spelling This baseline selects the noun candidate
that has the smallest letter edit distance from
the original verb or adjective.

Frequency Following Lee et al. (2018), this base-
line selects the noun candidate with the high-
est unigram frequency count in the Google
Web IT Corpus (Brants and Franz, 2006).

Word2vec We select the noun candidate that is
most similar to the original verb or adjective,
as estimated by the Google News pre-trained
Gensim model (Mikolov et al., 2013).

Doc2vec We select the noun candidate that has
the highest cosine similarity with the sen-
tence embeddings, taking each sentence as a
small “document”.*

As shown in Table 3, the Frequency baseline
achieved higher accuracy than the Spelling base-
line and Word2vec. The frequency of a noun can-
didate appears to serve as a good proxy for its ap-
propriateness. All three approaches, however, ig-
nore the specific context of the sentence, always

3We used the PyTorch implementation of BERT with the
bert-base-uncased model.

*We used the following settings: max epocs = 100, vector
size = 20, alpha = 0.025, min count = 1, dm = 1. With word
embeddings combined, the best results were obtained with
dbow =0 and dmpv =0

Approach | Brown | BAWE
Frequency | 53.92% | 48.61%
Spelling 46.39% | 35.07%
Word2vec | 35.84% | 43.71%
Doc2vec 36.74% | 38.88%
BERT 74.10% | 72.57%

Table 3: Accuracy of our proposed noun generation al-
gorithm with BERT, compared to baselines.

proposing the same noun for a given verb or ad-
jective.

By taking the rest of the sentence into ac-
count when predicting the noun candidate, BERT
yielded better performance. Consider the verb
“measure”. Although frequency favors the noun
“measure”, BERT was able to select “measure-
ment” when it collocates with “quantity”. While
Doc2vec also considers the sentential context, it
did not perform as well as BERT, likely because
the masked language modeling objective offers a
better fit for our task.

Still, BERT’s performance was limited by dif-
ficulties in recognizing nuanced differences be-
tween noun pairs such as “use” and “usage”, or
“occupation” and “occupancy”’. With access only
to a single sentence, it was also unable to choose
formal words such as “continuance” over “contin-
uation” when called for by the context.

6 Conclusion

We propose an unsupervised algorithm for noun
generation from a verb or adjectival phrase, a task
that is essential for automatic nominalization sys-
tem for academic writing. This algorithm se-
lects the most appropriate noun candidate with
BERT, a state-of-the-art neural language model.
Experimental results show that it significantly out-
performs baselines based on word frequencies,
word2vec and doc2vec.

Acknowledgments

This work was partially funded by a HKSAR UGC
Teaching Learning Grant (Meeting the Challenge
of Teaching and Learning Language in the Univer-
sity: Enhancing Linguistic Competence and Per-
formance in English and Chinese) in the 2016-
19 Triennium; and by an Applied Research Grant
(#9667151) from City University of Hong Kong.

References

Sandra Aluisio, Lucia Specia, T. A. Pardo, E. G.
Maziero, and R. P. Fortes. 2008. Towards Brazilian
Portuguese Automatic Text Simplification Systems.
In Proc. 8th ACM Symposium on Document Engi-
neering.

Thorsten Brants and Alex Franz. 2006. The
Google Web 1T 5-gram Corpus Version 1.1. In
LDC2006T13.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pretraining of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proc. NAACL-HLT.

W. N. Francis and H. Kucera. 1979. Manual of Infor-
mation to Accompany a Standard Corpus of Present-
Day Edited American English, for use with Digital
Computers. Providence, RI. Department of Linguis-
tics, Brown University.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In Proc. NAACL-HLT.

Nizar Habash and Bonnie Dorr. 2003. A Categorial
Variation Database for English. In Proc. NAACL.

M. A. K. Halliday and C. M. I. M. Matthiessen.
2014. Halliday’s Introduction to Functional Gram-
mar. Routledge.

John Lee, Dariush Saberi, Marvin Lam, and Jonathan
Webster. 2018. Assisted Nominalization for Aca-
demic English Writing. In Proc. Workshop on Intel-
ligent Interactive Systems and Language Generation

(2ISNLG), pages 26-30.

Diana McCarthy and Roberto Navigli. 2009. The
English Lexical Substitution Task. Language Re-
sources and Evaluation, 43:139-159.

Adam Meyers, Catherine Macleod, Roman Yangarber,
Ralph Grishman, Leslie Barrett, and Ruth Reeves.
1998. Using NOMLEX to Produce Nominalization
Patterns for Information Extraction. In Proc. Com-
putational Treatment of Nominals.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Repre-
sentations in Vector Space. In Proc. International
Conference on Learning Representations (ICLR).

Shashi Narayan and Claire Gardent. 2014. Hybrid
Simplification using Deep Semantics and Machine
Translation. In Proc. ACL.

Hilary Nesi. 2008. BAWE: an introduction to a new
resource. In Proc. Eighth Teaching and Language
Corpora Conference, page 23946, Lisbon, Portu-
gal. ISLA.

Adbvaith Siddharthan. 2002. An Architecture for a Text
Simplification System. In Proc. Language Engi-
neering Conference (LEC).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. Advances in Neural Information Pro-
cessing Systems, pages 6000-6010.

Efficient text generation of user-defined topic using generative adversarial
networks

Chenhan Yuan
Dept. of Computer Science
Virginia Tech
VA, USA

chenhan@vt.edu

Abstract

This study focused on efficient text generation
using generative adversarial networks (GAN).
Assuming that the goal is to generate a para-
graph of a user-defined topic and sentimental
tendency, conventionally the whole network
has to be re-trained to obtain new results each
time when a user changes the topic. This
would be time-consuming and impractical.
Therefore, we propose a User-Defined GAN
(UD-GAN) with two-level discriminators to
solve this problem. The first discriminator
aims to guide the generator to learn paragraph-
level information and sentence syntactic struc-
ture, which is constructed by multiple-LSTMs.
The second one copes with higher level in-
formation, such as the user-defined sentiment
and topic for text generation. The cosine sim-
ilarity based on TF-IDF and length penalty
are adopted to determine the relevance of the
topic. Then, the second discriminator is re-
trained with generator if the topic or senti-
ment for text generation is modified. The
system evaluations are conducted to compare
the performance of the proposed method with
other GAN-based ones. The objective results
showed that the proposed method is capable
of generating texts with less time than oth-
ers and the generated text are related to the
user-defined topic and sentiment. We will fur-
ther investigate the possibility of incorporating
more detailed paragraph information such as
semantics into text generation to enhance the
result.

1 Introduction

Text generation, as a basic natural language pro-
cessing task, has many applications, such as dia-
logue robots (Li et al., 2017), machine translation
(Hu et al., 2017), paraphrasing (Power and Scott,
2005) and so on. With the rise of deep learning,
different neural networks are introduced to gener-
ate text. For example, researchers use the recur-

Yi-chin Huang
Dept. of Computer Science Institute for Information Industry
National Pingtung University
Pingtung, Taiwan
ychin.huang@gmail.com

Cheng-Hung Tsai

Taipei, Taiwan
jasontsai@iii.org.tw

rent neural network (RNN) (Mikolov et al., 2010)
to train the language model because of its capa-
bility to process sequential data. However, the
RNN suffers from the gradient vanishing problem
(Hochreiter, 1998) when the sequence becomes
longer. To address this problem, Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997)is further adopted as a sequential neural net-
work model to generate sentences.

Lately, the Generative Adversarial Networks
(GAN) framework (Goodfellow et al., 2014) has
been introduced into the NLP community. GAN
has two different models for completing the data-
generating task. One of them is Generator G,
which is responsible for generating data, and an-
other one is discriminator D, which determines
whether the input data is the real data or not.
The generator G continuously optimizes generated
data based on the judgment of discriminator D. Af-
ter several epochs, the generated data will become
more realistic.

However, GAN was originally designed to pro-
cess continuous data, and using discrete data as
input would make it impossible to update the gra-
dients of the GAN framework(Huszar, 2015). To
process discrete data, several variants of the GAN
model for generating text have been proposed.
These GAN variants could achieve good perfor-
mances in text generation task, such as MaskGAN
(Fedus et al., 2018), RankGAN (Lin et al., 2017),
and TextGAN (Zhang et al., 2016).

In order to make these models fit the distribu-
tion of real text data better, the number of pa-
rameters of text generation models based on neu-
ral network are increased, which means that train-
ing these neural network models often takes a lot
of time even using GPU. Conventionally, topic-
related text generation models incorporate an ar-
bitrary topic as an input by adopting mechanisms
like attention (Feng et al., 2018). Therefore, each

time when the user wants to generate new sen-
tences with another topic or sentimental tendency,
the text generation models have to be retrained
with all parameters to satisfy new requirements.
In some scenarios, e.g., news generation, spend-
ing lots of time retraining model is not practical
and the user wants new responding quickly.

To tackle this problem, a novel text genera-
tion model based on GAN is proposed, which is
called User-Defined Generative Adversarial Net-
works (UD-GAN). The key idea is to separate the
sentence syntax model as the basic model and the
topic-related model as a higher-level model, and
these two could be trained independently from
each other. So, when the topic or other user-
defined information is modified, e.g., sentimental
tendency, only one of both models needs to be re-
trained. In this way, once the basic syntax model
is established, the following training will become
much faster, since only the higher-level model has
to be retrained.

In our proposed method, the discriminator is
constructed based on this idea. One of the discrim-
inators called discriminator-general, which learns
to determine the proper context information and
whether the input sentence is a valid syntactic
structure. Another discriminator is called the
discriminator-special, which ensures the output is
user-defined. Inspired by SeqGAN (Yu et al.,
2017), we use the evaluation results of the gener-
ated text from discriminators as a reward to guide
the generator to select future actions, which is to
generate an updated word.

For training the discriminator-special, it will
take feature vectors as input, instead of sentences.
The feature vector is defined based on the senti-
ment detection and topic relevance of generated
sentence. The cosine similarity based on TF-IDF
and length penalty are jointly adopted to represent
topic relevance.

Note that the UD-GAN is designed to be
more practical to generate short paragraphs,
which means sentences generated by it should
be context-aware and behave like a paragraph to-
gether with surrounding sentences. To achieve
this idea, discriminator-general is designed with
hierarchical multiple LSTM layers. The LSTM
at the top of the network processes paragraph-
level information while the bottom LSTMs pro-
cess sentence-level information.

The organization of the paper is as follows:

First, we discussed the related works of our
method in the section 2. The proposed method
is described in the Section 3, including the fea-
ture extraction and model definition and training.
In the Section 4, the experiment settings and eval-
uation results of the comparing methods are de-
picted. Finally, the concluding remarks and future
works are described in the Section 5.

Algorithm 1 Initial training generator G0,
discriminator-special D-y, discriminator-general
D¢
1: Initialize GO, D¢ and D~ with random
weightsf, ¢ and
2: Pre-train G using MLE on real text data set
3: Generate negative samples using (G to train
D¢ and D~
4: Generate synthetic positive samples to train
D~
Minimizing the cross entropy to pre-train D-y
Minimizing the cross entropy to pre-trainD¢
for i < 1to M do
for j <~ 1to N do
Generate a sequence Yi.7 «~ G0
10: Compute rewards via Eq.5
11: Update parameters of G0 via Eq.4
12: end for
13: fork < 1to Pdo
14: Generate negative samples using G0
15: Train D¢ with negative samples and real
text data via Eq.6
16: end for
17: forl <+ 1toT1 do

0 R

18: Generate feature vectors corresponding
to negative samples generated by G0

19: Generate synthetic feature vectors

20: Train D~ with negative and synthetic
feature vectors via Eq.6

21: end for

22: end for

2 Related Work

Text generation is a basic task in natural language
processing (NLP). In previous works, many re-
searchers (Power and Scott, 2005) extracted gram-
mar rules from text to generate new texts. These
works are capable of generating semantically rich
and grammatically correct text, but due to the fixed
grammar rules, generated sentences are quite lack
of diversity. As neural networks could fit the dis-

Real[text

Train
data

Generator <

/ﬂ
//
"y

f

Synthetic data

| Discriminator-
general

Train Discriminator-
data special

/\-.

Policy
" Pient
gra

- -@
I +——@<+—Generator
T

Next
actions

Train D-general and D-special

Train generator

Figure 1: The framework of the proposed UD-GAN

Algorithm 2 Following training generator (6,
discriminator-special D~y

1: Initialize GO, D~ with random weightsf, D~y
2: Load trained D¢

3: Do 25 steps in Algorithm 1

4: fori <— 1to M do

5: Do 812 steps in Algorithm 1

6: forl<+ 1to7 do

7 Generate feature vectors corresponding
to negative samples generated by G
Generate synthetic feature vectors

Train D~ with negative and synthetic
feature vectors via Eq.6

10: end for

11: end for

o @

tribution of real data better, some researchers de-
sign GAN-based models as language models to
generate text. Unlike standard GAN, the loss func-
tion or training method of generator are modified
to enable GAN to process discrete data.

For example, In TextGAN (Zhang et al., 2016),
researchers apply feature matching with standard
GAN loss function to train the generator. Rein-
forcement learning (Sutton et al., 2000) is another
useful machine learning technique to train model
with unlabeled data. Trained model will choose
next actions to maximize expected reward, which
is given by interface environment. Yu proposed
SeqGAN (Yu et al., 2017), which combine rein-
forcement learning with GAN. In SeqGAN, the
generator uses the result of discriminator as a re-
ward and choose next actions, which is to generate
the next words in text generation task. To gener-
ate longer text, LeakGAN (Guo et al., 2018) is in-
troduced to enable the discriminator leaks features
extracted from its input to generator, which then

uses this signal to guide the outputs in each gener-
ation step before generating the entire sentence.

Another vital application of NLP is the senti-
ment analysis (Pang et al., 2008; Wilson et al.,
2005). Generally, the sentiment analysis task mea-
sures the emotional tendency of the whole sen-
tence based on the word usage that can represent
emotions in that sentence. Therefore, the estab-
lishment of an emotional word dictionary is essen-
tial. Affective Norms for English Words (ANEW)
(Bradley and Lang, 1999) lexicon sorts all words
according to rating score from 1 to 9. The highest
score means the sentence convey a very positive
emotion, and the lowest one represents the most
negative emotion for the sentence. Based on that,
some researchers (Hutto and Gilbert, 2014) con-
struct a gold-standard list of lexical features then
combine these lexical features with consideration
for five general rules, which could represent the
sentiment of a sentence. The VADER algorithm
proposes a rule-based sentiment analyzer that has
outperformed the other machine learning-based al-
gorithms.

3 Proposed Method

3.1 Basic Structure of UD-GAN

As shown in Fig.1, UD-GAN contains a gen-
erator GGy that is capable of generating context-
dependent sentences and the two-level discrimina-
tors. Discriminator-general Dy guides the gener-
ator to learn the paragraph-level information and
correct syntactic structure, while discriminator-
special D)., determines whether the generated text
is related to the user-defined topic and senti-
ment. Discriminator-special D., is trained with
synthetic perfect data and generated text data,
while discriminator-general D, is trained with real

text data and generated text data.

As we apply reinforcement learning with pol-
icy gradient to train the generator, the outputs
of the two discriminators for the generated text
will be combined and served as a reward to
train the generator. Generator Gy will choose
the best next actions based on the reward it re-
ceived. After the first training via Algorithm 1,
the discriminator-general parameters are saved as
the pre-trained model. In the subsequent train-
ings, we only train the parameters of the generator
Gy and discriminator-special D, via Algorithm 2.
The details about training method and structure of
discriminators and generator are described as fol-
lows.

3.2 The Framework of D-Special

The Feature Vector of D-Special

Discriminator-special D, takes a vector con-
taining 5 elements as input, which could represent
the sentimental and topical relevance of each sen-
tence.

In our model, users can describe the cause and
effect of an event in one sentence, which is used as
the topic for generating sentences. We use the first
element to represent the similarity between sen-
tence entered by the user and generated sentence,
which could also represent the user-defined topic
relevance of the generated text. Based on the TF-
IDF (Sparck Jones, 1972) value of each word in
the sentence that the user entered and the gener-
ated sentence, the cosine similarity between these
two sentences is calculated as a parameter to mea-
sure the user-defined topic relevance of the gener-
ated sentence. A larger value of cosine similarity
means that the generated sentence is related to the
user-defined topic.

However, if only this element is used to in-
struct the generator (g to generate topic-related
sentences, the resulting sentences will be substan-
tially as long as the user-defined topic sentence.
More importantly, the generated sentences will
lack diversity with same meaning. Therefore, we
propose the second element, length penalty, to
reduce the negative impact of the first element.
The difference between the length of the gener-
ated sentence and the length of the topic sentence

defined by user is mapped in [0, 1] via Eq.1.

penaltyy, =

|leng/ - leni} (1)

I;leaé(lleng — len;| — Igrgél |leng — len;|

where i is input sentence, ¢’ is the evaluated
generated sentence and G is the set of gener-
ated sentences. We set 0.5 to the optimal length
penalty, which means that if the length of the sen-
tence is very close to or very far from the length of
topic sentence, it is unqualified.

We implemented the VADER algorithm to cal-
culate the probability that a generated sentence be-
longs to a positive, negative or neutral emotion
class. As VADER gives three values that corre-
spond to the probability of each sentiment cate-
gory, the sum of which is 1, these three values will
be saved in the third to fifth elements. The optimal
sentiment is defined by the user.

In conventional GAN training, the discrimina-
tor treats real text data as the positive sample and
generated text as the negative sample. However,
there is no sentence in real corpus that has ex-
actly the same features as the positive sample,
since its feature vector is constructed by apply-
ing the above mention algorithm, while the user-
defined feature vector is a specific value. There-
fore, we train the discriminator-special D, with
synthetic data, which is treated as positive sam-
ple. For example, supposing that the user would
like to generate an essay with one positive emo-
tion, then the UD-GAN will generate [1,0.5,1,0,0]
vectors corresponding to the number of generated
sentences, which will be combined with vectors
corresponding to the generated sentences as the in-
put of discriminator-special.

The Structure of D-Special

Two linear layers with Relu as the activation
function are used as discriminator-special ... The
output of this network will be part of the reward to
train generator Gg after it passed through a soft-
max layer.

We explain here why the multiple fully con-
nected layer is implemented as a discriminator-
special. The first reason is that after the
Discriminator-General is constructed, in the sub-
sequent training, the discriminator-special will
be continuously retrained when demands of user
change. This requires spending as little time as
possible to train a good discriminator-special. The

Output Softma).

Linear
layer

B
Linear
4+
layer

1-p

Multi- Multi- Multi-
layers > layers +@ @ @ layers
LSTM LSTM LSTM
4 4 4
Wordl Word2 @ @@ wordn

| /

Embedded Sentence 2-paragraphl

4

Multi- Multi- Multi-
layers —+ layers @ @ @> layers
LSTM LSTM LSTM
4 4 4
Wordl Word2 @@ @® Wwordn

- /

Embedded Sentence 1-paragraphl

Figure 2: The proposed framework for Discriminator-general

multiple fully connected layer has fewer param-
eters, which means this network will converge
faster than others will. Another reason is that the
aim of training discriminator-special is to distin-
guish whether the input vector corresponds the
user-defined one. For an input with only five
variables, a neural network with two fully con-
nected layers is complicated enough to determine
the class of input vector correctly.

3.3 The Framework of D-General

Unlike conventional ideas of using classifier-
based models as a discriminator, the discriminator-
general Dy needs to process sequence data and
context information, such as the paragraph infor-
mation for each sentence to generate paragraph-
level text.

Therefore, as shown in Fig.2, we designed
a hierarchical-multiple-LSTM neural network as
the discriminator-general Dy. The bottom multi-
layers LSTM takes an embedding vector for each
word in a sentence as the input and it outputs a
feature matrix representing the corresponding sen-
tence. The top bidirectional LSTM (Graves and
Schmidhuber, 2005) takes the feature matrices of
these sentences, which belong to the same para-
graph, as input and it outputs a feature matrix
representing that paragraph. After transforming
through two different linear layers respectively,
the above two feature matrices will be combined
together. Finally, the discriminator-general calcu-
lates the score of the input sentence via Eq. 2.

R(Y) = softmax[(1 — B)LST My + SLST M,]
(2)

where [is a trainable parameter ranging 0-1.

3.4 Generator

Generator Gy is designed with GRU (Chung et al.,
2014). In UD-GAN, due to the excessive pa-
rameters of the two discriminators, it is easy to
guide the generator to be over-fitting. As a com-
monly used variant of LSTM, GRU avoids this
over-fitting problem. In addition, having fewer pa-
rameters than conventional LSTM allows GRU to
take less time to converge, which is the first prior-
ity in UD-GAN.

3.5 Reward and Policy Gradient Training

The reinforcement learning has been incorporated
to enable GAN to process discrete data. In this
scenario, generator Gy will use the results from
discriminators on the generated text as reward to
generate next words. In UD-GAN, the reward is
calculated based on results of two discriminators.
Generator Gy tries to maximize expected reward
from the initial state till the end state via Eq.3(loss
function).

T
J(0) = E(R[S;-1,6)
t=1
T
=D GolwlY)ADy(Y)) + (1= A) D, (V)]

3

Where A is a manually set weight and Y is
a complete sequence and R; is the reward for a
whole sequence. In our experiments, we set A
to 0.8 to give more weight to the discriminator-
general Dy for generating sentences with better
syntactic structure. Note that since discrimina-
tors can only make the judgement with a complete
sequence, the Monte Carlo search (Silver et al.,
2016) is adopted to find out some of the possible
generated complete sequences of each state. the

average judgment results of the discriminators for
these sequences are calculated as a reward of this
state.

In this paper, we implemented policy gradient
method. The gradient of Eq.3 can be derived ap-
proximately as follows:

VoJ(0) ~

T
4)
Y By, [VologGo(y: Y)QF! . (uelY)]

t=1

where ngan (yt|y1:4—1) can be derived via
Eq.5.

G
@py,.p, Welyr:i-1) = A(Dy(Y))+(1=2)D,(Y))
&)
The loss function of both discriminators is intro-
duced as follows:

J = = (Byupy[RY)] = Eyeg, [l = R(Y)])
(6)
where R(Y") is the reward from two discriminators
for a whole sequence.

4 Experimental Analysis

4.1 Dataset

We crawled nearly 10,000 press released from the
opinion section of Newsweek as the training cor-
pus. The opinion section of Newsweek is selected
as training corpus because the paragraphs of the
essays in Newsweek are generally closely related
and not long. The other reason is that through the
articles in the opinion section, authors can often
convey their own sentiment tendencies.

NER is used to replace name-entities with their
name-entity tags to decrease vocabulary. After to-
kenizing the corpus, long sentences of more than
45 words in the corpus were removed. The fi-
nal training corpus has 425K sentences and 103K
paragraphs.

4.2 Experimental Setting

SeqGAN and LeakGAN are used as the baseline
system to evaluate UD-GAN. We train SeqGAN
and LeakGAN for 20 epochs, which is same as
the number of times UD-GAN is trained. Other
parameters of baselines remain unchanged as im-
plemented in their original papers.

The bottom of the discriminator-general con-
sists of three layers of LSTM. The hidden dimen-
sion of discriminator-general bidirectional LSTMs

GAN-based models ROUGE-L
UD-GAN(GS) 364.73
UD-GAN(S) 370.54
UD-GAN(G) 340.19
SeqGAN 342.27
LeakGAN 345.03

Table 1: The ROUGE-L score for each system. UD-
GAN(G+S) represents initial training and UD-GAN(S)
represents following training. UD-GAN(G) only has
discriminator-general and generator. Note that this
score is the sum of all generated sentences’ ROUGE-
L results.

for the UD-GAN and the bottom LSTMs is
set to 64. Besides, the hidden dimension of
discriminator-special linear layer and GRU unit
of generator is set to 32. In each epoch of ini-
tial training, generator G is trained once, and the
discriminator-general is trained four times while
the discriminator-special is trained twice.

For evaluating the effectiveness of the proposed
method, we first compared the sentences relevance
to user-defined topic and sentimental tendency,
and then compare the training time of each sys-
tem. Finally, the fluency and correctness of UD-
GAN and baseliens were evaluated.

4.3 Relevance of Topic and Sentiment

Relevance of Topic

As an objective summary accuracy evaluation
method that is widely used, ROUGE (Lin, 2004)
is also adopted here to evaluate whether gener-
ated sentences are related to user-defined topics.
Generated sentences are treated as summaries to
be evaluated, and the topic sentence defined by
user is used as a reference summary to evaluate
whether the generated sentence is related to the
topic. Note that even if the ROUGE scores of the
generated sentences are not high, it does not mean
that these sentences are not closely related to the
user-defined topic necessarily. One possibility is
that the generated sentences will use other words
or syntactic structures to describe the topic sen-
tence.

In this paper, we report the sum of ROUGE-L
scores of all sentences. Based on the longest com-
mon subsequence, ROUGE-L is a score related to
recall rate. As shown in Table.1, the ROUGE-
L scores for UD-GAN (G+S) and UD-GAN(S)
are slightly higher than baseline systems and UD-
GAN (G).

Positive Negative Neutral
UD-GAN(GS) 0.39 0.05 0.56
UD-GAN(S) 0.41 0.04 0.55
UD-GAN(G) 0.10 0.08 0.82
SeqGAN 0.09 0.08 0.83
LeakGAN 0.08 0.07 0.85

Table 2: The probability of sentiment tendency of gen-
erated sentences

Relevance of Sentimental Tendency

The VADER algorithm is used to calculate the
probability that the sentimental tendency of the
generated sentences to be positive, negative or
neutral. Here, we evaluated the system perfor-
mance by setting the target sentimental tendency
as positive.

As shown in Table.2, the average probability
in each sentimental tendency category of all sen-
tences is calculated. With training discriminator-
special, UD-GAN (G+S) and UD-GAN (S) are
more likely to generate positive sentences than
baselines. Which proves that the proposed method
is capable to generate the sentences with the de-
sired sentiment. However, since the total number
of sentences expressing positive sentimental ten-
dency in the training corpus is quite low, the prob-
ability of UD-GAN generating positive sentiment
is still not higher than 0.5.

Generate Context-dependent Sentences

To demonstrate that UD-GAN can generate
context-dependent sentences, we show sentences
generated by UD-GAN and baselines. As shown
in Table 3, one can see that the proposed UD-GAN
does generate sentences related to the user-defined
topic. UD-GAN tries to add some conjunctions
when generating sentences so that the sentences
seem to be related, and each sentence is extended
with other related words based on the topic. Note
that there are some Name-Entity (NE) tags gen-
erated by the models because the NE tagging has
been done for simplifying the corpus lexicon.

However, semantically, these sentences are not
intrinsically related to each other, which is a prob-
lem we will address in the future.

4.4 Training Time Evaluation

The time spending on gradient propagation and
update of UD-GAN and baselines are compared,
instead of the time spending on loading and saving
data. Our platform is a workstation with a GeForce

topic: the attack in douma occurred days
after trump indicated that he wanted to pull
us troops out

UD-GAN(S):

1. the country contacts to the u.s. and trains
troops for government living on the federal
system in LOCATION .

2. we are discussed actively : if u.s. is the facts
that citizens in the country will likely vote

for type elections ?

3. during these attack things occurred days , i
say just PERSON who pulls in the exchange
best troops out as trade in LOCATION .

4. and he often enthusiastic , telling only having
heard nothing happened while you can indicate
to pull out from country .

5. but these generations in LOCATION can
predict the next five attacks occur.

LeakGAN:

1. it prompted the opposition during a “ real

of subtlety , and video straws .

2. but if PERSON know that we serve the best
drives these country purposes . ”

3. besides disarming our administration and
pricing and its traditional views .

4. with her contempt for all enough neighbors .
5. one day i °’d go beyond my candor .

SeqGAN:

1. we do n’t mean .

2. you should be *“ changed ” that you know .
3. i ’ve always been proposing the findings .
4. in other words , he ’s because you have a
testament to his goodness — not a result .

5. he gave economic law .

Table 3: An example of the generated sentences from
different systems

GAN-based models Time s
UD-GAN(GS) 29061.48
UD-GAN(S) 4841.99
UD-GAN(G) 29036.65
SeqGAN 27011.08
LeakGAN 30471.95

Table 4: Time spending on training of each models

GTX 1080 Ti graphics card with 11G RAM.
All GAN-based models compared here are imple-
mented in pytorch (Paszke et al., 2017) framework
to eliminate the impact of different frameworks on
time consumption.

As shown in Table.4, because the structure of
discriminator-general is more complex than the
structure of discriminator D of baselines, ini-
tial training of UD-GAN takes the longest time.
However, in the subsquent trainings, due to the
gradient propagation and parameter update of
discriminator-special is quite fast, the time re-
quired to train UD-GAN (S) is the shortest. The
UD-GAN (S) takes only about an hour and a half
to complete training, which is much less than the
nearly eight hours of training time for baselines.

4.5 Fluency and Accuracy

As shown in table 5, we report BLEU (Papineni
et al.,, 2002) scores of UD-GAN and baselines
to compare the fluency and accuracy of text they
generate. The BLEU we use here is the average
value of 1-gram BLEU, 2-gram BLEU and 3-gram
BLEU, which are given the same weights .

In the case of training the discriminator-general
only, the BLEU score of the UD-GAN (G) is be-
tween SeqGAN and LeakGAN. Therefore, the ac-
curacy and fluency evaluation of using multi-layer
LSTMs as a discriminator is comparable to that
of using a classifier-based model, such as CNN,
as the discriminator. When the discriminator-
general and discriminator-special are simultane-
ously trained (initial training), UD-GAN (G+S)
has a slightly higher BLEU score than UD-GAN
(G). That is to say, even if discriminator-special
is added and the result of discriminator-general,
which can distinguish the correctness of the sen-
tence, is less weighted, the resultant generator
of UD-GAN (G+S) can still learn how to gen-
erate a sentence with the correct syntax. Then
we change the user-defined topic and sentimen-
tal tendency to train the discriminator-special only
(subsequent training). The results showed that the
BLEU score of the UD-GAN(S) is still between
LeakGAN and SeqGAN. It means that retraining
the discriminator-special has no effect on whether
the generator can learn the correct syntax with-
out changing the weights of rewards generated by
discriminator-general and discriminator-special.

GAN-based models BLEU score
UD-GAN(G+S) 0.6412
UD-GAN(S) 0.6409
UD-GAN(G) 0.6357
SeqGAN 0.6303
LeakGAN 0.7161

Table 5: The average BLEU score for each system.
Note that UD-GAN(S) achieves comparable BLEU
performance with baselines, whose training needs far
less time than baselines.

5 Conclusion and Future Work

In this paper, we propose a UD-GAN method to
re-train text generation model more efficiently to
generate sentences that are consistent with the new
user-defined topic and sentimental tendency. We
compared the accuracy and fluency of sentences
generated by UD-GAN with other GAN-based
text generation models. The experimental results
showed that sentences generated by UD-GAN are
competent. Meanwhile, UD-GAN takes much
less time in the re-train stage than other models.
According to experimental results, UD-GAN can
also successfully generate sentences related to the
user-defined topic and sentimental tendency, while
baselines does not have this capability. Besides,
UD-GAN can also generate paragraph-level text.
However, the sentences generated by UD-GAN
are still inferior to the state-of-the-art method, i.e.,
LeakGAN, in terms of fluency. And the current
paragraph-level information used here does not in-
clude complex linguistic information, such as the
order of sentences. In future work, we will try
to maintain the existing advantages of UD-GAN
while improving the readability of generated text.

References

Margaret M Bradley and Peter J Lang. 1999. Affective
norms for english words (anew): Instruction manual
and affective ratings. Technical report, Citeseer.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

William Fedus, Ian Goodfellow, and Andrew M Dai.
2018. Maskgan: Better text generation via filling in
the_. arXiv preprint arXiv:1801.07736.

Xiaocheng Feng, Ming Liu, Jiahao Liu, Bing Qin, Yibo
Sun, and Ting Liu. 2018. Topic-to-essay generation
with neural networks. In IJCAI, pages 4078—4084.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems, pages 2672-2680.

Alex Graves and Jiirgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional Istm
and other neural network architectures. Neural Net-
works, 18(5-6):602—-610.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. 2018. Long text generation
via adversarial training with leaked information. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Sepp Hochreiter. 1998. The vanishing gradient prob-
lem during learning recurrent neural nets and prob-
lem solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems,
6(02):107-116.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Controllable
text generation. arXiv preprint arXiv:1703.00955,
7.

Ferenc Huszar. 2015. How (not) to train your genera-
tive model: Scheduled sampling, likelihood, adver-
sary? arXiv preprint arXiv:1511.05101.

Clayton J Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In Eighth international AAAI
conference on weblogs and social media.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
Alan Ritter, and Dan Jurafsky. 2017. Adversar-
ial learning for neural dialogue generation. arXiv
preprint arXiv:1701.06547.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang,
and Ming-Ting Sun. 2017. Adversarial ranking for
language generation. In Advances in Neural Infor-
mation Processing Systems, pages 3155-3165.

Tomas§ Mikolov, Martin Karafiat, Luka$ Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Eleventh
annual conference of the international speech com-
munication association.

Bo Pang, Lillian Lee, et al. 2008. Opinion mining and
sentiment analysis. Foundations and Trends®) in In-
formation Retrieval, 2(1-2):1-135.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311-318. Association for
Computational Linguistics.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Richard Power and Donia Scott. 2005. Automatic gen-
eration of large-scale paraphrases.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11-21.

Richard S Sutton, David A McAllester, Satinder P
Singh, and Yishay Mansour. 2000. Policy gradi-
ent methods for reinforcement learning with func-
tion approximation. In Advances in neural informa-
tion processing systems, pages 1057-1063.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of Human
Language Technology Conference and Conference
on Empirical Methods in Natural Language Pro-
cessing.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In Thirty-First AAAI Confer-
ence on Artificial Intelligence.

Yizhe Zhang, Zhe Gan, and Lawrence Carin. 2016.
Generating text via adversarial training. In NIPS
workshop on Adversarial Training, volume 21.

